Сейсмическая активность земли проявляется на обширной части СССР. Общая площадь районов, подверженных землетрясениям, составляет около 28% территории страны.
Подавляющее большинство землетрясений возникает в результате тектонических процессов. Такие землетрясения наиболее часты (90% всех землетрясений) и достигают значительной силы. Происходящие вблизи действующих вулканов землетрясения охватывают небольшие территории. Они намного слабее тектонических. Еще меньшей силой обладают местные землетрясения, возникающие в результате горных обвалов, оползней, провалов карстовых полостей, шахтных и других выработок.
Землетрясения возникают, как правило, в определенных зонах (сейсмических), где продолжаются горообразовательные процессы. В этих зонах земная кора расчленена тектоническими разломами на отдельные массивы, испытывающие интенсивные взаимные смещения. Вызванные ими нарушения происходят по существующим или по вновь образовавшимся разломам.
Находящаяся в глубине земли область нарушения коры является очагом (гипоцентром) землетрясения. Проекция этого очага из центра земли на ее поверхность называется эпицентром землетрясения. Очаги обычно имеют вытянутую вдоль разломов форму. Их размеры изменяются от нескольких метров до десятков километров и в основном предопределяют силу землетрясения. При разрушительных землетрясениях очаги в большинстве случаев располагаются в толще земной» коры на глубине 10—50 км и более от ее поверхности.
Галилео. Сейсмоустойчивые здания
В районе землетрясения каждая точка земли испытывает последовательное воздействие волн разного вида, поэтому колебания грунта при землетрясениях носят сложный пространственный характер. Из-за этого сейсмические силы могут иметь любое направление в пространстве и к тому же быть переменными по направлению, скорости и величине.
Продолжительность сейсмического импульса и вызываемых им колебаний грунта измеряется десятками секунд, а иногда несколькими минутами. Наиболее опасное воздействие землетрясения происходит в первые 20—40 с, чаще всего с первым мощным импульсом и следующим за ним сейсмическим колебанием грунта.
Для обеспечения достаточной надежности зданий и сооружений, возводимых в сейсмических районах, прежде всего необходимо знать силу землетрясения, которую обычно оценивают по общему разрушительному эффекту, характеризуемому сейсмическими баллами по соответствующей шкале.
Известно много сейсмических шкал, предложенных в разных странах и в разные годы. В СССР с 1952 г. принята 12-балльная сейсмическая шкала (ГОСТ 6249—52), составленная на основе разработок Института физики Земли АН СССР. В качестве классификационных признаков для оценки силы землетрясения в этой шкале приняты: степень повреждения и число поврежденных зданий разных типов; остаточные явления в грунтах и изменение режима подземных вод; прочие признаки (поведение домашних животных, ощущения людей). Кроме этого, каждый балл землетрясения характеризуют определенным диапазоном относительных смещений маятника стандартного сейсмометра и соответствующим ускорением смещения грунта.
9 бальные сейсмические испытания (дополнение)
С инженерной точки зрения к сейсмическим районам относят районы с силой землетрясения б баллов и выше. На территории СССР землетрясения 10 баллов и выше происходят крайне редко, поэтому в отечественном сейсмостойком строительстве учитывают землетрясения в диапазоне 6—9 баллов.
При характеристике степени повреждения и разрушения частей зданий под легкими повреждениями подразумевают тонкие трещины в штукатурке, кладке печей и т. п.; под значительными повреждениями — трещины в штукатурке и откалывание ее кусков, тонкие трещины в стенах, повреждения дымовых труб отопительных печей и т. п.; под разрушениями — большие трещины в стенах, расслоение каменной кладки, обрушение отдельных участков стен, падение карнизов и парапетов, обвалы штукатурки, падение дымовых труб отопительных печей и т. п.; под обвалами — полное или частичное обрушение стен, перекрытий и т. п.
Здания и сооружения, расположенные в сейсмических районах, подвергаются во время землетрясений воздействию особых факторов, приводящих к появлению дополнительных усилий в конструкции и к изменению условий ее работы. Совокупность этих факторов, вызывающих повреждения сооружений, называют сейсмическим воздействием. Повреждения дорог и дорожных сооружений наблюдаются при силе землетрясения 7 баллов и выше.
Ликвидация сейсмических повреждений земляного полотна, верхнего строения пути или покрытия производится сравнительно простыми техническими средствами и восстановление этих элементов дорог не требует длительного времени. Повреждения мостов и тоннелей приводят к продолжительным перерывам в движении, так как их восстановление связано с необходимостью выполнения длительных и трудоемких работ. По этой причине в нормах сейсмостойкого строительства многих стран для мостов и некоторых других дорожных сооружений предусмотрены повышенные гарантии сейсмостойкости.
