В сводной таблице приведена информация, необходимая для расчета характеристик возводимых конструкций при использовании различных строительных материалов.
Что такое теплопроводность и термическое сопротивление
При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло.
И наоборот, чем выше цифра, тем тепло отводится лучше.
Диаграмма, которая иллюстрирует разницу в теплопроводности материалов
Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло.
Расчет теплопроводности строительных материалов — таблица с примерами
В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).
Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени
Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции.
Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д. Материалы с низким тепловых сопротивлением нужны для отведения или переноса тепла. Например, алюминиевые или стальные радиаторы используют для отопления, так как они хорошо отдают тепло.
Факторы, влияющие на теплопроводность
На каждую характеристику имеют влияние ряд факторов. Не исключением является и теплопроводность. Какие же факторы оказывают значительное влияние?
- Пористость поверхности. Неоднородность структуры, благотворно сказывается на теплопроводности. При прохождении через материалы такого рода большая часть тепловой энергии сохраняется.
- показатель влияет на пересечение частиц и более тесные контакты между ними. В свою очередь это увеличивает теплообменные процессы.
- выше данный фактор влияния — тем выше теплопроводность.
Коэффициент теплопроводности … Таблица теплопроводности строительных … Теплопроводность теплоемкость и … Теплопроводность строительных … Теплопроводность строительных …
Рассмотрим подробнее каждый из популярных материалов для строительства по характеристикам
- Плотность, кг / м3: 500
- Коэффициент теплопроводности, Вт / М°С: 0,14
- Рекомендуемая толщина стены для средней полосы, м: не менее 0,5
- Плотность, кг/м3: 1400-1700
- Коэффициент теплопроводности, Вт / М°с: 0,5
- Механопрочность, кгс / см2: 100-200
- Влагопоглощение, % массы: 12-18
- Морозоустойчивость, циклы: 100
- Рекомендуемая толщина стены для средней полосы, м: не менее 1,2
- Плотность, кг/м3: 400-1000
- Коэффициент теплопроводности, Вт/М°с: 0,18-0,28
- Механопрочность, кгс/см2: 100-150
- Влагопоглощение, % массы: 10-16
- Морозоустойчивость, циклы: 100
- Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
- Плотность, кг / м3: 850-1800
- Коэффициент теплопроводности, Вт / М°с: 0,4-0,8
- Механопрочность, кгс / см2: 35-75
- Вологопоглинання, % маси: 0
- Морозоустойчивость, циклы: від 50
- Рекомендуемая толщина стены для средней полосы, м: не менее 0,6
- Плотность, кг / м3: 600-1000
- Коэффициент теплопроводности, Вт / М°с: 0,14-0,22
- Механопрочность, кгс / см2: 15-25
- Влагопоглощение, % массы: 10-16
- Морозоустойчивость, циклы: від 35
- Рекомендуемая толщина стены для средней полосы, м: не менее 1
- Плотность, кг / м3: 300-600
- Коэффициент теплопроводности, Вт / М°с: 0,08-0,14
- Механопрочность, кгс / см2: 25-50
- Влагопоглощение, % массы: 25
- Морозоустойчивость, циклы: від 50
- Рекомендуемая толщина стены для средней полосы, м: не менее 0,4
Факторы влияния на теплопроводность
Теплопроводность зависит от плотности и толщины теплоизолята, поэтому важно учитывать ее при покупке. Плотность – это масса одного кубометра материалов, которые по этому критерию классифицируются как очень легкие, легкие, средние и жесткие. Легкие пористые изделия применяются для покрытия внутренних стен, несущих перегородок, плотные – для наружных работ.
Модификации с меньшей плотностью легче по весу, но имеют лучшие параметры теплопроводности. Сравнение утеплителей по плотности представлено в таблице.
Материал | Показатель плотности, кг/м3 |
Минвата | 50-200 |
Экструдированный пенополистирол | 33-150 |
Пенополиуретан | 30-80 |
Мастика из полиуретана | 1400 |
Рубероид | 600 |
Полиэтилен | 1500 |
Чем выше плотность, тем меньше уровень пароизоляции.
