В сейсмически активных областях живет примерно половина человечества. Чтобы учитывать опасности, связанные с их последствиями, архитекторы, специалисты в области градостроительного планирования и проектирования фундаментов, а также конструктивных элементов зданий и сооружений крайне нуждаются в максимально точной информации о параметрах самих землетрясений, а также тех воздействий, которые они могут оказывать. Проведение соответствующих исследований и получение этих данных входит в обязанности инженеров-изыскателей.
НОРМАТИВНОЕ РЕГУЛИРОВАНИЕ
В настоящее время около 30 наиболее экономически развитых стран мира (в том числе Россия) используют собственные нормы, которые регламентируют основные правила строительства в сейсмически опасных районах.
Пункт 6.1.3 Свода правил 47.13330.2016 «Инженерные изыскания для строительства. Основные положения. Актуализированная редакция СНиП 11-02-96», где перечисляются основные виды работ и комплексных исследований в составе инженерно-геологических изысканий, содержат вид работ под названием «сейсмологические и сейсмотектонические исследования, сейсмическое микрорайонирование (СМР)».
Определение сейсмических сил
Данный пункт СП входит в перечень Постановления Правительства Российской Федерации от 4 июля 2020 года № 985 «Об утверждении перечня национальных стандартов и сводов правил (частей таких стандартов и сводов правил), в результате применения которых на обязательной основе обеспечивается соблюдение требований Федерального закона «Технический регламент о безопасности зданий и сооружений» и о признании утратившими силу некоторых актов Правительства Российской Федерации».
Содержательная часть этих работ разъясняется в других нормативных документах. Таких, как СП 14.13330.2018 «Строительство в сейсмических районах. Актуализированная редакция СНиП II-7-81*», СП 408.1325800.2018 «Детальное сейсмическое районирование и сейсмомикрорайонирование для территориального планирования», СП 283.1325800.2016 «Объекты строительные повышенной ответственности.
Правила сейсмического микрорайонирования», СТО 95 12022-2017 «Инженерные изыскания для строительства атомных электростанции. Сейсмическое микрорайонирование. Общие требования», СП 268.1325800.2016 «Транспортные сооружения в сейсмических районах. Правила проектирования», СП 269.1325800.2016 «Транспортные сооружения в сейсмических районах.
Правила уточнения исходной сейсмичности и сейсмического микрорайонирования» и др. Действуют также национальные стандарты ГОСТ 25100-2012 «Грунты. Классификация», ГОСТ Р 57546-2017 «Землетрясения. Шкала сейсмической интенсивности» и др.
СЕЙСМИЧЕСКАЯ ОПАСНОСТЬ
По определению, сейсмическая опасность оценивается в терминах распределения вероятности сейсмических воздействий (в баллах шкалы сейсмической интенсивности и в параметрах колебаний грунта) по их силе в пространстве и времени. При оценке сейсмической опасности необходимо определить:
– места возможных очагов землетрясений (зон ВОЗ);
Сейсмическое строительство в Японии / Seismic construction in Japan
– силу этих землетрясений;
– частоту повторения землетрясений;
– ожидаемые параметры сейсмических воздействий.
ГИПОЦЕНТР И ЭПИЦЕНТР
Землетрясение обычно начинается в некоторой точке (гипоцентре) и затем распространяется в стороны от нее. Точка, находящаяся на поверхности земли точно над гипоцентром, называется эпицентром. Расстояние от поверхности земли до гипоцентра, называется глубиной очага.
Очаги землетрясений располагаются на глубинах до 700 км, но большая часть сейсмической энергии выделяется в очагах, находящихся на глубине до 70 км. Размер очага катастрофических землетрясений может достигать 100 x 1000 км. Его положение и место начала перемещения масс (гипоцентр) определяют путем регистрации сейсмических волн, возникающих при землетрясениях. Проекция гипоцентра на земную поверхность именуется эпицентром.