Анализ последствий землетрясений показывает, что повреждения мостов происходят вследствие смещения или повреждения пролетных строений либо повреждения опор или же тех и других одновременно. Повреждения опор мостов можно подразделить на две группы: перемещения опор относительно первоначального положения (сдвиги, осадки, наклоны, опрокидывание); нарушения целостности конструкции опор (трещины, разломы, раскрытие швов и т. д.). Повреждения обоих видов нередко возникают одновременно.
Наиболее характерным повреждением устоев является их скольжение (сдвиг) в сторону пролета, часто сопровождаемое их наклоном и осадкой. Такие повреждения весьма распространены, особенно при наличии вокруг фундаментов устоев слабых глинистых грунтов; в единичных случаях деформации устоев могут происходить при землетрясениях силой от 7 баллов. Повреждения устоев являются следствием воздействия увеличившегося давления на них грунта со стороны насыпи, инерционных сил от пролетных строений и самих устоев, а иногда и в результате скольжения наклонно залегающих пластов берегового массива в сторону водотока. Перемещения устоев в сторону пролета часто бывают значительными и могут привести к полному разрушению мостов.
Характерными повреждениями промежуточных опор являются их осадки и наклоны, а иногда горизонтальные перемещения. Отмечены случаи поднятия опор относительно первоначального положения, а также их поворота в горизонтальной плоскости. Осадки и наклоны опор в большинстве случаев наблюдаются при фундаментах мелкого заложения, а также фундаментах из висячих свай, заглубленных в мелкие или пылеватые водонасыщенные пески средней плотности сложения, текучепластичные и текучие супеси, суглинки и глины. При землетрясении 9 баллов и более деформации опор достигают больших величин и являются массовыми. Установлено, что в общем случае осадки и наклоны опор уменьшаются с увеличением глубины заложения фундаментов и размеров их подошвы.
В результате землетрясения 1923 г. в Японии опоры одного моста с фундаментами мелкого заложения на песке осели на 0,5—1,5 м. При этом же землетрясении отмечены осадки фундаментов из висячих деревянных свай до 1,2 м.
В безростверковых опорах при землетрясении возникают трещины в ригелях и местах примыкания стоек к ригелю. В свайных фундаментах с высоким ростверком возникают повреждения в виде горизонтальных или косых трещин в сваях; вблизи заделки свай в ростверк раздробляется бетон, выпучиваются сжатые стержни арматуры.
Анализ характера сейсмических повреждений мостов показывает, что они являются следствием воздействия комплекса факторов, из которых наиболее важны следующие: 1) горизонтальные силы инерции (сейсмические силы), возникающие при колебательных движениях масс сооружения под воздействием колебаний грунтового основания. Эти силы в большинстве случаев считаются основной причиной повреждения сооружений; 2) вертикальные силы инерции (сейсмические силы), вызванные вертикальной составляющей сейсмических колебаний грунта. Эти силы незначительны по сравнению с основными вертикальными нагрузками сооружения, поэтому они редко являются непосредственной причиной повреждения сооружений. Однако такие силы уменьшают запасы устойчивости фундаментов опор против сдвига и опрокидывания; 3) сейсмическое горизонтальное давление грунта на устои мостов; 4) сейсмическое (гидродинамическое) давление воды на промежуточные опоры мостов; 5) значительное снижение несущей способности грунтов, особенно водонасыщенных рыхлых песков и текучих и текуче-пластичных глинистых грунтов. Из-за этого происходят большие осадки и наклоны опор мостов; 6) остаточные деформации природного рельефа в виде оползней, обвалов и т. п.; 7) смещения по плоскостям тектонических нарушений, приводящие к образованию сбросов и сдвигов.
Следует отметить, что большей частью повреждение сооружений происходит в результате одновременного воздействия нескольких из перечисленных причин.
Источник: www.stroitelstvo-new.ru
X Международная студенческая научная конференция Студенческий научный форум — 2018
ФУНДАМЕНТЫ В УСЛОВИЯХ СЕЙСМИЧЕСКИХ И ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЙ
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Сейсмические воздействия на фундаменты зданий и сооружений обусловлены землетрясениями, происходящими в результате тектонических разломов и других процессов в земной коре. От гипоцентра во всех направлениях распространяются упругие колебания, характеризуемые сейсмическими волнами: продольными (сжатия и растяжения) и поперечными (сдвиговые, перпендикулярные продольным). Кроме того, от эпицентра по поверхности земли распространяются во все стороны поверхностные волны, приводящие к наиболее сильным вертикальным колебаниям поверхностного слоя [1] .
Вертикальные колебания существенны для сооружений вблизи эпицентра землетрясения. По мере удаления от него они затухают значительно быстрее горизонтальных, поэтому основную опасность представляют горизонтальные колебания. Продолжительность землетрясений чаще всего измеряется несколькими секундами и реже минутами.
Силу землетрясения оценивают в баллах. В России принята 12-балльная шкала. Список населенных пунктов, расположенных в сейсмических районах страны, с указанием принятой для них сейсмичности в баллах и повторяемости сейсмического воздействия приведен в СНиП II-7-81 * «Строительство в сейсмических районах» [2] .
