Энергосберегающие технологии в строительстве примеры

Содержание

За последние десятилетия бесконтрольной добычи и расточительного использования невозобновляемых энергоресурсов человечество приблизилось к глобальному кризису мировых запасов топлива, а также к значительному ухудшению экологической обстановки на планете: потепление климата, болезни, загрязнение атмосферы, рек, вырубка лесов.

Специалисты прогнозируют, что, двигаясь такими темпами, мы полностью израсходуем запасы природных энергоресурсов (газа, нефти, угля) в ближайшие пятьдесят лет. Серьезный энергетический кризис в 1970-х годах XX в. заставил Европу задуматься над экологическими проблемами и начать разрабатывать природоохранные проекты. В 1997 году был подписан Киотский протокол, согласно которому государства должны ограничить выброс CO2 в атмосферу.

В большинстве стран мира одним из важнейших объектов государственного регулирования стали требования к повышению тепловой защиты зданий. Помимо экономии государственных энергоресурсов эти требования призваны защитить окружающую среду от вредных выбросов, рационального использования природных ресурсов, уменьшение «парникового эффекта».

«Умные» технологии энергосбережения

На сегодняшний день актуальна проблема снижения энергопотребления жилых домов, что также дало толчок для развития энергосберегающих технологий. На обогрев домов государствами тратится до 40% всех энергоресурсов страны, а в атмосферу в результате выбрасывается огромное количество углекислого газа, что приводит к развитию «парникового эффекта». Энергосберегающие технологии позволяют решить сразу несколько задач:

  • Экономия энергоресурсов
  • Решение многих проблем ЖКХ
  • Уменьшение загрязнения окружающей среды
  • Увеличение рентабельности предприятий
  • Энергосбережение в России

В настоящее время России в вопросе применения энергосберегающих технологий есть куда развиваться. По мнению специалистов, Россия имеет огромный потенциал, более 40% от всего уровня потребления энергии, повышения энергоэффективности. Российские дома обладают очень низкой энергоэффективностью, потери энергии огромные.

По данным Госстроя, в России расход теплоэнергии (отопление, горячая вода) составляет 74 кг условного топлива на кв.м. в год, что в несколько раз выше, чем в Европе. Энергозатраты многих российских предприятий превышают аналогичные показатели в развитых странах примерно в два раза.

И хотя в европейских странах энергосберегающие технологии становятся все более популярными, в России им до сих пор не уделяют должного внимания. Одной из основных из причин их медленного распространения считается отсутствие заинтересованности собственников жилья, им не разъясняются в должной мере все способы и средства по модернизации жилища. Самое большее, что сделает рядовой гражданин — это заменит электросчетчики на новые, с дифференциальным тарифицированием. Не проводится достаточной работы государственным аппаратом в стимулировании строительства энергоэффективных зданий. Например, льготы в налогообложении для строительных компаний, занимающихся строительством такого жилья.

Как сделать программу энергосбережения

Регулирование продвижения энергосберегающих технологий

После принятия СНиПа 23-02-2003 «Тепловая защита зданий» удается повысить энергоэффективность строящихся домов, но при недостаточном экономическом стимулировании многие компании продолжают инвестировать средства в строительство зданий с низким уровнем энергосбережения, это дает им возможность экономить за счет снижения затрат на энергоэффективное строительство. Данные строительные нормы и правила устанавливают требования к уровню теплозащиты зданий с целью экономии энергии. При этом должны соблюдаться санитарно-гигиенические нормы микроклимата помещений и оптимальные параметры долговечности ограждающих конструкций зданий и сооружений.

Также в 2009 году Государственной Думой был принят федеральный закон «Об энергосбережении и повышении энергетической эффективности», согласно которому все здания, вводимые в эксплуатацию, а также в процессе эксплуатации, должны соответствовать требованиям по энергоэффективности и иметь приборы учета энергоресурсов. В законе определен комплекс мер по реализации возможности экономии за счет энергоэффективных товаров и услуг.

Вводится запрет на производство и продажу ламп накаливания в 100 Вт и более, с 2013 года — ламп в 75 Вт, с 2014 года — ламп в 25 Вт. Должны проводиться энергообследования специальными организациями с целью составления мероприятий по энергосбережению и энергоэффективности. Закон предусматривает долгосрочные методы тарифного регулирования, при котором у компаний коммунального комплекса возникает стимул сокращать затраты на энергоресурсы, повышать энергоэффективность в их использовании. Полученная экономия сохраняется у компании и может быть потрачена на любые цели.