Толщина материала также влияет на степень теплопередачи. Если она избыточная, нарушается естественная вентиляция помещений. Маленькая толщина становится причиной мостов холода и образования конденсата на поверхности. В результате стена покроется плесенью и грибком. Сравнить параметры толщины материалов можно в таблице.
Материал | Толщина, мм |
Пеноплекс | 20 |
Минвата | 38 |
Ячеистый бетон | 270 |
Кладка из кирпича | 370 |
При подборе толщины стоит учитывать климат местности, материал постройки.
Утеплители и их теплопроводность
Используются для утепления фундамента, пола, стен здания внутри и снаружи, потолка и крыши.
Пенопласт
- Плотность: 15 кг/м³–50 кг/м³;
- Теплопроводность: 0,31–0,33 Вт/м*К.
Пенополистирол
- Плотность: 15 кг/м³–50 кг/м³;
- Теплопроводность: 0,028–0,035 Вт/м*К.
Минеральная вата
Минеральная вата имеет способность впитывать влагу. Вода легко накапливается, но очень долго испаряется из данного звуко- и теплоизоляционного материала.
Если минвата перенасытится влагой, то потеряет свои основные изоляционные свойства. Чтобы не допустить впитывание влаги, минвату с двух сторон герметично закупоривают слоем гидроизоляции.
Стекловата
- Плотность: 15 кг/м³–45 кг/м³;
- Теплопроводность: 0,038–0,046 Вт/м*К.
Базальтовая (каменная) вата
- Плотность: 30 кг/м³–200 кг/м³;
- Теплопроводность: 0,035–0,042 Вт/м*К.
Эковата
- Плотность: 30 кг/м³–110 кг/м³;
- Теплопроводность: 0,032–0,041 Вт/м*К.
Сравнительные характеристики теплопроводности конструкционных строительных материалов и утеплителей необходимо проанализировать, выбрав для постройки или дополнительной теплоизоляции самый подходящий материал.
Видео о характеристиках теплоизоляционных материалов
Основным теплоизолятором в любом теплоизоляционном материале является воздух (в обычном или разряженном состоянии). Чем больше воздуха в материале и чем лучше этот воздух изолирован от наружного воздуха (чем сложнее воздуху перетекать внутри материала) — тем лучше (ниже) коэффициент теплопроводности материала.
Теперь далее. Структура пенопласта и структура минеральной ваты абсолютно разные по строению.
Минеральная вата состоит из множества переплетающихся волокон, между которыми находится основной теплоизолятор — воздух. Чем менее плотна эта структура, тем больше воздуха находится в материале (есть, конечно, определенный минимум, который: во-первых, обеспечивает изоляцию от наружного воздуха (оптимальный переток воздуха внутри матерала); во-вторых, позволяет держать форму материалу) и тем ниже теплопроводность этого материала. При более плотной структуре — воздуха меньше — теплопроводность выше (изменения в пределах 10%).
Пенопласт состоит из пенополистирольных шариков, внутри которых уже есть воздух. Поэтому изменение плотности в структуре этого материала (более плотное соединение шариков между собой) на теплопроводности, практически, не отражается (изменения колеблятся в районе долей процента).
Теперь зачем нужен параметр плотность. Чем плотнее материал тем бОльшую нагрузку он может нести. Например, минеральную вату с плотность 35 кг/ нельзя укладывать под стяжку пола или в колодцевую кладку стены, т.к. в первом случае стяжка ее раздавит, а во втором минеральная вата со временем осядет. И в первом, и во втором случаях нужно использовать более плотный материал (от 160 кг/ для стяжки и от 80 кг/ для колодцевой кладки).
Поскольку структура пенопласта другая, то сравнивать по несущей способности минеральную вату и пенопласт одинаковой плотности некорректно. Хотя, в итоге, плотность пенопласта так же влияет на несущую способность этого материала. Чем плотнее — тем выше несущая способность.