Выявление сейсмогенерирующих структур (СГС) в зонах возникновения очагов землетрясений (зонах ВОЗ) и определение параметров их сейсмического режима являются самым сложным и наиболее ответственным звеном в исследованиях по сейсмическому районированию, поскольку от этого зависит надежность всех последующих построений.
ОСНОВНЫЕ ПАРАМЕТРЫ – МАГНИТУДА И ИНТЕНСИВНОСТЬ
Основными параметрами, определяющими силу и характер (эффект) землетрясения являются магнитуда, глубина очага, интенсивность и повторяемость.
Магнитуда землетрясения — условная безразмерная величина, характеризующая общую энергию упругих колебаний, вызванных землетрясением. Определяется как десятичный логарифм амплитуды наибольшего колебания грунта, записанного при прохождении сейсмической волны.
Интенсивность землетрясения – это интенсивность колебания грунта на поверхности земли, являющаяся разрушительной силой землетрясения. Она зависит от магнитуды, расстояния от эпицентра и глубины очага землетрясения. Может измеряться величиной пикового ускорениях и в баллах шкалы сейсмической интенсивности (ШСИ).
ПОВТОРЯЕМОСТЬ И СЕЙСМИЧЕСКИЕ БРЕШИ
Землетрясение представляет собой разрушение материала земных недр под воздействием тектонических напряжений. Следовательно, по теории упругой отдачи Дж. Рейда, можно предположить, что следующее землетрясение в том или ином сегменте разлома произойдет лишь после того, как уровень накопленных напряжений достигнет некоторого порогового уровня, превышающего предел прочности материала. Скорость накопления тектонических напряжений определяет период повторяемости землетрясений, и при постоянной скорости этот период должен быть достаточно стабильным.
Установлено, что сильные землетрясения в одном и том же сегменте границы плит обычно повторяется не чаще, чем через несколько десятилетий, а во многих местах еще реже. Период повторяемости, как уже отмечалось, определяется скоростью накопления напряжений. Сегменты, в которых не происходило сильных землетрясений в течение нескольких последних десятилетий, стали называть сейсмическими брешами. Имеется множество примеров использования сейсмических брешей для предсказания мест сильных землетрясений на границах тектонических плит.
ЗАЩИТА ОТ СЕЙСМИЧЕСКОГО ВОЗДЕЙСТВИЯ
Сейсмическое воздействие – это специальный термин, который в практике расчетов конструкций на сейсмостойкость обозначает колебательное движение грунта при землетрясении, создающее кинематическое возбуждение колебаний строительных конструкций. Сейсмическое воздействие не поддается точному предсказанию величины своей частоты и интенсивности, а также места расположения эпицентра, так как землетрясения носят случайный характер. Такая наука как сейсмология занимается изучением распространения сейсмических волн и применяет полученные данные для прогнозирования подземных толчков.
Для защиты зданий от такого вида воздействий производят расчеты на прочность и устойчивость, применяют методы сейсмоизоляции зданий, используют особые конструктивные и объемно-планировочные решения при проектировании. Расчет на сейсмическую устойчивость относится к особым видам нагрузок, однако выделяется среди прочих своей сложностью для точного воспроизведения на практике.
СЕЙСМОЛОГИЧЕСКИЕ, СЕЙСМОТЕКТОНИЧЕСКИЕ ИССЛЕДОВАНИЯ. ПРИ ЧЁМ ЗДЕСЬ КАРТЫ ОСР?
Основными задачами сейсмологических исследований являются: составление базы сейсмологических данных района исследований для разработки каталога землетрясений, оценка средних периодов повторения землетрясений различных магнитуд, определение мощности и глубины залегания сейсмоактивного слоя. Размер области исследований определяется в соответствии с СП 286.1325800.2016.
Рис 1.