Для предприятий и индивидуальных предпринимателей, внедряющих энергосберегающие технологии, предусмотрен механизм бюджетного субсидирования, предоставления налоговых льгот и возмещение процентов по кредитам на реализацию проектов по внедрению технологий.

Также, помимо вышеназванного закона, правительство РФ утвердило программу «Энергосбережение и повышение энергоэффективности на период до 2020 г.». По программе предусматривается экономия газа в объеме 330 млрд куб. м, электроэнергии — 630млрд КВт·ч, теплоэнергии — 1550 млн Гкал, нефтепродуктов — 17 млн тонн.

Как видно, правительство страны предпринимает шаги по внедрению энергосберегающих технологий. Дело, как говорится, за малым, чтобы на местах была осуществлена реализация и контроль над реализацией этих программ должным образом.

Внедрение технологий в регионах

Последнее время в некоторых регионах страны внедряют проекты по энергосберегающим технологиям. Например, в Екатеринбурге в 2009 году прошла презентация энергосберегающего оборудования для установки во всех домах района «Академический», а затем во всем городе. «Уральский приборостроительный завод» разработал блочно-модульный тепловой пункт, предназначенный для выравнивания параметров теплоносителя и предохранения от излишнего отопления в холодное время года. Оборудование позволяет сэкономить до 30% энергии и служит 20 лет.

Липецкие муниципальные энергетики посчитали, что с внедрением технологий (в основном за счет освещения улиц и зданий с меньшей токовой нагрузкой и потреблением электроэнергии) удалось сэкономить около 11 млн рублей за год.

В Ярославской области смонтировали когенерационную газопоршневую установку (вырабатывающую одновременно и электрическую, и тепловую энергию). Использование этой установки позволяет снизить стоимость обоих видов энергии почти в два раза. Тем не менее, чтобы добиться снижение энергопотребления на 40%, необходимо установить более сотни таких приборов.

В Нижегородской области были приняты поправки к закону о налоге на имущество предприятий, внедряющих энерго- и ресурсосберегающих технологий. Это должно повысить энергоэффективность производства на 30%.

Во многих регионах в домах вводят современную автоматизированную систему контроля и учета энергоресурсов, устанавливают счетчики дифференцированного тарифа оплаты электричества.

Как один из вариантов сбережения энергоресурсов в мире все больше стараются применять альтернативное топливо, например, биогаз. В Томской области планируют получать горючий биогаз из жидких и твердых отходов животноводческих комплексов. В настоящее время идет установка опытно-промышленной станции по выработке биогаза.

В США уже две авиакомпании начали осуществлять перелеты на альтернативном топливе. Самолет, осуществивший перелет 7 ноября 2011 года по маршруту Хьюстон-Чикаго, был заправлен на 40% биотопливом. Подобное использование биотоплива позволяет уменьшить уровень загрязнения атмосферы на 80%, что в свою очередь сокращает расходы компаний на уплату налога за выброс углекислого газа (один из примеров стимуляции энергосбережения).

Внедрение энергосберегающих технологий не обходится в нашей стране без казусов. Как говорится, хотели как лучше, а получилось как всегда. В Тюмени коммунальщики несколько месяцев не могли сделать дом со статусом «энергоэффективный» действительно таковым. Модернизация затянулась, от чего пострадали в первую очередь жильцы.

В ходе работ обнаружилось множество проблем: мощности установленного теплоузла оказалось недостаточно для всего дома, энергосберегающие светильники оказались бракованными и не горят, замена труб оставила людей на несколько месяцев без тепла, регулярны перебои с водой. Ускорить ремонт не могут даже многочисленные комиссии. Тем не менее, часть выделенных бюджетных денег уже истрачена, коммунальные службы ждут следующих поступлений. Остается надеяться, что такого рода «внедрения» энергоэффективных технологий останутся единичными.

К сожалению, все эти проекты остаются лишь экспериментальными, затрагиваются отдельные дома или районы. Внедрение технологий до сих пор не приобрело повсеместного массового характера, все делается для отчетности и даже то, что делается — делается «спустя рукава».