Надеюсь, достаточно понятно объяснил.
Последние годы при строительстве дома или его ремонте большое внимание уделяется энергоэффективности. При уже существующих ценах на топливо это очень актуально. Причем похоже что дальше экономия будет приобретать все большую важность.
Чтобы правильно подобрать состав и толщин материалов в пироге ограждающих конструкций (стены, пол, потолок, кровля) необходимо знать теплопроводность строительных материалов. Эта характеристика указывается на упаковках с материалами, а необходима она еще на стадии проектирования. Ведь надо решить из какого материала строить стены, чем их утеплять, какой толщины должен быть каждый слой.
Таблица тепловой эффективности материалов
Большинство сырья, которое используется при строительстве, не нуждается в самостоятельном измерении КТП. Для этого существует таблица теплопроводности материалов, которая показывает основные характеристики, требуемые для расчёта тепловой эффективности.
Материал | Плотность, кг/м3 | Теплопроводность, Вт/(м*градусы) | ТеплоёмкостьДж/(кг*градусы) |
Железобетон | 2500 | 1,7 | 840 |
Бетон на гравии или щебне из природного камня | 2400 | 1,51 | 840 |
Керамзитобетон лёгкий | 500-1200 | 1,19-0,45 | 840 |
Кирпич строительный | 800-1500 | 0,24-0,3 | 800 |
Силикатный кирпич | 1000-2200 | 0,51-1,29 | 750-840 |
Железо | 7870 | 70-80 | 450 |
Пенополистирол Пеноплэкс | 110-140 | 0,042-0,05 | 1600 |
Плиты минераловатные | 150-250 | 0,043-0,063 | — |
Большинство материалов отличается по своему составу. Например, теплопроводность кирпича зависит от того, из чего он сделан. Клинкерный имеет КТП от 0,8 до 1,6, а кремнезёмный 0,15. Также есть отличия по методу изготовления и стандартам ГОСТ.
Пенополистирол разной толщины Источник
Это может быть интересно! В статье по следующей ссылке читайте про деревянные перекрытия, какие они должны быть в домах с утеплением.
Теплопроводность и коэффициент теплопроводности. Что это такое
Так что же такое теплопроводность? С точки зрения физики теплопроводность – это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).
Можно сказать проще, теплопроводность – это способность материала проводить тепло. Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Передача тепла происходит за счет передачи энергии при столкновении молекул вещества. Происходит это до тех пор, пока температура внутри тела не станет одинаковой. Такой процесс может происходить в твердых, жидких и газообразных веществах.
На практике, например в строительстве при теплоизоляции зданий, рассматривается другой аспект теплопроводности, связанный с передачей тепловой энергии. В качестве примера возьмем “абстрактный дом”.
теплопроводность строительных материалов Таблица теплопроводности строительных … Таблица теплопроводности строительных … Таблица теплопроводности строительных … Таблица теплопроводности строительных …
В “абстрактном доме” стоит нагреватель, который поддерживает внутри дома постоянную температуру, скажем, 25 °С. На улице температура тоже постоянная, например, 0 °С.
Вполне понятно, что если выключить обогреватель, то через некоторое время в доме тоже будет 0 °С. Все тепло (тепловая энергия) через стены уйдет на улицу.
Чтобы поддерживать температуру в доме 25 °С, нагреватель должен постоянно работать. Нагреватель постоянно создает тепло, которое постоянно уходит через стены на улицу.
Что влияет на коэффициент теплопроводности
Строительные материалы, кирпич, бетон, блоки, дерево, панели имеют разную теплопроводность. Но физические свойства этих материалов, влияющие на показатели проводимости тепла, одинаковы. Вот они:
Как данные параметры влияют на проводимость тепла. Плотность материала характеризуется взаимодействием частиц, передающих тепловую энергию, чем плотность выше, тем потери тепла больше. Пористость материала способствует разрушению его однородности, тепло задерживается порами, в которых воздух, а теплопроводность воздуха при 0°С равна 0,02 Вт/м*.