Вся территория России поделена на отдельные районы по сейсмичности, но даже в пределах одного района сейсмичность может быть различной в зависимости от грунтовых условий.
Сейсмическое воздействие — движение грунта, вызванное природными или техногенными факторами (землетрясения, взрывы, движение транспорта, работа промышленного оборудования), обусловливающее движение, деформации, иногда разрушение сооружений и других объектов.
Сейсмическая (инерционная) сила, сейсмическая нагрузка — ила (нагрузка), возникающая в системе «сооружение-основание» при колебаниях основания сооружения во время землетрясения [3] .
Сейсмические воздействия, как и любые динамического характера нагрузки на основания сооружений, приводят к изменению свойств грунтов: увеличиваются сжимаемость, особенно несвязных грунтов; уменьшается их предельное сопротивление сдвигу. При определенных условиях может происходить разжижение водонасыщенных песчаных грунтов оснований, приводящее к полному исчерпыванию их несущей способности. Эти изменения строительных свойств грунтов и специфический характер взаимодействия сооружения с основанием определяют особенности проектирования фундаментов в условиях сейсмики. По действующим в России нормам, сейсмические воздействия учитываются при проектировании зданий и сооружений в районах с сейсмичностью 7, 8 и 9 баллов. На площадках, сейсмичность которых превышает 9 баллов, возводить сооружения, как правило, не допускается [4] .
Основное требование сейсмостойкости фундаментов состоит в том, чтобы при совместном действии на них обычных нагрузок и сейсмических сил фундаменты не разрушились, не сдвигались и не опрокидывались, а основание не теряло устойчивости, тем самым обеспечивая общую устойчивость и прочность системы «сооружение — основание». К сейсмическим силам относятся силы взаимодействия между грунтом основания, испытывающим колебания при землетрясениях, и сооружением. По природе они являются инерционными, по характеру — динамическими. Величина сейсмической нагрузки зависит не только от интенсивности колебаний, но и от динамических характеристик сооружения и его собственных колебаний, обусловленных начальными условиями движения грунта.
Расчет оснований и фундаментов сооружений, проектируемых для строительства в сейсмических районах, должен выполняться на основные и особые сочетания нагрузок (с учетом сейсмических воздействий). Особое сочетание нагрузок определяется с учетом коэффициентов сочетаний яс, равных для постоянных нагрузок 0,9, временных длительных — 0,8 и кратковременных (на перекрытия и покрытия) — 0,5 [5] .
При этом не учитываются горизонтальные нагрузки от масс на гибких подвесках, температурные климатические воздействия, ветровые нагрузки, динамические воздействия от оборудования и транспорта, тормозные и боковые усилия от движения кранов.
При определении расчетной вертикальной сейсмической нагрузки необходимо учитывать массу моста крана, тележки, а также массу груза, равного грузоподъемности крана с коэффициентом 0,3. Горизонтальную сейсмическую нагрузку от массы мостового крана учитывают в направлении, перпендикулярном к оси подкрановых балок. При этом снижение крановых нагрузок, рекомендуемое СНиП по нагрузкам и воздействиям, не учитывается.
Основания и фундаменты рассчитывают на особое сочетание нагрузок с учетом сейсмических воздействий исходя из того представления, что сейсмические нагрузки могут иметь любое направление в пространстве. Действие сейсмических нагрузок в рассматриваемых направлениях принимают отдельно и определяют по формуле.
При расчете подпорных стенок учитывают раздельно сейсмическое давление грунта и давление, вызванное изменением напряженного состояния фунтовой среды при прохождении в ней сейсмических волн (продольных и поперечных). Активное qa t и пассивное q давление грунта на подпорные стенки с учетом сейсмического воздействия определяются по формулам Далматова [6] .
где К — коэффициент сейсмичности, значение которого принимают 0,025: 0,05 и 0.10 соответственно для расчетной сейсмичности 7,8 и 9 баллов; ϕ — расчетный угол внутреннего трения при расчете по устойчивости; аа и ар — активное и пассивное давление грунта при статическом состоянии.
Одним из общих принципов обеспечения сейсмостойкости сооружений является принцип монолитности и равнопрочности всех элементов зданий и сооружений. Поскольку при прохождении сейсмической волны поверхность основания может испытывать растяжение в том или ином направлении, целесообразно колонны каркасных зданий располагать на сплошных фундаментных плитах, перекрестных ленточных фундаментах или соединять отдельные фундаменты и свайные ростверки железобетонными балками-связями (Рис.1).
В фундаментах и стенах подвалов из крупных сборных блоков нужно производить перевязку блоков в каждом ряду, пересечения стен усиливать путем закладки в горизонтальные швы арматурных сеток, по верху сборных фундаментов (подушек) предусматривать железобетонные пояса (Рис.2). Продольные железобетонные пояса должны быть связаны поперечными железобетонными стойками.