Меры стимулирования по внедрению и использованию технологий

Судя по опыту зарубежных стран, в вопросе по продвижению технологий необходим комплексный подход, совершенствование действующего законодательства, разработка правовых и технических мер стимулирования, применение экономических и правовых механизмов воздействия на собственников жилья и строительные компании:

  • Информационные меры воздействия не только призывают к экономному использованию энергии, но и дают конкретные советы по ее экономии, а также описание экономических выгод от энергосберегающих технологий.
  • Применение энергетическими компаниями льготной тарифной сетки для зданий с низким энергопотреблением.
  • По опыту развитых стран эффективными мерами считаются право пользования налоговыми льготами, получение субсидий на частичное покрытие затрат по внедрению технологий и ссуд со сниженными процентными ставками.
  • Внедрение системы контроля энергопотребления и привлечения к ответственности за нарушение установленных норм строительства и эксплуатации зданий.

Программа энергосбережения в США

Американские граждане, живущие в энергетически неэффективных домах, с недостаточно хорошей изоляцией, имеют право рассчитывать на государственную поддержку в лице Министерства энергетики США в оценке энергоэффективности жилья и предоставления услуг по дальнейшему его утеплению. На данный момент эта программа охватила более 5 млн семей. Она включает:

  • Энергоаудит
  • Изоляция стен и труб
  • Утепление дома
  • Усовершенствование системы климат-контроля (нагревание, вентиляция, кондиционирование)

Программа повышения энергоэффективности жилья позволит владельцам домов снизить счета за коммунальные услуги на 20%, что уменьшит бюджетные расходы семьи и внесет существенный вклад в улучшение экологической обстановки.

Программа подразумевает 10%-ую налоговую скидку от стоимости изоляционных работ, установки окон, отвечающих новым требованиям. В итоге среднестатистическая семья имеет возможность сэкономить до $1500.

По программе налогоплательщики, занимающиеся повышением энергоэффективности жилья, могут рассчитывать на льготы в уплате подоходного налога.

Усовершенствование жилья включает:

  • Изоляцию
  • Установку двойных оконных рам
  • Установку двойных дверей
  • Окно в крыше
  • Энергоэффективная система климат-контроля
  • Теплоотражательная кровля
  • Энергоэффективные нагреватели воды

По одному из вариантов программы, которая предоставляет безлимитную 30%-ую налоговою льготу, владельцы жилья должны закончить работу по усовершенствованию до 2016 года. Программа подразумевает компенсацию стоимости материалов.

  • Установку тепловых насосов
  • Солнечные нагреватели воды
  • Фотогальванические энергосистемы

Опыт энергосбережения в Европе, Японии и Скандинавии

Уже на протяжении многих лет в Европе, странах Скандинавии используют энергосберегающие технологии при строительстве и реконструкции зданий. В этих странах создали необходимые законодательные нормы с учетом экономических интересов собственников жилья и инвесторов. Повышения уровня энергоэффективности добиваются с помощью применения эффективной теплоизоляции, установки теплонасосов, современных оконных рам и дверей, недопускающих утечки теплого воздуха, использования котельных установок с высоким КПД и приборов поквартирного регулирования температуры.

Германии на реконструкцию домов с целью понижения энергопотребления было потрачено более 1,5 млрд евро. Более того, владельцам жилья, желающих провести реконструкцию дома, предоставляются налоговые льготы в размере 20% и банковские кредиты с низкой процентной ставкой.

Являясь энергозависимой от поставок энергоносителей другими странами, Германия решает проблему энергетической безопасности путем энергосбережения и стимулирования развития альтернативных видов энергии. Более трети всего объема электроэнергии получают от ветроустановок. Инвесторы получат возможность разместить на крышах зданий солнечные батареи и подавать полученную энергию в городскую сеть. При покупке компьютеров и электроприборов административные учреждения обязаны приобретать энергоэкономные приборы.

В Австрии начало работать предприятие по производству биогаза. Биогаз, вырабатываемый из древесины, по качествам не уступает природному газу, его используют для отопления электростанций, автомобилей, работающих на смешанном топливе. Биогазовые установки способны вырабатывать около 100 куб.м биогаза в час. В настоящее время подобные проекты готовятся в Германии и Швеции.

