В холодное время года, а также в суровых климатических условиях, стройматериалы, имеющие пористую структуру, в том числе бетон, испытывают повышенную нагрузку. Влага, заполняющая пустоты в толще материала, при замерзании увеличивается в объеме приблизительно на 10% и создает давление, способствующее появлению микротрещин и быстрому разрушению искусственного камня.
Поэтому, наряду с прочностью, морозостойкость бетона является одной из его важнейших технических характеристик. Под этим термином понимается способность бетонной конструкции выдержать определенное число циклов «замерзания-оттаивания», без нарушения целостности и потери прочности.
Классификация морозостойкости бетонов
В маркировке морозостойкость бетона согласно ГОСТ обозначается литерой F с цифрами в диапазоне 25-1000. Цифровой показатель обозначает, какое предельное количество циклов «замерзание/размораживание» выдерживает стройматериал до появления явных признаков разрушения, снижения прочности более чем на 5 процентов, изменения физических свойств.
Определение толщины утеплителя
Например, марка бетона по морозостойкости F200 подразумевает, что бетонная смесь после затвердевания выдержит минимум 200 циклов замерзания и оттаивания.
Классификацию на основе морозостойкости бетона регламентирует ГОСТ 25192-2012. Согласно этому нормативу, бетоны по данному параметру подразделяются на три группы:
- низкая морозостойкость (F50 и менее);
- средняя (более F50 до F300);
- высокая (более F300).
Существует зависимость между характеристиками стройматериала по прочности и устойчивости к низким температурам: чем выше один показатель, тем выше и второй. Соотношение марок и классов по прочности и морозостойкости бетона отражает таблица.
Измерение морозостойкости
Определение морозостойкости бетона осуществляется путем лабораторных исследований. Для испытаний отливают бетонный кубик со сторонами 100-200 мм. Затем следует череда циклов замораживания и оттаивания, температурный диапазон поддерживается от -18 до +18°C. Регламентирующие положения в области измерения морозостойкости бетона содержит ГОСТ 10060-2012. Госстандартом предусмотрены базовый и ускоренные варианты вычисления данной технической характеристики.
Базовое испытание водонасыщенного бетона на морозостойкость проводится по следующему алгоритму:
- Насыщенные жидкостью бетонные кубики обтирают влажной тканью и подвергают воздействию сжатием.
- Проверяемый материал замораживают в морозильной камере в заданном режиме.
- Оттаивают кубики в специальной ванне.
- Размороженные образцы очищают щеткой от отслаивающихся частиц и обтирают ветошью.
- Кубик взвешивают и испытывают на сжатие.
После этого результаты исследования обрабатывают. При отличии результатов ускоренных исследований от базовых, за эталонные принимаются базовые.
Пенетрон помогает защитить бетон от разрушающего воздействия циклов замерзания и оттаивания!
Лабораторные методы определения морозостойкости бетонов применяются в ходе разработки новых рецептур и прогрессивных технологий, контроле качества при поставках продукта. В частном строительстве и самостоятельном изготовлении бетонной смеси способность противостоять холодам нередко определяют визуально. О пониженной стойкости к перепадам температур сигнализирует расслаивание и шелушение материала, наличие трещин и бурых пятен. Ещё один подручный метод – образец затвердевшей смеси насыщают влагой и высушивают на солнце. Если кубик растрескался – показатель сниженный.
Способы повышения морозостойкости
Улучшить устойчивость к низким температурам можно с помощью нескольких способов:
Источник: beeton68.ru
Морозостойкость бетона и все, что с ней связано
Бетон является одним из самых широко применяемых в строительстве материалов. Наряду с такими свойствами, как прочность и долговечность, морозостойкость — важная характеристика бетона.
Это качество особенно важно в России, где для многих регионов характерны суровые климатические условия: перепады температур и влажности, очень низкие температуры, в связи с чем бетон может насыщаться водой, растворами солей, а затем подвергаться многократному замораживанию и оттаиванию.