Цель сейсмотектонических исследований заключается в составлении детальной сейсмотектонической карты для всей площади объекта, как основы для оценки опасности проявлений сейсмических и тектонических явлений. В задачи сейсмотектонических исследований согласно СП 286.1325800 входят: — выявление активных разломов и картирование их на территории региона с оценкой параметров прогнозных смещений; — разработка сейсмотектонической модели и построение карты зон ВОЗ в детальном масштабе, опасных для площадных объектов изучения.
Указанные задачи определяют два основных направления сейсмотектонических исследований и тесно взаимосвязаны между собой. Отражение на сейсмотектонической карте параметров прогнозных смещений по активным разломам необходимо для прогноза возможных разрушений строительных объектов. Материалы полевого изучения активных разломов и вторичных палеосейсмодислокаций, наряду с другими сейсмотектоническими и сейсмологическими данными, ложатся в основу карты зон ВОЗ в детальном масштабе.
Рис. 2
В качестве первого шага в сейсмотектонических исследованиях принимается сейсмотектоническая основа общего сейсмического районирования (ОСР).
Рис 3. ОСР
Методология ОСР базируется на создании двух взаимосвязанных сейсмогеодинамических моделей — модели очаговых зон (МОЗ) и модели сейсмического эффекта (МСЭ). Каждая из них отражает структурно-динамическое единство природной среды и вероятностный характер развивающихся в ней сейсмических процессов. С помощью этих двух моделей путем компьютерного моделирования осуществляется расчет повторяемости сейсмических сотрясений на земной поверхности и составляются карты сейсмического районирования. В основу модели зон ВОЗ Северной Евразии положена линеаментно-доменно-фокальная (ЛДФ) модель, которая определенным образом параметризуется и в дальнейшем участвует в компьютерном моделировании реальной сейсмичности.
В соответствии с принятой концепцией в ЛДФ-модели рассматриваются четыре масштабных уровня источников землетрясений — крупный регион с интегральной характеристикой регионального сейсмического режима и три его основных структурных сейсмогенерирующих элемента:
–линеаменты – в генерализованном виде представляющие собой оси трехмерных сейсмоактивных разломных или сдвиговых структур, отражающие структурированную сейсмичность и являющиеся основным каркасом ЛДФ-модели;
– домены, охватывающие квазиоднородные в геодинамическом отношении объемы геологической среды и характеризующиеся рассеянной сейсмичностью;
– потенциальные очаги землетрясений, указывающие на наиболее опасные участки (фокусы) сейсмогенерирующих структур (каждый из виртуальных очагов, генерируемых компьютером в процессе моделирования, участвует в расчетах сейсмического эффекта, создаваемого на земной поверхности.
ОСР, ДСР И СМР
По сути общее сейсмическое районирование – это разделение территории на районы, в которых ожидается землетрясение той или иной интенсивности. При разработке карт ОСР учитывается историческое и инструментальное наблюдение за сейсмической активностью, карты геологофизических и тектонических разведок. В данный момент в РФ действует комплект карт общего сейсмического районирования ОСР-2015: карты уровня А, В и С. К картам А относят здания нормальной и пониженной ответственности, к картам В и С – повышенной и имеющее общегосударственное значение для осуществления рационального землепользования и планирования социально-экономического развития крупных регионов; масштаб карт ОСР 1:2.500.000 – 1:8.000.000.
В России кроме общего сейсмического районирования нормативными документами предусмотрено детальное сейсмическое районирование (ДСР) и сейсмическое микрорайонирование (СМР). ДСР служит для определения возможных сейсмических воздействий на конкретные существующие и проектируемые сооружения, территории населенных пунктов и отдельных районов. Масштаб карт ДСР – 1:500 000 и крупнее. В ходе СМР оценивается влияние свойств грунтов на сейсмические колебания в пределах площадей расположения конкретных сооружений и на территории населенных пунктов. Масштаб карт СМР – 1:50 000 и крупнее.