Во Франции в 2005 году для семей, желающих использовать технологии экономии термической энергии в собственном жилище, ввели в действие программу налоговых льгот. При модернизации жилья им предоставляется кредит, право на возмещение до 50% расходов по установке систем терморегуляции, модернизации отопления и использования альтернативных источников энергии: биотопливо, энергия солнца и ветра.

Читайте также:  Строительство бани расстояние от соседнего забора

В Японии энергосберегающая политика получила начало с 1973 года. Предпринимаются меры по снижению энергоемкости домов, усовершенствование конструкций зданий для снижения затрат на отопление и кондиционирование.

Большое внимание уделяется обучению граждан в сохранении энергии в быту: частичный отказ от телевизионных пультов, от ночного подогревания воды для экономии времени на приготовление завтрака утром, временное отключение кондиционеров летом. Проведенный опыт на 200 семьях дал экономию энергии в 14,2% от обычного потребления энергии.

Особое внимание уделяется развитию гелиоэнергетике. Использование солнечных батарей позволяет значительно снизить расходы на электроэнергию. Установка солнечных батарей на треть оплачивается правительством. Площадь крыши жилого дома в среднем составляет 120 кв.м. Даже, если половина крыши будет покрыта батареями, они дадут 6 тыс. кВт. ч энергии в год.

В пересчете на нефтепродукты — это около 558 л нефти.

В Швеции за последние несколько десятилетий удалось существенно снизить зависимость от ископаемого топлива. В 1970 году 80% энергии вырабатывалось из природного топлива, в 2009 году этот показатель снизился до 37%, а значение биотоплива выросло, в 2009 году из него вырабатывалось 32% энергии.

Шведы, как рачительный хозяин, пытаются интегрировать в один процесс все, что поддается интегрированию. Например, мусоросжигательный завод Ходгалена помимо переработки мусора, занимается комбинированной выработкой тепло- и электроэнергии.

Одной из шведских особенностей в энергетической сфере является централизованное отопление и охлаждение помещений за счет использования станций тепловых насосов. Сырьем для таких станций является потенциал воды, атмосферы и земли. Например, станция в Стокгольме снабжает теплом 400 000 население города. Здесь продолжает расти число потребителей энергии, вырабатываемой тепловыми насосами, так как они весьма эффективны и снижают вредное воздействие на окружающую среду. На данный момент Швеция насчитывает более 500 000 тепловых насосов.

Альтернативное топливо

Сейчас в мире все больше внимания уделяется разработке и производству альтернативного топлива. Одним из видов альтернативного топлива являются топливные пеллеты. Их получают из древесных отходов и отходов сельского хозяйства: кора, опилки, щепа, солома, лузга и т.д.

Преимущество такого топлива — большая теплотворность по сравнению с дровами или щепой, увеличивают КПД котельных, это экологически чистое топливо, менее подверженное самовоспламенению. Многие старны заняты производством топливных пеллет: в США работает более 60 компаний, производящих около 680 тыс. тонн в год, Китай планирует к 2020 году вырабатывать 50 млн тонн ежегодно, Великобритания за 2010 год произвела около 600 тыс. тонн пеллет.

Европейский рынок топливных гранул растет на 20% в год. В России сельскохозяйственные отходы почти невостребованы. Масса накопления соломы составляет за год 80-100 млн тонн, чаще всего эти отходы сжигают либо используют лишь в животноводстве, для подстилки или в качестве прикормки.

Тем не менее, по данным статистики, в России наблюдается некоторый рост в области производства топливных пеллет, хотя слабая информированность населения и руководителей предприятий о возможностях пеллет препятствует быстрому росту данной отрасли. Опыт европейских стран показывает, что основным стимулом в развитии альтернативной энергетики является государственная поддержка. В нашей стране рынок биотоплива формируется за счет энтузиазма частных предприятий. Более того, ориентация промышленности на природное топливо, низкие цены на газ и уголь не стимулируют развитие производства пеллет.

Другим вариантом альтернативного топлива можно назвать ДМЭ (диметиловый эфир). Он обладает рядом достоинств: выхлопы дизеля, работающего на ДМЭ в шесть раз меньше стандарта EURO-4, в четыре раз меньше по выбросам твердых частиц и углеводородам, ДМЭ как химическое вещество намного безвреднее дизтоплива и бензина. Сырье для его производства может служить природный газ, уголь, биогаз, древесные отходы. Производство ДМЭ в мире постоянно растет и в настоящий момент составил десятки миллионов тонн. В Швеции и Дании общественный транспорт переведен на ДМЭ.