Для зданий повышенной этажности также следует применять монолитные железобетонные ленточные, сплошные плитные фундаменты и фундаменты из перекрестных лент. В зданиях выше 9 этажей необходимо предусматривать монолитный вариант подземной части (Рис.3).
Рис. 1,2,3. Конструкции фундаментов при сейсмических воздействиях: 1 — план ленточного фундамента; 2 — план и разрез отдельных (столбчатых) фундаментов; 3 — подвальная часть здания с плитным фундаментом из монолитного железобетона; 1 — арматурные сетки; 2 — железобетонные балки-связи
В условиях сейсмики применяют как забивные, так и набивные сваи. Набивные сваи рекомендуется устраивать в маловлажных связных грунтах при диаметре свай не менее 40 см и отношении их длины к диаметру не менее 25. В структурно-неустойчивых грунтах применять набивные сваи можно только с обсадными неизвлекаемыми трубами. Армирование набивных свай является обязательным при минимальном относительном армировании, равном 0,05.
В сейсмических районах нашли применение свайные фундаменты с промежуточной распределительной песчаной подушкой (Рис.4). Для того, чтобы свайные фундаменты с промежуточной подушкой обеспечивали распределение сейсмических нагрузок, необходимы определенные соотношения между размерами свай, оголовков и промежуточной подушки. В связи с этим толщина подушки над оголовками свай назначается в зависимости от расчетной нагрузки на одну сваю и составляет 40 см при нагрузке 600 кН и 60 см — при нагрузках более 600 кН. Размеры фундаментного блока в плане должны быть не менее размеров свайного куста по наружным граням оголовков. Размеры промежуточной подушки в плане принимают больше размеров фундаментного блока не менее чем на 30 см в каждую сторону.
Рис.4. Свайный фундамент с промежуточной подушкой: I — фундаментный блок: 2 — промежуточная подушка: 3 — железобетонный оголовок; 4 — железобетонная свая; 5 — дно котлована
Чем могут быть вызваны динамические воздействия на сооружения?
Причины могут быть различными: уплотнение грунта трамбовками, забивка свай и шпунта, работа машин с неуравновешенно вращающимися частями — компрессоров, лесопильных рам, прокатных станов, копров, мельниц; движение наземного и подземного транспорта; порывы ветра, сейсмические воздействия, взрывы и др.
Виды динамических воздействий
при землетрясении, в результате осадков, песчаная толща увлекла за собой сваи, вдавив их в подстилаемую глинистую толщу (явление отрицательного трения). Осадка сооружения превысила все допустимые величины
при движении тяжелого транспорта (железнодорожные, трамвайные пути) создается вибрационный фон, который передаваясь по грунтовой среде, оказывает негативное воздействие на здания, сооружения. Вибрационные воздействия от движущегося транспорта могут превышать допустимый уровень вибрации по санитарным нормам проживания людей в здании
Динамические воздействия от движения транспорта
в соответствии со строительными правилами забивка свай в городах на расстоянии ближе 30 м от существующей застройки запрещена.
при динамических воздействиях пески уплотняются, разжижаются
Глины проявляют тиксотропные свойства
Работа машин, механизмов (строительство промышленных объектов, где возможны динамические воздействия: молоты, прессы, компрессоры, фундаменты пилорам и т.д.)
Динамические нагрузки могут прикладываться как к сооружению (воздействие ветра на высокое здание, прибоя на набережную), так и непосредственно к основанию (сейсмические толчки, строительные работы, связанные с уплотнением или разрыхлением грунта, в том числе с помощью взрывов, забивки свай и т. п.). Однако ввиду того, что все сооружения так или иначе контактируют с грунтом, расчеты на динамические воздействия производятся как для сооружений, так и для грунтов. При этом для тех и других должны быть выполнены условия прочности, а динамические перемещения, скорости и ускорения должны быть в допустимых пределах.
Величина распространения колебаний в грунте зависит от источника колебаний и состояния среды. Любое сооружение, попавшее в зону вибрации, начинает само вибрировать. Опасны резонансные явления, т.е. совпадение собственных частот колебаний с вынужденными колебаниями в грунтовой среде [5][4] .
Как известно, для сред, сопротивление сдвигу которых отлично от нуля, характерно наличие как продольных, так и поперечных волн, распространяющихся с разными скоростями. При существовании поверхностей раздела (твердое тело — воздух, жидкость, твердое тело) вдоль них распространяются поверхностные волны. Последние могут быть как волнами Рэлея, так и волнами Лява, если область, примыкающая к поверхности раздела, состоит из двух физически различных областей, то есть слоистая.
Результатом передачи грунтом колебаний на сооружение являются колебательные движения как отдельных конструкций, так и сооружения в целом. Даже при очень малых (в доли микрона) амплитудах колебаний конструкций их сколько-нибудь продолжительное воздействие на человеческий организм может быть неблагоприятным, что требует ограничения амплитуд. Такое же или даже более строгое ограничение предъявляют некоторые современные производства. При совпадении частот колебаний грунта с собственными частотами конструкций зданий возможны явления резонанса, представляющего угрозу прочности всего сооружения.