Рассмотрим, что такое морозостойкость, какими методами она определяется, и можно ли ее повысить.
Почему важна морозостойкость бетона
Бетон, являясь прочным материалом, все же имеет пористую структуру; в нем всегда есть поры и капилляры, способные поглощать влагу.
Осенью, а также зимой, во время оттепелей, бетонные конструкции насыщаются водой с растворенными в ней минеральными веществами (при контакте с влажным грунтом и атмосферными осадками, которые могут содержать агрессивные вещества от техногенных выбросов). Затем наступают заморозки, и вся оставшаяся в порах бетона влага замерзает, увеличиваясь в объеме.
В итоге возникают микротрещины, и с каждым циклом замораживания-оттаивания эти трещины становятся больше, пока бетон не начинает крошиться.
Что называется морозостойкостью
Согласно ГОСТ 10060-2012 «Бетоны. Методы определения морозостойкости», морозостойкостью называется способность бетона в состоянии, насыщенном водой или раствором соли, подвергаться замораживанию и оттаиванию без признаков разрушения, таких, как образование сколов, трещин, шелушения ребер.
В зависимости от того, сколько циклов замораживания и оттаивания образец выдерживает без повреждений, ему присваивается марка по морозостойкости.
Какие методы используются для испытания на морозостойкость
Образцы, которые подвергаются испытаниям, представляют собой бетонные кубики с размером стороны 10 или 15 см. Они отбираются из каждой партии бетона в стандартные формы в соответствии с ГОСТ 22685. Каждая серия образцов изготавливается из одной партии бетона.
ГОСТ определяет, каким образом отбирается бетон, и как хранятся образцы.
Важно!
Определение морозостойкости начинают только после того, как образцы достигли проектной прочности.
Образцы в течение 24 часов выдерживают в воде или растворе соли, погруженными на 1/3 от высоты. Через сутки уровень жидкости повышается вдвое, и образец снова выдерживают в течение суток. Следующие 48 часов кубики оставляют погруженными в раствор или воду полностью.
Испытания ведутся непрерывно.
Методы испытания делятся на две группы:
1. Первый
Первый метод используют для любых видов бетона, кроме бетонов для аэродромных и дорожных покрытий, а также бетонов, которые будут эксплуатироваться в условиях воздействия насыщенной минералами воды (эти виды бетонов испытываются вторым базовым методом).
Первый метод заключается в замораживании насыщенных влагой образцов на воздухе и последующем оттаивании их в воде (температура воды 20+/–2°С).
При использовании второго базового метода, насыщенные раствором хлорида натрия образцы замораживают на воздухе и размораживают в растворе NaCl (поваренной соли).
После проведения запланированного количества испытаний измеряют изменение массы образцов и их прочности и, с помощью расчетов по специальным формулам, определяют марку бетона по морозостойкости.
2. Второй
Второй метод используется для всех видов бетонов, кроме предназначенных для аэродромов и дорожных покрытий и легких бетонов, которые будут эксплуатироваться в условиях воздействия минерализованной воды.
3. Третий
Используется для всех видов бетонов, кроме легких бетонов.
Ускоренные методы используют образцы, насыщенные раствором NaCl. Их замораживают на воздухе и размораживают в 5-процентном растворе соли.
Затем обрабатывают результаты испытаний так же, как при использовании базовых методов.
К базовым методам относят первый и второй, а к ускоренным — второй и третий.
Какими бывают бетоны по морозостойкости, и где они используются
Для эффективного строительства важно точно знать, какова морозостойкость бетона. Именно поэтому бетонам присваивается марка по морозостойкости. Она обозначается литерой F и числовым показателем в диапазоне от 25 до 1000:
- Бетоны с морозостойкостью до F50 применяются, в основном, для внутренних и подготовительных работ.
- F50– F150 показывает средние значения морозоустойчивости. Такие бетоны подходят для строительства объектов, которые будут эксплуатироваться в условиях умеренного климата.
- Бетоны F150– F300 предназначены для строительства в холодных регионах.