До Второй мировой войны активно велись разработки синтетического бензина, на котором во время войны летала немецкая авиация. Впоследствии разработки прекратили и вернулись к ним в настоящее время в виду новых экотенденций. Синтетический бензин, произведенный из природного газа, обладает лучшим качеством по сравнению с натуральным, выхлоп двигателя, работающего на синтетическом бензине, безвреднее. Его можно производить через ДМЭ. Специально разработанные катализаторы превращают ДМЭ в синтетический бензин с октановым числом 92.

Экологичное жилье. «Пассивные» дома

За рубежом обеспокоенные экологической обстановкой люди все чаще занимаются превращением своего жилья в экологическое: термоизоляция стен, окон, дверей, крыши, установка батарей для использования альтернативных источников энергии. Для этих целей предлагают свои услуги специальные компании, занимающиеся не только заменой устаревшего оборудования, но и строительством экодомов. В таких домах, например, стараются расположить окна так, чтобы жильцы имели естественное освещение как можно дольше, создаются резервуары для сбора дождевой воды, монтируются современные системы отопления, экономного электроосвещения, системы эффективной сортировки мусора. Все начинания поддерживаются государственными субсидиями.

В нашей стране для изменения системы отопления, водоснабжения нужен ряд разрешений, чтобы собрать которые, надо обегать неимоверное количество инстанций. С установкой в подъездах ламп с датчиками движения жилищные компании тоже не торопятся, есть желание у жильцов установить — устанавливайте за свой счет. Например, на севере, где полярный день тянется несколько месяцев, освещение подъездов все равно не прекращается. А о компенсации по переоборудованию и говорить нечего, все делается за свой счет.

Понятие «пассивный дом» в нашей стране появилось сравнительно недавно. В таком жилище затраты энергии на отопление сводятся к минимуму за счет применения внутренних источников энергии. Отопление должно осуществляться за счет тепла, выделяемого бытовыми приборами, людьми, альтернативными источниками энергии. Концепция «пассивного дома» сводится к использованию приточно-вытяжной вентиляции (тепловых насосов) с употреблением рекуператоров, применяющих тепло выходящего домашнего воздуха для разогрева воздуха, идущего извне; использование природных источников энергии (солнце, ветер) для отопления и горячей воды. Практическим опытом возведения «пассивных домов» обладают европейские страны, в частности Германия. В настоящее время здесь возведено более 4 тыс. домов, отвечающих требованиям энергоэффективного дома:

  • Высокоэффективная теплоизоляция дома, не только стен, но и потолка, пола, чердака, подвала. Формируется несколько слоев теплоизоляции (внешняя и внутренняя), не позволяющие выпускать тепло и впускать холодный воздух. Теплопотери составляют 15 КВт на кВ.м. В обычном здании — 250-300 КВт на кВ.м.
  • Инновационные оконные системы используют двух- или трехкамерные конструкции, применяется специальная технология примыкания окон к стенам. Самые большие окна направлены на юг, откуда поступает максимальное солнечное излучение, что будет приносить больше тепла, чем терять.
  • Система рекуперации тепла выходящего из помещения воздуха. Воздух выходит и поступает в дом через специальный воздухопровод. В рекуператоре (теплообменнике) отработанный домашний теплый воздух нагревает поступающий уличный воздух (согретый уже в воздухопроводе от тепла земли) и затем выбрасывается на улицу.

«Пассивные дома» удобны и комфортны для проживания, их возводят из экологических материалов, с тенденцией использования продуктов рециклизации неорганического мусора. В Германии созданы заводы по переработке бетона, стекла, метала в строительные материалы для «пассивных домов». Известно, что при отоплении жилья в атмосферу выбрасывается до 40% углекислого газа, образующегося при сжигании топлива, от всего объема выбросов. Для обогрева домов нового типа применяются в первую очередь альтернативные источники энергии.

Дополнительным средством экономии тепловой энергии являются автоматизированные системы управления техническими устройствами в здании. Такие системы, к примеру, снижают температуру помещения во время отсутствия людей или в ночное время. «Умное» отопительное оборудование позволит контролировать и автоматически регулировать интенсивность отопления в зависимости от температуры на улице.