СЕЙСМОМИКРОРАЙОНИРОВАНИЕ НА ПЛОЩАДКЕ СТРОИТЕЛЬСТВА
Именно СМР в формулировке изыскательского Своде правил 47.13330 рассматривается, как самостоятельная составляющая сейсмологической триады. Работы по СМР являются частью инженерно-геологических изысканий на площадках строительства объектов территориального планирования. Сейсмическое микрорайонирование для объектов территориального планирования (городов, городских районов) выполняется в целях оценки влияния местных условий (состав и свойства грунтов, особенности рельефа, наличие опасных геологических процессов и явлений и др.) на сейсмичность с указанием изменения интенсивности в баллах или инструментальных параметров сейсмических колебаний.
Работы по СМР выполняются на ключевых участках, изучение которых дает важную информацию для решения задач территориального планирования (участки разломов, участки распространения специфических грунтов, потенциального разжижения грунтов, склоны, жильные льды и т. п.). Выделение таких участков должно быть обосновано в программе работ. Параметры сейсмических колебаний соответствуют распределению сейсмических свойств грунтов на площадке изысканий, полученных в результате комплексных инженерно-геологических работ.
КЛАССИФИКАЦИЯ ГРУНТОВ ПО СЕЙСМИЧЕСКИМ СВОЙСТВАМ
На основании интерпретации многочисленных материалов по сейсмическому микрорайонированию ещё в 1962 году была разработана таблица приращения сейсмической интенсивности в зависимости от литологического состава грунтов. Эта таблица приращения сейсмической интенсивности в зависимости от типа грунтов была уточнена и дополнена в СНиП II-7-81*.
Её автор – С.В. Медведев подразделил грунты на 7 основных категорий. В зависимости от схожих динамических характеристик грунтов и их прочностных показателей, в нормах сейсмостойкого строительства выделяют несколько групп грунтов.
В настоящий момент на территории РФ действует свод правил, согласно которому грунты по сейсмическим свойствам делятся на не семь категорий, а на четыре. Классификация ведется по плотности грунта, скорости поперечных волн и отношению скоростей продольных и поперечных волн.
В Японии грунты разделяются на три типа. Классификация ведётся по базовому периоду колебаний грунта основания. В нормах КНР грунты разделяются на шесть типов в зависимости от скоростей волн сдвига. В Европейских нормах EN 1998 для учёта локальных сейсмогеологических условий грунты делятся на пять типов.
Классификация грунтов ведётся по параметру «средняя скорость волн сдвига» . В Американских нормах (NEHRP-1997, UBC-1997, ASCE-7) классификация грунтов производится по скоростям распространения волн сдвига. В этом случае грунты подразделяются на 6 типов.
В КАКОМ НАПРАВЛЕНИИ ПРОИСХОДИТ РАЗВИТИЕ
На самом деле зарубежные стандарты по сейсмостойкости и сейсмическому районированию существенно отличаются от российских. В большинстве стран мира сейсмическое районирование выполняется не в баллах шкалы сейсмической интенсивности, а в параметрах сейсмических движений грунта, хотя раньше также использовалась балльная система. Источники возможных землетрясений характеризуются механическими параметрами: перемещениями, скоростями, ускорениями, силами и моментами. Распространяющиеся от источников землетрясений волны описываются функциями перемещений, скоростей и ускорений точек грунтовой среды. Для оценки реакции сооружения на сейсмическое воздействие необходимо знать параметры движения «свободного поля» строительной площадки при расчётном землетрясении.
Возникает вопрос: зачем переходить сначала по приближённым формулам от ускорений к баллам, а затем опять от баллов к ускорениям, добавляя на каждом этапе неопределённости? В России исходными данными для построения карт сейсмического районирования в баллах являются оценки магнитуд в зонах возможных землетрясений.
С точки зрения проектировщиков целесообразно сразу строить такие карты в изолиниях ожидаемых пиковых ускорений и пиковых скоростей на основе параметров сейсмических источников, а не производить сначала расчёты ожидаемой балльности, а затем переводить её в ускорения, тем более, что при переходе к баллам используется не десятичная, а неудобная двоичная система.