Чем больше пористость кирпича или иного материала, тем ниже коэффициент теплопроводности. Если структура пол малого размера и закрытого типа, потери тепла снижаются. Повышенная влажность материала снижает (ухудшает) показатель, так как сухой воздух вытесняется влажным.
В строительной профессиональной практике коэффициент определяется формулами, для обычного понимания необходимо понимать, что проводимость тепловой энергии – величина нормируемая, конструкция строения должна представлять собой монолитное сооружение, возведенное из материалов естественной влажности, требуемой толщины, как показано на картинке.
Полезно знать, что все строительные материалы делятся на два класса:
- те, из которых возводят конструкцию, каркас сооружения;
- те, которыми производят утепление конструкции.
Материалы для несущих конструкций характеризуются высоким коэффициентом теплопроводности. Самым холодным среди прочих является железобетон с коэффициентом – 1,29. Самый теплый материалом для стен пенобетон– 0,08. Интересно, что кирпич, согласно присвоенным показателям неплохо держит тепло:
Таким образом, таблица подсказывает, какой кирпич выбрать для строительства своего дома.
Важно!Теплопроводность только один из большого числа технических показателей строительного материала, принимать во внимание которые необходимо при проектировании и возведении будущего дома. . Кроме того, кирпич от разных производителей также различается по техническим и физическим, а также ценовым показателям
Кроме того, кирпич от разных производителей также различается по техническим и физическим, а также ценовым показателям.
Как влияет теплопроводность бетона на микроклимат внутри помещения
Из множества строительных материалов, применяемых для возведения зданий, одним из наиболее распространенных является бетон. Среди главных рабочих характеристик материала выделяется коэффициент теплопроводности бетона. На этапе проектирования необходимо предусмотреть применение в процессе строительства теплоизоляционных материалов, позволяющих превратить возведенную железобетонную конструкцию в жилое строение. Ведь важно возвести не только устойчивое, экологически чистое и оригинальное здание, но и создать благоприятные условия для проживания.
Зная теплопроводность бетонного массива, и правильно выбрав теплоизоляционные материалы, можно добиться значительных результатов:
- существенно сократить тепловые потери;
- снизить затраты на обогрев помещения;
- обеспечить внутри здания комфортный микроклимат.
Влияние уровня теплопроводности на внутренний микроклимат выражается простой зависимостью:
- при возрастании коэффициента, интенсивность тепловой передачи возрастает, и строение, возведенное из материала с такими характеристиками, быстрее остывает и, соответственно, ускоренными темпами нагревается;
- снижение способности бетонного массива передавать тепло позволяет на протяжении увеличенного периода времени сохранять внутри помещения комфортную температуру, с соответственным уменьшением тепловых потерь.
Зная теплопроводность бетонного массива можно обеспечить внутри здания комфортный микроклимат
Если подытожить, то степень теплопроводимости бетона является определяющим фактором, влияющим на комфортность жилища. Различные виды бетона отличаются структурой массива, свойствами применяемого наполнителя и, соответственно, степенью теплопроводности. Важно использовать такие марки бетона совместно с утеплителями, чтобы обеспечить надежное удержание бетонным массивом тепла в помещении. Выбор применяемых для строительства материалов производится на проектной стадии.
Использование значений теплопроводности на практике
Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.
Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя .
Таблица теплопроводности строительных … Идеальный дом: теплопроводность … Теплопроводность строительных … Cравнительная таблица теплопроводности … Теплопроводность строительных …
Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.
Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.
Какой метод измерения теплопроводности лучше всего подходит для вашего материала?
Существуют методы измерения тепловодности, такие как LFA, GHP, HFM и TCT. Они отличаются друг от друга размерами и геометрическими параметрами образцов, применяемых для проверки теплопроводности металлов.
Эти сокращения можно расшифровать как:
- GHP (метод горячей охранной зоны);
- HFM (метод теплового потока);
- TCT (метод горячей проволоки).