Совпадение собственной частоты колебаний системы с частотой вынужденных ее колебаний. Амплитуда колебаний всей системы при этом возрастает, иногда резко
резким возрастанием амплитуды колебаний всей системы
Именно под воздействием резонанса разрушались такие масштабные сооружения, как мост через реку Такома в США, Египетский мост в Питере. Он рухнул на лёд Фонтанки в 1905 году, когда по нему проходил эскадрон гвардейской кавалерии, навстречу которому двигались 11 саней с возницами [3] . Именно поэтому для военных существует неписаный закон: не ходить «в ногу» по мостам, чтобы уменьшить вероятность возникновения резонанса.
Для рыхлых несвязных грунтов характерно явление виброкомпрессии.
Виброкомпрессия несвязных грунтов — это их дополнительное уплотнение при вибрационных или часто повторяющихся ударных нагрузках. При увеличении частоты вибрации перемещение частиц напоминает явление ползучести и называется виброползучестью. При увеличении частоты колебаний возможно виброразжижение грунта [2] .
Однако! Глинистые грунты ввиду наличия связности более устойчивы к динамическим воздействиям, чем песчаные. Однако при пластичной и текучей консистенции этих грунтов динамические нагрузки могут вызывать разрушение их структуры, что необходимо исключать при проектировании и строительстве.
Вместе с тем необходимо отметить, что наблюдаемые при сильных землетрясениях явления разжижения песков и разрушения структуры связных грунтов не могут исчерпывающе объяснять случаи опрокидывания жестких зданий, принимающих после окончания сейсмических толчков почти горизонтальное положение [6] .
Какие виды фундаментов рекомендуется применять при наличии динамическихнагрузок?
Применяются фундаменты мелкого заложения и свайные. Они могут быть монолитными, сборно-монолитными и сборными. Статические нагрузки на такие фундаменты от оборудования обычно небольшие. Практически применяют фундаменты массивные в виде плиты или блока, стенчатые из поперечных и продольных стен, связанных с фундаментной плитой, и рамные, представляющие пространственную конструкцию из верхней плиты, балок и стоек, опирающихся на фундаментную плиту. Для машин ударного действия с большими нагрузками применяют массивные фундаменты, а для других — облегченные фундаменты [2][4] .
Рис.5. Примеры устройства фундаментов под машины: а — фундамент под вертикальный компрессор (плита в плане 3´ 4,2 м); б — фундамент под горизонтальный компрессор (плита в плане 4,4´ 7,6 м, заглублена на 2,0 м); в — стенчатый массивный фундамент под мотогенератор (расположен на высоте 6,3 м, размеры в плане 4 х 7,9 м): 1 — плита; 2 — подготовка
Фундаменты обычно проектируются отдельными, под каждую машину или группу машин. От фундаментов зданий фундаменты машин отделяются швами. Целесообразно предусматривать виброизоляцию механизмов и машин, гасящую импульсы. Прецезионное оборудование, требующее спокойного режима, отделяется от остального массива и в данном случае гасящие устройства носят оградительный характер [1] .
При наличии слабых грунтов толщиной до 1,5 м производится их замена, а при большей мощности – укрепление или устройство свайных фундаментов. Подошва фундаментов обычно прямоугольная в плане, а смежные фундаменты следует закладывать на одной отметке. Среднее давление под подошвой фундамента должно быть меньше расчетного сопротивления R, вычисленного обычным способом, умноженного на два понижающих коэффициента, один из которых зависит от вида грунта, а второй от вида машины. Это произведение изменяется от 1 до 0,35.
Машина вместе с фундаментом представляет жесткое тело с массой, расположенной в центре тяжести действующих статических нагрузок. В расчетах основание не имеет массы и деформируется упруго вязко. Пружины деформируются упруго, а поршни с цилиндрами воспроизводят вязкое сопротивление. Действующие усилия раскладываются на вертикальную и две горизонтальных составляющих, а также на три момента. Считается, что эти воздействия вызывают соответственно три линейных перемещения и три поворота в соответствующих плоскостях [5] .
Фундаменты должны быть запроектированы таким образом, чтобы обеспечить нормальную работу машины и исключить влияние вибрации на конструкции и оборудование. Фундаменты рассчитывают на действие статических и динамических нагрузок. К статическим нагрузкам относят: вес фундамента, вес грунта на уступах фундамента, вес машины, вес оборудования.
Динамические нагрузки могут быть периодические, импульсные, ударные, случайные. Также могут быть длительные и кратковременные. Значение динамических нагрузок и частично статических, определяется заводом-изготовителем в техническом задании на проектирование.
Источник: scienceforum.ru
Свод правил СП 14.13330.2011″СНиП II-7-81*. Строительство в сейсмических районах»(утв. приказом Министерства регионального развития РФ от 27 декабря 2010 г. N 779) стр. 12
7.5.1 При расчетной сейсмичности 9 баллов следует преимущественно применять железобетонные фундаментные трубы со звеньями замкнутого контура. Длина звеньев, как правило, должна быть не менее 2 м.