- Марки выше F300 применяются для строительства в экстремально холодных условиях, а также для объектов специального назначения.
От чего зависит морозостойкость бетона
Очевидно, что слабая устойчивость бетона к низким температурам связана с его способностью насыщаться водой, которая впоследствии замерзнет. А насыщаемость водой тем выше, чем больше в бетоне пор и капилляров.
Поры и капилляры оказывают влияние также на водопроницаемость и прочность бетона.
Прослеживается прямая зависимость: чем плотнее бетон, чем меньше и меньшего диаметра в нем поры и капилляры, тем он более прочный, водостойкий и морозостойкий. А значит, что наиболее морозостойким будет плотный и прочный бетон.
Как повысить морозостойкость бетона
Чтобы получить плотный и прочный бетон, необходимо соблюдать следующие условия:
- Использовать качественный цемент высокой марки. Если планируются бетонные работы при пониженных температурах, или к бетону предъявляются повышенные требования по морозостойкости, прочности, водостойкости, применяют цемент более высокой марки.
- Для повышения водонепроницаемости бетона применять глиноземистые цементы.
- Выбрать правильное водоцементное соотношение.
- Обеспечить правильную укладку и уплотнение бетонной смеси, чтобы в готовом бетоне не было пустот.
- Обеспечить уход за бетоном и оптимальные условия твердения, чтобы бетон качественно набрал прочность (температура воздуха +18–22°С, влажность воздуха, близкая в 100%).
- Использовать различные добавки для бетона.
Какие добавки используют для бетона
Чтобы получить безупречный бетон, разрабатываются специальные химические добавки, позволяющие придать материалу те или иные желаемые свойства. Для повышения морозостойкости бетона необходимо повысить его плотность и водостойкость. С этой целью применяют пластификаторы и гидрофобизаторы.
Пластификаторы, например, Plastix от Cemmix, действуют следующим образом:
- Позволяют сэкономить до 10–20% цемента без потери прочности либо, не увеличивая количество цемента, получить более прочный бетон.
- Повышают подвижность бетонной смеси на 1–2 ступени без увеличения количества воды замеса. Дело в том, что количество воды, которое необходимо для протекания реакций гидратации, гораздо меньше, чем количество воды, необходимое для замеса пластичной и удобной в укладке бетонной смеси. Однако, если повысить водоцементное соотношение, в смеси будет лишняя вода. Она не вступит в реакции с частицами цемента, со временем испарится, но оставит лишние поры в бетоне, которые негативно отразятся как на его прочности, так и на водостойкости и морозостойкости. Добавление пластификатора полностью решает эту проблему, ведь с ним бетон становится более подвижным и удобным в работе без потери прочности.
- Бетонная смесь с пластификатором, благодаря повышенной подвижности, лучше укладывается. С одной стороны, это позволяет экономить трудозатраты и затраты электроэнергии на обработку уложенного бетона, с другой стороны, бетон укладывается более плотно, вытесняется лишний воздух, благодаря чему уменьшается количество и диаметр пор и капилляров в готовом изделии.
- Бетонная смесь с пластификатором дольше остается готовой к работе и не расслаивается, что повышает удобство работ.
В свою очередь, добавки, предназначенные для объемной гидрофобизации бетона (гидрофобизаторы) повышают прочность и морозостойкость бетона, защищают арматуру, а в некоторых случаях повышают подвижность бетона, позволяя обойтись без пластификатора.
Важно!
Пластификаторы и гидрофобизаторы иногда применяются совместно.
Как заливают бетон в мороз
Рассматривая морозостойкость бетона, нельзя обойти вниманием такой вопрос, как производство бетонных работ в условиях пониженных температур. Ведь в России во многих регионах отрицательные температуры держатся более половины года, а строительные работы не ждут.
Но твердение бетона требует определенных условий. Чем ниже температура по сравнению с оптимальной, тем медленнее идут процессы набора прочности; при температуре ниже +5°С они почти прекращаются.