За рубежом сейсмическое районирование с самого начала выполнялось под эгидой инженеров-строителей, специалистов в областях механики сплошных сред и динамики сооружений при участии сейсмологов и геологов. Наиболее успешно эти исследования проводятся в США.
В отличие от российских американские нормативные документы, как правило, содержат математические модели и расчётные схемы, разработанные специалистами в области механики сплошных сред и инженерами-строителями. Американским учёным удалось приблизить сейсмическое районирование к нуждам сейсмостойкого строительства, а также к снижению сейсмического риска. В России основную роль в развитии методологии сейсморайонирования играли геологи. И лишь в составлении карт ОСР–97 стали принимать участие сейсмологи и геофизики. Но инженеры-строители в этом практически не участвовали.
Источник: dwgformat.ru
Сейсмическое районирование России
4.3* Интенсивность сейсмических воздействий в баллах (фоновую сейсмичность) для района строительства следует принимать на основе комплекта карт общего сейсмического районирования территории Российской Федерации (ОСР-2015), утвержденных Российской академией наук. Указанный комплект карт предусматривает осуществление антисейсмических мероприятий при строительстве объектов и отражает 10%-ную — карта А, 5%-ную — карта В, 1%-ную — карта С вероятности возможного превышения (или 90%-ную, 95%-ную и 99%-ную вероятности непревышения) в течение 50 лет указанных на картах значений сейсмической интенсивности. Указанным значениям вероятностей соответствуют следующие средние интервалы времени между землетрясениями расчетной интенсивности: 500 лет (карта А), 1000 лет (карта В), 5000 лет (карта С). Список населенных пунктов Российской Федерации, расположенных в сейсмических районах, с указанием расчетной сейсмической интенсивности в баллах шкалы MSK-64 для средних грунтовых условий и трех степеней сейсмической опасности — А (10%), В (5%), С (1%) в течение 50 лет приведен в приложении А*.
Карта А предназначена для проектирования объектов нормального и пониженного уровня ответственности. Заказчик вправе принять для проектирования объектов нормального уровня ответственности карту В или С при соответствующем обосновании.
Решение о выборе карты В или С, для оценки сейсмичности района при проектировании объекта повышенного уровня ответственности, принимает заказчик по представлению генерального проектировщика.
СЕЙСМИЧЕСКОЕ РАЙОНИРОВАНИЕ РОССИИ. ОСР-2015-А
НАЖМИТЕ ДЛЯ УВЕЛИЧЕНИЯ КАРТЫ
СЕЙСМИЧЕСКОЕ РАЙОНИРОВАНИЕ РОССИИ. ОСР-2015-В
НАЖМИТЕ ДЛЯ УВЕЛИЧЕНИЯ КАРТЫ
СЕЙСМИЧЕСКОЕ РАЙОНИРОВАНИЕ РОССИИ. ОСР-2015-С
НАЖМИТЕ ДЛЯ УВЕЛИЧЕНИЯ КАРТЫ
Согласно СП 14.13330.2011 не действует.
Согласно СП 14.13330.2011:
4.3 Интенсивность сейсмических воздействий в баллах (сейсмичность) для района строительства следует принимать на основе комплекта карт общего сейсмического районирования территории Российской Федерации (ОСР-97), утвержденных Российской академией наук. Указанный комплект карт предусматривает осуществление антисейсмических мероприятий при строительстве объектов и отражает 10%-ную — карта А, 5%-ную — карта В, 1%-ную — карта С вероятности возможного превышения (или 90%-ную, 95%-ную и 99%-ную вероятности непревышения) в течение 50 лет указанных на картах значений сейсмической интенсивности. Указанным значениям вероятностей соответствуют следующие средние интервалы времени между землетрясениями расчетной интенсивности: 500 лет (, 1000 лет (, 5000 лет (. Список населенных пунктов Российской Федерации, расположенных в сейсмических районах, с указанием расчетной сейсмической интенсивности в баллах шкалы MSK-64 для средних грунтовых условий и трех степеней сейсмической опасности — А (10%), В (5%), С (1%) в течение 50 лет приведен в приложении Б.