Вышеуказанные способы применяют для определения коэффициентов различных металлов и их сплавов. Вместе с тем с использованием этих методов, занимаются исследованием других материалов, например, минералокерамики или огнеупорных материалов.
Образцы металлов, на которых проводят исследования, имеют габаритные размеры 12,7×12,7×2.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник: intelligent88.ru
Теплопроводность строительных материалов: таблица коэффициентов
Черновые материалы
Любые строительные работы начинаются с создания проекта. При этом планируется как расположение комнат в здании, так и рассчитываются главные теплотехнические показатели. От данных значений зависит, насколько будущая постройка будет теплой, долговечной и экономичной. Позволит определить теплопроводность строительных материалов – таблица, в которой отображены основные коэффициенты. Правильные расчеты являются гарантией удачного строительства и создания благоприятного микроклимата в помещении.
Чтобы дом был теплым без утеплителя потребуется определенная толщина стен, которая отличается в зависимости от вида материала
Теплопроводность: понятие и теория
Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.
Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей
Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности.
Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.
Потери тепла на разных участках постройки будут отличаться
Полезный совет! При постройке домов стоит использовать сырье с минимальной проводимостью тепла.
От чего зависит величина теплопроводности?
От множества факторов зависит значение теплопроводности строительных материалов. Таблица коэффициентов, представленная в нашем обзоре, это наглядно показывает.
Наглядный пример демонстрирует свойство теплопроводности
На данный показатель оказывают влияние следующие параметры:
- более высокая плотность способствует прочному взаимодействию частиц друг с другом. При этом уравновешивание температур производится более быстро. Чем плотнее материал, тем лучше пропускается тепло;
- пористость сырья свидетельствует о его неоднородности. При перемещении тепловой энергии через подобную структуру охлаждение будет небольшим. Внутри гранул находится только воздух, который обладает минимальным количеством коэффициента. Если поры маленькие, то при этом затрудняется передача тепла. Но повышается значение теплопроводность;
- при повышенной влажности и промокании стен здания показатель прохождения тепла будет выше.
Использование значений теплопроводности на практике
Материалы, используемые в строительстве, могут быть конструкционными и теплоизолирующими.
Существует огромное количество материалов с теплоизолирующими свойствами
Самое большое значение теплопроводности у конструкционных материалов, которые используются при возведении перекрытий, стен и потолков. Если не использовать сырье с теплоизолирующими свойствами, то для сохранения тепла потребуется монтаж толстого слоя утеплителя для возведения стен.
Часто для утепления строений используются более простые материалы
Поэтому при возведении постройки стоит использовать дополнительные материалы. При этом значение имеет теплопроводность строительных материалов, таблица показывает все значения.
В некоторых случаях более эффективным считается утепление снаружи
Полезная информация! Для построек из древесины и пенобетона не обязательно использовать дополнительное утепление. Даже применяя низкопроводной материал, толщина сооружения не должна быть менее 50 см.
Особенности теплопроводности готового строения
Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.
В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением
Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.
Утепление построек из бетона или камня повышает комфортные условия внутри здания
Полезный совет! Перед тем как утеплять жилище, необходимо продумать качественную гидроизоляцию. При этом даже повышенная влажность не повлияет на особенности теплоизоляции в помещении.
Разновидности утепления конструкций
Теплое здание получится при оптимальном сочетании конструкции из прочных материалов и качественного теплоизолирующего слоя. К подобным сооружениям можно отнести следующие:
- при возведении каркасной постройки, используемая древесина обеспечивает жесткость здания. Утеплитель прокладывается между стойками. В некоторых случаях применяется утепление снаружи здания;
- здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.
Как определить коэффициенты теплопроводности строительных материалов: таблица
Помогает определить коэффициент теплопроводности строительных материалов – таблица. В ней собраны все значения самых распространенных материалов. Используя подобные данные, можно рассчитать толщину стен и используемый утеплитель. Таблица значений теплопроводности:
Необходимые коэффициенты для самых различных материалов
Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.