7.5.2 В случае применения при расчетной сейсмичности 9 баллов бетонных прямоугольных труб с плоскими железобетонными перекрытиями необходимо предусматривать соединение стен с фундаментом омоноличиванием выпусков арматуры. Бетонные стены труб следует армировать конструктивной арматурой. Между раздельными фундаментами следует устраивать распорки.
7.6 Подпорные стены
7.6.1 Применение каменной кладки насухо допускается для подпорных стен протяжением не более 50 м (за исключением подпорных стен на железных дорогах при расчетной сейсмичности 8 и 9 баллов и на автомобильных дорогах при расчетной сейсмичности 9 баллов в случае, если кладка насухо не допускается).
В подпорных стенах высотой 5 м и более, выполняемых из камней неправильной формы, следует через каждые 2 м по высоте устраивать прокладные ряды из камней правильной формы.
б) для стены из бутобетона и каменной кладки на растворе: при расчетной сейсмичности 8 баллов — 12; 9 баллов на железных дорогах — 8, на автомобильных дорогах — 10;
7.6.3 Подпорные стены следует разделять по длине сквозными вертикальными швами на секции с учетом размещения подошвы каждой секции на однородных грунтах. Длина секции должна быть не более 15 м.
7.6.4 При расположении оснований смежных секций подпорной стены в разных уровнях переход от одной отметки основания к другой должен выполняться уступами с отношением высоты уступа к его длине 1:2.
7.7 Тоннели
7.7.1 При выборе трассы тоннельного перехода необходимо, как правило, предусматривать заложение тоннеля вне зон тектонических разломов в однородных по сейсмической жесткости грунтах.
При прочих равных условиях следует отдавать предпочтение вариантам с более глубоким заложением тоннеля.
7.7.2 Для участков пересечения тоннелем тектонических разломов, по которым возможна подвижка массива горных пород, при соответствующем технико-экономическом обосновании необходимо предусматривать увеличение сечения тоннеля.
7.7.3 При расчетной сейсмичности 8 и 9 баллов обделку тоннелей следует проектировать замкнутой. Для тоннелей, сооружаемых открытым способом, следует применять цельносекционные сборные элементы. При расчетной сейсмичности 7 баллов обделку горного тоннеля допускается выполнять из набрызг-бетона в сочетании с анкерным креплением.
7.7.4 Порталы тоннелей и лобовые подпорные стены следует проектировать, как правило, железобетонными. При расчетной сейсмичности 7 баллов допускается применение бетонных порталов.
7.7.5 Для компенсации продольных деформаций обделки следует устраивать антисейсмические деформационные швы, конструкция которых должна допускать смещение элементов обделки и сохранение гидроизоляции.
7.7.6 В местах примыкания к основному тоннелю камер и вспомогательных тоннелей (вентиляционных, дренажных и пр.) следует устраивать антисейсмические деформационные швы.
8 Гидротехнические сооружения
8.1 Общие положения
8.1.1 Нормы настоящего раздела должны соблюдаться при проектировании гидротехнических сооружений гидроэлектрических станций, водного (речного и морского) транспорта, мелиоративных систем и других гидротехнических сооружений.
8.1.2 При проектировании безнапорных сооружений всех классов, подпорных сооружений классов II, III, IV, при обосновании строительства подпорных гидротехнических сооружений класса I оценка сейсмичности площадок строительства должна проводиться в соответствии с комплектом карт ОСР-97 с учетом инженерно-геологических данных, характеризующих выбранную площадку, приведенных в таблице 1 (без учета примечаний к таблице).
1 Приведенные в таблице 1 значения коэффициента пористости е и показателя консистенции грунтов площадки строительства должны определяться с учетом возможного их обводнения при заполнении водохранилища.
2 В районах сейсмичностью 6 баллов сейсмичность площадок строительства подпорных гидротехнических сооружений, возводимых на грунтах категории III, следует принимать равной 7 баллам.
3 Строительство гидротехнических сооружений на грунтах категории III в районах сейсмичностью 9 баллов допускается только при специальном обосновании.
8.1.3 Для разработки проектов подпорных сооружений класса I определение уточненных характеристик сейсмического воздействия должно проводиться на основе уточнения исходной сейсмичности, установленной комплектом карт ОСР-97, и сейсмического микрорайонирования в районах сейсмичностью 6 баллов и выше. Материалы изысканий должны содержать:
характеристику структурно-тектонической обстановки и сейсмического режима района строительства в радиусе 50 — 100 км от площадки;
границы основных сейсмогенных зон и описание сейсмологических характеристик (максимальные магнитуды, глубины очагов и эпицентральные расстояния, повторяемость землетрясений, сейсмичность площадки);
параметры расчетных сейсмических воздействий из всех выделенных зон с учетом структурно-тектонических особенностей района и инженерно-геологических условий площадки;
границы возможных зон возникновения остаточных деформаций в основании сооружения и оценку их величин при сильнейших землетрясениях;
наборы расчетных записей (акселерограмм, велосиграмм, сейсмограмм), моделирующих основные типы сейсмических воздействий на выбранной площадке;
оценку изменения параметров сейсмического режима под влиянием водохранилища в процессе его заполнения и эксплуатации;
оценку возможности обрушения в водохранилище больших масс горных пород и падения на сооружение неустойчивых скальных массивов под влиянием сейсмических воздействий.