Комплект карт ОСР-97 позволяет оценивать на трех уровнях степень сейсмической опасности и предусматривает осуществление антисейсмических мероприятий при строительстве объектов различной ответственности: карта А — объекты нормальной (массовое строительство) и пониженной ответственности; карты В и С — объекты повышенной ответственности (особо опасные, технически сложные или уникальные сооружения)
Значение сейсмической нагрузки следует уточнять с учетом сочетаний сейсмичности (балльности) для данной площадки на картах А, В, С, уровня ответственности и назначения сооружения согласно таблицам 3 и 4.
Источник: saitinpro.ru
Как определить сейсмический район строительства
СТРОИТЕЛЬСТВО В СЕЙСМИЧЕСКИХ РАЙОНАХ
Seismic building design code
Дата введения 2018-11-25
Предисловие
Сведения о своде правил
1 ИСПОЛНИТЕЛЬ — АО «НИЦ «Строительство» — ЦНИИСК им.В.А.Кучеренко
2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»
3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)
5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр СП 14.13330.2014 «СНиП II-7-81* Строительство в сейсмических районах»
В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минстрой России) в сети Интернет
Изменения N 2, 3 внесены изготовителем базы данных по тексту М.: ФГБУ «РСТ», 2022
Введение
Работа по пересмотру выполнена Центром исследований сейсмостойкости сооружений ЦНИИСК им.В.А.Кучеренко — института ОАО «НИЦ «Строительство» (руководитель работы — д-р техн. наук, член-корр. РАН, проф. Б.В.Гусев; научный руководитель рабочей группы — д-р техн. наук, проф. Я.М.Айзенберг, ответственный исполнитель — инж.
А.А.Бубис) при участии рабочей группы в следующем составе: д-р техн. наук, проф. B.C.Беляев, д-р техн. наук, проф. Т.А.Белаш, канд. техн. наук М.А.Клячко, д-р техн. наук, проф. Ю.В.Кривцов, д-р физ.-мат. наук, проф. Ф.Ф.Аптикаев, канд. техн. наук А.В.Грановский, д-р техн. наук, проф. Ю.П.Назаров, канд. техн. наук Л.Н.Смирнова, инж.
Г.Н.Юдакова, д-р техн. наук, проф. В.И.Травуш, д-р физ.-мат. наук Р.Э.Татевосян, д-р техн. наук, проф. В.А.Семенов, д-р техн. наук М.И.Богданов, д-р техн. наук, проф. А.М.Уздин, канд. геол.-мин. наук А.Л.Стром, д-р техн. наук, проф. Л.Р.Ставницер, д-р техн. наук, проф.
И.Я.Дорман.
Подраздел 6.17 подготовлен при участии д-ра техн. наук, проф. B.C.Беляева, д-ра техн. наук, проф. Т.А.Белаш, канд. техн. наук В.В.Костарева, инж. П.С.Васильева, были использованы разработки канд. техн. наук, доц. В.И.Смирнова.
Подраздел 6.19 подготовлен при участии д-ра техн. наук, проф М.А.Клячко.
Раздел 7 подготовлен д-ром геол.-мин. наук, проф. Г.С.Шестоперовым.
Раздел 8 подготовлен АО «Всероссийский научно-исследовательский институт гидротехники им.Б.Е.Веденеева» (д-р техн. наук Е.Н.Беллендир, д-р техн. наук В.Б.Глаговский, д-р техн. наук А.А.Храпков, канд. техн. наук А.П.Пак, канд. техн. наук М.С.Ламкин) и Центром службы геодезических наблюдений в электроэнергетической отрасли — филиалом АО «Институт Гидропроект» (д-р физ.-мат. наук А.И.Савич, канд. техн. наук В.В.Речицкий, канд. физ.-мат. наук А.Г.Бугаевский, канд. геол.-мин. наук А.Л.Стром).