Технические характеристики утеплителей для бетонных полов О значении теплопроводности можно судить по сравнительным характеристикам
Полезные рекомендации
Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.
Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы
Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.
При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции
Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.
Создание теплого пола требует особых знаний. Важно учитывать высоту и толщину материалов
Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:
- если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
- чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
- для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
- если снять декоративный экран, то теплоотдача увеличиться на 25 %.
Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.
Выбор утеплителя зависит от материала самой двери
Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика.
Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.
Источник: homemyhome.ru
Свойства утеплителей и таблица теплопроводности строительных материалов
Чтобы правильно организовать утепление стен, потолка и пола помещений нужно знать определённые особенности и свойства материалов. От качественного подбора необходимых значений напрямую зависит тепловая устойчивость вашего дома, ведь ошибившись, в первоначальных расчётах вы рискуете сделать утепление здания неполноценным. В помощь вам предоставляется подробная таблица теплопроводности строительных материалов, описанная в этой статье.
Читайте в статье
Что такое теплопроводность и её значимость?
Теплопроводность – это количественное свойство веществ пропускать тепло, которое определяется коэффициентом. Этот показатель равен суммарному количеству тепла, которое проходит сквозь однородный материал, имеющий единицу длины, площади и времени при одинарной разнице в температурах. Система СИ преобразует эту величину в коэффициент теплопроводности, это в буквенном обозначении выглядит так – Вт/(м*К). Тепловая энергия распространяется по материалу посредством быстро движущихся нагретых частиц, которые при столкновении с медленными и холодными частицами передают им долю тепла. Чем лучше нагретые частицы будут защищены от холодных, тем лучше будет сохраняться накопленное тепло в материале.
Подробная таблица теплопроводности строительных материалов
Главной особенностью теплоизолирующих материалов и строительных деталей является внутренняя структура и коэффициент сжатия молекулярной основы сырья, из которого состоят материалы. Значения коэффициентов теплопроводности строительными материалами таблично описаны ниже.
Вид материала | Коэффициенты теплопроводности, Вт/(мм*°С) | ||
Сухие | Средние условия тепловой отдачи | Условия повышенной влажности | |
Полистирол | 36 — 41 | 38 — 44 | 44 — 50 |
Эструдированный полистирол | 29 | 30 | 31 |
Войлок | 45 | ||
Раствор цемент+песок | 580 | 760 | 930 |
Раствор известь+песок | 470 | 700 | 810 |
Штукатурка из гипса | 250 | ||
Каменная вата 180 кг/м 3 | 38 | 45 | 48 |