8.1.4 При проектировании подпорных гидротехнических сооружений следует предусматривать возможность действия землетрясения в период строительства. Сейсмичность площадок строительства подпорных гидротехнических сооружений в этом случае следует снижать на один балл.
8.1.5 Расчеты всех гидротехнических сооружений, оснований и береговых склонов как в створе сооружения, так и в зоне водохранилища должны проводиться на статические нагрузки, определяемые согласно 5.2,а и 8.2.1 — 8.2.12.
Расчетную сейсмичность для гидротехнических сооружений следует принимать равной сейсмичности площадки.
Для подпорных гидротехнических сооружений класса I, при их расположении в районах сейсмичностью свыше 7 баллов, допускается выполнять дополнительные расчеты на сейсмические воздействия, указанные в 5.2,б.
8.1.6 Расчеты гидротехнических сооружений и их оснований на условные статические нагрузки (по 5.2,а) должны выполняться в соответствии с требованиями СП 58.13330. В расчетах должны учитываться сейсмические нагрузки от массы сооружения, присоединенной массы воды (или гидродинамического давления), от волн в водохранилище, вызванных землетрясением, и от динамического давления грунта.
8.1.7 Деформационные и прочностные характеристики материалов сооружений следует определять экспериментально с учетом особенностей сейсмического воздействия. Допускается деформационные характеристики принимать осредненными по всему сечению или объему сооружения, а при расчете сооружения по 5.2,а — использовать статические прочностные характеристики. При этом для бетонных гидротехнических сооружений значение t следует принимать равным 1,2.
Используемые в расчетах по 5.2,б характеристики динамических деформационных и прочностных свойств грунтов оснований и материалов гидротехнических сооружений должны определяться экспериментально.
Примечание — При наличии в основании или в теле гидротехнического сооружения водонасыщенных несвязных грунтов следует выполнять оценку их минимально допускаемой плотности по условию динамической устойчивости структуры, а также возможного снижения сопротивления сдвигу вследствие разжижения этих грунтов при сейсмических воздействиях.
8.1.8 Для грунтовых сооружений допускаются остаточные деформации и повреждения (осадки, смещения, трещины и др.), не приводящие к опасным последствиям, при условии ремонта сооружения после землетрясения. Предельные необратимые деформации назначают на основе специального обоснования с учетом природных условий площадки строительства, особенностей конструкций и условий эксплуатации сооружения; следует учитывать необходимость сохранения (без ремонта) сооружений напорного фронта при повторном воздействии землетрясений интенсивностью, меньше расчетной на 1 балл. Для бетонных и железобетонных гидротехнических сооружений предельные состояния устанавливают согласно СП 58.13330.
8.1.9 Скальные массивы, образующие береговые склоны, смещение и падение которых при землетрясении может вызвать повреждение основных сооружений гидроузла или образование волны перелива, повлечь за собой затопление населенных пунктов или промышленных предприятий, необходимо проверять на устойчивость.
8.1.10 Для гидротехнических сооружений класса I наряду с расчетом на сейсмические воздействия следует проводить экспериментальные, в том числе модельные, исследования; целесообразно проведение натурных исследований на частично построенных и действующих сооружениях для уточнения динамических характеристик сооружений и применяемых методов их расчета.
8.1.11 Для сооружений класса I обязательно включение в состав проекта раздела по организации инструментальных наблюдений за поведением сооружений, их оснований и береговых склонов при землетрясениях.
8.1.12 Проектирование зданий, крановых эстакад, опоры линий электропередачи и других объектов, входящих в состав гидроузлов, следует проводить в соответствии с указаниями разделов 4 — 6. В случае размещения этих объектов на основных гидротехнических сооружениях или в контакте с ними в расчетах должно учитываться сейсмическое воздействие, заданное ускорением, передаваемым со стороны основного сооружения, и определяемое в соответствии с требованиями 8.2.2 и 8.2.3.
Источник: geostart.ru
Расчет на сейсмостойкость — как проводится, особенности и методы
Что такое расчет на сейсмику и в каких случаях он применяется? Какие методы сегодня используют и в чем их плюсы и минусы? Что является основанием для решения о выдаче сертификата сейсмостойкости? Об этом и многом другом рассказывают эксперты компании “ЛенТехСертификация”.