Раздел 9 подготовлен при участии д-ра техн. наук, проф. Ю.В.Кривцова, канд. техн. наук Д.Г.Пронина, канд. техн. наук В.В.Пивоварова.
Приложение А разработано коллективом авторов в следующем составе: д-р физ.-мат. наук, проф. Ф.Ф.Аптикаев, канд. геол.-мин. наук Ю.М.Вольфман, д-р геол.-мин. наук Н.Н.Гриб, д-р физ.-мат. наук А.А.Гусев, д-р геол.-мин. наук, проф. Г.С.Гусев, Г.Ю.Донцова, д-р геол.-мин. наук, проф.
B.C.Имаев, канд. геол.-мин. наук Л.П.Имаева, Б.М.Козьмин, М.С.Кучай, канд. физ.-мат. наук А.И.Лутиков, канд. геол.-мин. наук А.Н.Овсюченко, д-р физ.-мат. наук Б.Г.Пустовитенко, д-р геол.-мин. наук, проф. Е.А.Рогожин, канд. геол.-мин. наук О.П.Смекалин, А.И.Сысолин, д-р физ.-мат. наук, проф. В.И.Уломов, д-р геол.-мин. наук А.В.Чипизубов.
Приложение В подготовлено при участии д-ра техн. наук, проф. B.C.Беляева, д-ра техн. наук, проф. Т.А.Белаш, канд. техн. наук В.В.Костарева, инж. П.С.Васильева, были использованы разработки канд. техн. наук, доц. В.И.Смирнова.
Приложение Г подготовлено при участии инж. Г.Н.Юдаковой.
Изменение N 2 к настоящему своду правил выполнено авторским коллективом АО «НИЦ «Строительство» — ЦНИИСК им.В.А.Кучеренко (руководитель работы — д-р техн. наук, проф. Б.В.Гусев; ответственный исполнитель — А.А.Бубис, исполнители: канд. техн. наук Л.Н.Смирнова, И.Р.Гизятуллин) при участии д-ра техн. наук, проф. О.В.Кабанцева, д-ра техн. наук, проф. В.А.Семенова, канд. геол.-минерал. наук А.Л.Строма, д-ра физ.-мат. наук А.С.Алешина, д-ра техн. наук В.Б.Глаговского, д-ра техн. наук И.Н.Тихонова.
1 Область применения
Настоящий свод правил устанавливает требования по расчету с учетом сейсмических нагрузок, по объемно-планировочным решениям и конструированию элементов и их соединений, зданий и сооружений, обеспечивающие их сейсмостойкость.
Настоящий свод правил распространяется на проектирование зданий и сооружений на площадках сейсмичностью 7, 8 и 9 баллов.
На площадках, сейсмичность которых превышает 9 баллов, проектирование и строительство зданий и сооружений осуществляются в порядке, установленном уполномоченным федеральным органом исполнительной власти.
Примечание — Разделы 4, 5 и 6 относятся к проектированию жилых, общественных, производственных зданий и сооружений, транспортных и гидротехнических зданий, раздел 7 распространяется на транспортные сооружения, раздел 8 — на гидротехнические сооружения, раздел 9 — на все объекты, при проектировании которых следует предусматривать меры противопожарной защиты.