140-175 кг/м 3 | 37 | 43 | 46 |
80-125 кг/м 3 | 36 | 42 | 45 |
40-60 кг/м 3 | 35 | 41 | 44 |
25-50 кг/м 3 | 36 | 42 | 45 |
Стекловата 85 кг/м 3 | 44 | 46 | 50 |
75 кг/м 3 | 40 | 42 | 47 |
60 кг/м 3 | 38 | 40 | 45 |
45 кг/м 3 | 39 | 41 | 45 |
35 кг/м 3 | 39 | 41 | 46 |
30 кг/м 3 | 40 | 42 | 46 |
20 кг/м 3 | 40 | 43 | 48 |
17 кг/м 3 | 44 | 47 | 53 |
15 кг/м 3 | 46 | 49 | 55 |
Пеноблок и газоблок на основе цемента 1000 кг/м 3 | 290 | 380 | 430 |
800 кг/м 3 | 210 | 330 | 370 |
600 кг/м 3 | 140 | 220 | 260 |
400 кг/м 3 | 110 | 140 | 150 |
Пеноблок и газоблок на извести 1000 кг/м 3 | 310 | 480 | 550 |
800 кг/м 3 | 230 | 390 | 450 |
400 кг/м 3 | 130 | 220 | 280 |
Дерево сосны и ели в распиле поперек волокон | 9 | 140 | 180 |
Дерево сосны и ели в распиле вдоль волокон | 180 | 290 | 350 |
Древесина дуба поперек волокон | 100 | 180 | 230 |
Древесина дуб вдоль волокон | 230 | 350 | 410 |
Медь | 38200 — 39000 | ||
Алюминий | 20200 — 23600 | ||
Латунь | 9700 — 11100 | ||
Железо | 9200 | ||
Олово | 6700 | ||
Сталь | 4700 | ||
Стекло 3 мм | 760 | ||
Снежный слой | 100 — 150 | ||
Вода обычная | 560 | ||
Воздух средней температуры | 26 | ||
Вакуум | 0 | ||
Аргон | 17 | ||
Ксенон | 0,57 | ||
Арболит | 7 — 170 | ||
Пробка | 35 | ||
Железобетон плотность 2,5 тыс. кг/м 3 | 169 | 192 | 204 |
Бетон на щебне с плотностью 2,4 тыс. кг/м 3 | 151 | 174 | 186 |
Бетон на керамзите с плотностью 1,8 тыс. кг/м 3 | 660 | 800 | 920 |
Бетон на керамзите с плотностью 1,6 тыс. кг/м 3 | 580 | 670 | 790 |
Бетон на керамзите с плотностью 1,4 тыс. кг/м 3 | 470 | 560 | 650 |
Бетон на керамзите с плотностью 1,2 тыс. кг/м 3 | 360 | 440 | 520 |
Бетон на керамзите с плотностью 1 тыс. кг/м 3 | 270 | 330 | 410 |
Бетон на керамзите с плотностью 800 кг/м 3 | 210 | 240 | 310 |
Бетон на керамзите с плотностью 600 кг/м 3 | 160 | 200 | 260 |
Бетон на керамзите с плотностью 500 кг/м 3 | 140 | 170 | 230 |
Крупноформатный блок из керамики | 140 — 180 | ||
Кирпич из керамики плотный | 560 | 700 | 810 |
Силикатный кирпич | 700 | 760 | 870 |
Кирпич из керамики полый 1500 кг/м³ | 470 | 580 | 640 |
Кирпич из керамики полый 1300 кг/м³ | 410 | 520 | 580 |
Кирпич из керамики полый 1000 кг/м³ | 350 | 470 | 520 |
Силикат на 11 отверстий (плотность 1500 кг/м 3 ) | 640 | 700 | 810 |
Силикат на 14 отверстий (плотность 1400 кг/м 3 ) | 520 | 640 | 760 |
Гранитный камень | 349 | 349 | 349 |
Мраморный камень | 2910 | 2910 | 2910 |
Известняковый камень, 2000 кг/м 3 | 930 | 1160 | 1280 |
Известняковый камень, 1800 кг/м 3 | 700 | 930 | 1050 |
Известняковый камень, 1600 кг/м 3 | 580 | 730 | 810 |
Известняковый камень, 1400 кг/м 3 | 490 | 560 | 580 |
Тюф 2000 кг/м 3 | 760 | 930 | 1050 |
Тюф 1800 кг/м 3 | 560 | 700 | 810 |
Тюф 1600 кг/м 3 | 410 | 520 | 640 |
Тюф 1400 кг/м 3 | 330 | 430 | 520 |
Тюф 1200 кг/м 3 | 270 | 350 | 410 |
Тюф 1000 кг/м 3 | 210 | 240 | 290 |
Сухой песок 1600 кг/м 3 | 350 | ||
Фанера прессованная | 120 | 150 | 180 |
Отпрессованная доска 1000 кг/м 3 | 150 | 230 | 290 |
Отпрессованная доска 800 кг/м 3 | 130 | 190 | 230 |
Отпрессованная доска 600 кг/м 3 | 110 | 130 | 160 |