Являясь вяжущим веществом водного твердения, цемент вступает в реакции гидратации при смешивании с водой, но эти реакции протекают не одномоментно. Поэтому в бетонной смеси довольно длительное время есть свободная вода. При температурах ниже 0°С она замерзает. В результате прекращаются реакции гидратации и, даже если позже бетон оттаивает, его прочность все равно будет ниже запланированной.
В этих условиях разработаны различные методики ведения бетонных работ, которые позволяют не допустить замерзания бетонной смеси во время ее транспортировки и укладки, а также обеспечить правильный уход за уложенным бетоном.
Важно!
При проведении бетонных работ зимой наиболее важно обеспечить оптимальные условия твердения до набора бетоном критической прочности. Критическая прочность отличается от распалубочной, она задается проектной документацией и обычно составляет 30–50% от проектной прочности. После того, как критическая прочность набрана, бетон можно подвергать замораживанию без ущерба для его прочности.
Методы зимних бетонных работ делятся на две большие группы:
- «теплый» бетон,
- «холодный» бетон.
Важно!
Для зимнего бетонирования рекомендуется использовать бетон маркой не ниже, чем М400 (класс 32,5).
Теплым называют бетон, который так или иначе подогревают. Здесь возможны следующие варианты:
- Метод термоса. Бетонная смесь замешивается на теплой воде и прогретых заполнителях. Прогревается опалубка, а залитый бетон укрывается теплоизолирующими материалами. Если конструкция достаточно массивная, с толстыми стенками, то тепла, которое выделяется в процессе реакций гидратации, достаточно, чтобы обогреть ее и не допустить чрезмерного снижения температуры. Частный случай метода термоса — метод горячего сухого термоса, при использовании которого бетон можно укладывать даже на промороженное основание, предварительно засыпанное горячим (200–300°С) керамзитом.
- Устройство тепляков. В этом случае над залитым бетоном устанавливаются шатры, внутри которых ставят тепловые пушки, что позволяет поддерживать нужную температуру.
- Прогрев бетона различными методами (электродами, инфракрасным излучением, кондуктивным, индукционным методом и пр.)
У каждого из этих методов есть свои достоинства и недостатки. Так, метод термоса подходит только для крупных массивных конструкций, прогрев и обогрев бетона требуют расходов электроэнергии и дополнительного оборудования, а также постоянного контроля температуры в толще бетона, чтобы не допустить большого температурного градиента.
«Холодный» бетон — это метод ведения бетонных работ без прогревающих или обогревающих мероприятий. В этом случае используются противоморозные добавки и ускорители твердения бетона.
Важно!
В качестве противоморозных добавок в течение многих десятилетий используют электролиты, растворы солей калия и натрия. Однако эти добавки уместны далеко не всегда:
- хлорид натрия может приводить к коррозии металлической арматуры и закладных элементов;
- высокощелочные цементы и некоторые другие виды портландцементов не совместимы с электролитами;
- использование солей может привести к образованию высолов на поверхности изделия.
Вот почему оптимальный вариант — использование специальных противоморозных добавок для бетона, которые разработаны и проверены в лаборатории. Они не имеют тех недостатков, которые присущи солям и позволяют проводить бетонные работы даже в сильные морозы.
Противоморозные добавки часто сочетают в себе свойства пластификаторов и ускорителей твердения бетона. Они позволяют:
- Проводить бетонирование даже при очень низких температурах (до –20°С).
- Обходиться без тепловой обработки уложенного бетона.
- Снизить расход воды.
- Увеличить прочность бетона, как минимум, на 10%.
- Увеличить сцепление с арматурой.
- Повысить водонепроницаемость и морозостойкость бетона.
Важно!
Противоморозные добавки могут применяться и в «теплом» бетоне, позволяя экономить электроэнергию на прогрев бетона.
Консультируем по применению наших продуктов в будни с 9.00 до 18.00. Подскажем где купить в Вашем регионе.
8 (800) 550-52-82
Источник: cemmix.ru