2 Нормативные ссылки
В настоящем своде правил использованы нормативные ссылки на следующие документы:
ГОСТ 13015-2012 Изделия бетонные и железобетонные для строительства. Общие технические требования. Правила приемки, маркировки, транспортирования и хранения
ГОСТ 14098-2014 Соединения сварные арматуры и закладных изделий железобетонных конструкций. Типы, конструкции и размеры
ГОСТ 17625-83 Конструкция и изделия железобетонные. Радиационный метод определения толщины защитного слоя бетона, размеров и расположения арматуры
ГОСТ 22904-93 Конструкции железобетонные. Магнитный метод определения толщины защитного слоя бетона и расположения арматуры
ГОСТ 23858-2019 Соединения сварные стыковые арматуры железобетонных конструкций. Ультразвуковые методы контроля качества. Правила приемки
ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения
ГОСТ 30247.0-94 (ИСО 834-75) Конструкции строительные. Методы испытаний на огнестойкость. Общие требования
ГОСТ 30403-2012 Конструкции строительные. Метод испытаний на пожарную опасность
ГОСТ 30546.1-98 Общие требования к машинам, приборам и другим техническим изделиям и методы расчета их сложных конструкций в части сейсмостойкости
ГОСТ 30546.2-98 Испытания на сейсмостойкость машин, приборов и других технических изделий. Общие положения и методы испытаний
ГОСТ 30546.3-98 Методы определения сейсмостойкости машин, приборов и других технических изделий, установленных на месте эксплуатации, при их аттестации или сертификации на сейсмическую безопасность
ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния
ГОСТ 34028-2016 Прокат арматурный для железобетонных конструкций. Технические условия
ГОСТ Р 53292-2009 Огнезащитные составы и вещества для древесины и материалов на ее основе. Общие требования. Методы испытаний
ГОСТ Р 53295-2009 Средства огнезащиты для стальных конструкций. Общие требования. Метод определения огнезащитной эффективности
ГОСТ Р 57353-2016/EN 1337-2:2004 Опоры строительных конструкций. Часть 2. Элементы скользящие сейсмоизолирующих опор зданий. Технические условия
ГОСТ Р 57354-2016/EN 1337-3:2005 Опоры строительных конструкций. Часть 3. Опоры эластомерные. Технические условия
ГОСТ Р 57364-2016/EN 15129:2010 Устройства антисейсмические. Правила проектирования
СП 2.13130.2020 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты
СП 10.13130.2020 Системы противопожарной защиты. Внутренний противопожарный водопровод. Нормы и правила проектирования
СП 15.13330.2020 «СНиП II-22-81* Каменные и армокаменные конструкции»
СП 23.13330.2018 «СНиП 2.02.02-85* Основания гидротехнических сооружений» (с изменением N 1)
СП 24.13330.2021 «СНиП 2.02.03-85 Свайные фундаменты»
СП 25.13330.2020 «СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах»
СП 28.13330.2017 «СНиП 2.03.11-85 Защита строительных конструкций от коррозии» (с изменениями N 1, N 2, N 3)
СП 34.13330.2021 «СНиП 2.05.02-85* Автомобильные дороги»
СП 39.13330.2012 «СНиП 2.06.05-84* Плотины из грунтовых материалов» (с изменениями N 1, N 2, N 3)
СП 40.13330.2012 «СНиП 2.06.06-85 Плотины бетонные и железобетонные» (с изменениями N 1, N 2)
СП 41.13330.2012 «СНиП 2.06.08-87 Бетонные и железобетонные конструкции гидротехнических сооружений» (с изменением N 1)
СП 58.13330.2019 «СНиП 33-01-2003 Гидротехнические сооружения. Основные положения» (с изменением N 1)
СП 63.13330.2018 «СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения» (с изменениями N 1, N 2)
СП 70.13330.2012 «СНиП 3.03.01-87 Несущие и ограждающие конструкции» (с изменениями N 1, N 3, N 4)
СП 119.13330.2017 «СНиП 32-01-95 Железные дороги колеи 1520 мм» (с изменением N 1)
СП 122.13330.2012 «СНиП 32-04-97 Тоннели железнодорожные и автодорожные» (с изменениями N 1, N 2)
Источник: docs.cntd.ru