Отпрессованная доска 400 кг/м 3 | 80 | 110 | 130 |
Отпрессованная доска 200 кг/м 3 | 6 | 7 | 8 |
Пакля | 5 | 6 | 7 |
Гипсокартон (обшивочный), 1050 кг/м 3 | 150 | 340 | 360 |
Гипсокартон (обшивочный), 800 кг/м 3 | 150 | 190 | 210 |
Линолеум на утеплителе 1800 кг/м 3 | 380 | 380 | 380 |
Линолеум на утеплителе 1600 кг/м 3 | 330 | 330 | 330 |
Линолеум на утеплителе 1800 кг/м 3 | 350 | 350 | 350 |
Линолеум на утеплителе 1600 кг/м 3 | 290 | 290 | 290 |
Линолеум на утеплителе 1400 кг/м 3 | 200 | 230 | 230 |
Вата на эко основе | 37 — 42 | ||
Перлит пескообразный с плотностью 75 кг/м 3 | 43 — 47 | ||
Перлит пескообразный с плотностью 100 кг/м 3 | 52 | ||
Перлит пескообразный с плотностью 150 кг/м 3 | 52 — 58 | ||
Перлит пескообразный с плотностью 200 кг/м 3 | 70 | ||
Вспененное стекло плотность которого 100 — 150 кг/м 3 | 43 — 60 | ||
Вспененное стекло плотность которого 51 — 200 кг/м 3 | 60 — 63 | ||
Вспененное стекло плотность которого 201 — 250 кг/м 3 | 66 — 73 | ||
Вспененное стекло плотность которого 251 — 400 кг/м 3 | 85 — 100 | ||
Вспененное стекло в блоках плотность которого 100 — 120 кг/м 3 | 43 — 45 | ||
Вспененное стекло плотность которого 121 — 170 кг/м 3 | 50 — 62 | ||
Вспененное стекло плотность которого 171 — 220 кг/м 3 | 57 — 63 | ||
Вспененное стекло плотность которого 221 — 270 кг/м 3 | 73 | ||
Керамзитная и гравийная насыпь плотность которого 250 кг/м 3 | 99 — 100 | 110 | 120 |
Керамзитная и гравийная насыпь плотность которого 300 кг/м 3 | 108 | 120 | 130 |
Керамзитная и гравийная насыпь плотность которого 350 кг/м 3 | 115 — 120 | 125 | 140 |
Керамзитная и гравийная насыпь плотность которого 400 кг/м 3 | 120 | 130 | 145 |
Керамзитная и гравийная насыпь плотность которого 450 кг/м 3 | 130 | 140 | 155 |
Керамзитная и гравийная насыпь плотность которого 500 кг/м 3 | 140 | 150 | 165 |
Керамзитная и гравийная насыпь плотность которого 600 кг/м 3 | 140 | 170 | 190 |
Керамзитная и гравийная насыпь плотность которого 800 кг/м 3 | 180 | 180 | 190 |
Гипсовые плиты плотность которого 1350 кг/м 3 | 350 | 500 | 560 |
Гипсовые плиты плотность которого 1100 кг/м 3 | 230 | 350 | 410 |
Перлитовый бетон плотность которого 1200 кг/м 3 | 290 | 440 | 500 |
МТПерлитовый бетон плотность которого 1000 кг/м 3 | 220 | 330 | 380 |
Перлитовый бетон плотность которого 800 кг/м 3 | 160 | 270 | 330 |
Перлитовый бетон плотность которого 600 кг/м 3 | 120 | 190 | 230 |
Вспененный полиуретан плотность которого 80 кг/м 3 | 41 | 42 | 50 |
Вспененный полиуретан плотность которого 60 кг/м 3 | 35 | 36 | 41 |
Вспененный полиуретан плотность которого 40 кг/м 3 | 29 | 31 | 40 |
Сшитый вспененный полиуретан | 31 — 38 |
Важно! Для достижения более эффективного утепления нужно компоновать разные материалы. Совместимость поверхностей между собой указана в инструкции от производителя.
Разъяснения показателей в таблице теплопроводности материалов и утеплителя: их классификация
В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из красного кирпича в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.
Источник: housechief.ru