Цель сейсмического расчета
Главной целью расчета оборудования на сейсмостойкость является подтверждение того, что объект действительно соответствует требованиям нормативно-технической документации при заданном уровне интенсивности землетрясения (используется шкала MSK-64).
Причины и особенности проведения
В основном расчет необходимо проводить по следующим причинам:
- Продукция уже используется на объекте и ее невозможно демонтировать.
- У объекта слишком большие габариты и/или сложная конструкция, поэтому его невозможно поместить на виброплатформу.
- Речь идет о тепломеханической продукции, а для нее расчет сейсмики предусмотрен нормативными требованиями.
- Требования к данному объекту допускают заменить испытания расчетом.
- Необходима оценка объекта, аналогичного тому, что уже проходил проверку, но содержащему изменения, влияющие на динамические характеристики.
- Оценивается уже проверенный объект на соответствие новым требованиям
- Оценивается объект, не имеющий резонансных частот в диапазоне от 1 до 30 Гц.
При этом саму процедуру получения сертификата сейсмостойкости можно разделить на несколько основных этапов:
- Для начала строится подробная математическая модель, отражающая все особенности сертифицируемого объекта.
- Следующим этапом идет расчет вибрационных полей во всех важных узловых точках при заданных параметрах землетрясения. В результате становится возможным определить максимальные перегрузки комплектующих.
- Завершающим этапом идет анализ расчетных и допустимых значений перегрузок. По результатам расчетов оформляется заключение о сейсмостойкости исследуемого оборудования и если выясняется, что оборудование не может обеспечить заявленного уровня, предлагаются рекомендации по изменению его конструкции. Именно на основании расчета и заключения выдается сертификат.
Методы расчета на сеймостойкость
Статический метод
Методика была разработана японским ученым Омори еще в 1900 году. Этой теорией не учитывается деформации сооружения, его колебания сводятся лишь к переносному движению всех точек сооружения вместе с основанием. В соответствии с этим методом сооружение и его основание рассматриваются как абсолютно жесткие. В соответствии с принципом Даламбера можно считать, что к каждой массе mi сооружения приложена инерционная нагрузка (сейсмическая сила) si:
где А — максимальное ускорение основания, выражаемое в долях силы тяжести g.
Сейсмические силы прикладывают как статические в центре тяжести каждой массы mi и на их действие производят расчет конструкции. Значение статической теории для развития теории сейсмостойкости состояло в том, что в ее рамках впервые удалось получить количественную, хотя и приближенную, оценку сейсмических сил, т.е. свести проектирование сейсмостойких сооружений к обычной инженерной задаче.
Важно понимать! Статическая теория справедлива лишь для весьма жестких сооружений, деформации которых, по сравнению со смещением основания, довольно малы.
Существенный недостаток метода в том, что при нем невозможен учет в рамках динамических свойств конструкции. Это довольно серьезный минус, т.к. может привести к существенным ошибкам в расчетах сооружений, которые идут не в запас прочности.
Спектральный (линейно спектральный) метод
Линейно спектральный метод расчета конструкций на сейсмические воздействия является в настоящее время основным, как в России, так и за рубежом. Он является, в своем роде, компромиссом между статическим и динамическим методами.
Как и статический спектральный метод расчета предполагает определение сейсмических инерционных нагрузок (сил) si, приложенных в центре тяжести массы mi, а затем конструкция рассчитывается на действие сил si, приложенных к конструкции статически. Динамические свойства конструкции учитываются при определении нагрузок si. Для этого движение системы раскладывается по формам колебаний, т. е. представляется как сумма некоторых движений (форм колебаний).
Здесь yi(t) — смещение массы тi, зависящее от времени t;
xij — коэффициент разложения движения по формам колебаний; (i-я компонента j-о собственного вектора системы);
оj(t) — функция, определяющая изменение во времени перемещения по j-й форме колебаний;
yij(t) — смещение массы mi по j-й форме колебаний;
п — число степеней свободы системы.
Если рассмотреть движение всей системы по одной форме колебаний, то все точки будут смещаться синхронно и форма колебаний не меняется во времени.
Прямой динамический метод расчета сейсмостойкости
Метод численного интегрирования уравнений движения, применяемый для анализа вынужденных колебаний конструкций при сейсмическом воздействии, заданном акселерограммами землетрясений.
Необходимые исходные данные для проведения расчета на сейсмостойкость
Для расчета вам необходимо будет предоставить следующие данные:
- Полный комплект чертежей корпусов;
- ТУ, руководство по эксплуатации, технический паспорт;
- Массогабаритные характеристики устанавливаемого оборудования;
- Интенсивность ПЗ и МРЗ;
- Уровень установки.
Мы приглашаем обращаться за расчетом и получением сертификата сейсмостойкости к нам, в компанию “ЛенТехСертификация”. Звоните или заполняйте форму обратной связи — мы примем документы на оценку и сориентируем вас по цене, срокам и особенностям прохождения процедуры расчета на сейсмостойкость.
Источник: ltsert.ru