Сдерживающим фактором строительства «пассивных домов» в России является их относительная дороговизна, они примерно на 8-10% выше стоимости обычных домов. Тем не менее, надо принять во внимание не только стоимость жилья, но и стоимость его дальнейшей эксплуатации. Затраты по эксплуатации «пассивного дома» в разы меньше затрат на обычное жилье, также стоит учесть постоянный рост цен на отопление, горячую воду и электроэнергию. В Москве уже построено несколько зданий с использованием технологий «пассивного дома» (жилой дом в Никулино-2), демонстрационный проект такого дома возведен под Петербургом.

В апреле 2010 года Минфин РФ сократило расходы по программе «Энергосбережение и повышение энергоэффективности на период до 2020 г.». Бюджетное финансирование сокращено в 3 раза, федеральных субсидий регионам также не предвидится, из стимулов, предусмотренных программой, осталось только государственное гарантирование кредитов на реализацию энергосберегающих технологий.

Получается, что государство прилагает усилия в реализации проектов в масштабах страны и в то же время пытается экономить. Если сравнить, например, с США, там размер налоговых льгот для предприятий, использующих ВИЭ (возобновляемые источники энергии), составил порядка 2,3 млрд долларов. В Финляндии на финансирование разработок ВИЭ (например, ветроустановок) ежегодно государством тратится 100 млн евро. В настоящее время в Финляндии доля энергии, полученной от ВИЭ, составляет 28% и к 2020 году страна намерена довести эту цифру до 38%.

Россия планирует к 2020 году достигнуть лишь 4,5%-ой доли энергии от ВИЭ по отношению к общему объему электроэнергии. Причем, более половины мощностей ВИЭ составят мощности по геотермальной и приливной энергетике и малые ГЭС, значительный потенциал ветра, солнца, по-видимому, не учитывается в нашей стране. В той же Финляндии планируется строительство около 700 новых ветроустановок.

Что мешает России построить такие же ветроустановки и ветроэлектростанции? Найти средства на постройку можно, не многие хотят инвестировать в долгосрочные проекты, результат от которых будет через 10-15 лет. Мы не можем себе позволить жить только сегодняшним днем, получать дивиденды от импорта нефти и бездумно их растрачивать. Может однажды наступить такое время, когда из крупных экспортеров энергоресурсов мы превратимся в крупных энергопотребителей. Огромная территория нашей страны, богатые природные ресурсы сформировали в нас неэкономное, если не сказать транжирное к ним отношение.

Если перефразировать одного известного литературного героя, разруха вокруг нас не исчезнет, пока не исчезнет разруха в наших головах. Перед проведением в России энергоэффективных проектов стоит сначала поменять отношение и подход к этому вопросу как простых граждан, так и служб ЖКХ, органов власти, усовершенствовать законодательство и не экономить на продвижении новых технологий. Сменить равнодушие на ответственность в первую очередь перед своими потомками. Не проводить мероприятия для «галочки», лишь потому, что это предписано правительством. Стоит помнить о том, что природные энергоресурсы невозобновляемы и небесконечны.

Источник: stroi.mos.ru

Перспективные энергосберегающие технологии в строительстве

Энергосбережение — один из главных трендов развития мировой «зеленой» экономики. Возобновляемые источники, энергопассивные дома, солнечные крыши, цифровое моделирование становятся все более востребованы участниками рынка. Какие технологии будут активно развиваться в строительной отрасли?

Девелоперы и застройщики активнее разрабатывают новые проекты с учетом энергоэффективности. При возведении современных объектов большое внимание уделяется строительству зданий, которые при минимальных потерях максимально используют внутреннее тепло. Энергосберегающие технологии в строительстве выходят на первый план, хотя долгое время в России им не уделяли должного внимания. Но, во-первых, энергосберегающие технологии — это тренд, которого придерживается мировое сообщество, исходя не только из экономической целесообразности, но и “зеленого курса”.

Во-вторых, пришло осознание того, что энергоресурсы необходимо экономить. Ведь в перспективе внутренние и мировые цены на газ, нефть, электроэнергию и уголь могут сравняться. Это неизбежно приведет к дальнейшему повышению стоимость энергоресурсов и выведет вопрос энергосбережения на первое место. Мы проанализировали наиболее востребованные и перспективные технологии, которые используются в России и странах мира.

Технология “пассивный” и “активный” дом

ЖК

Энергопассивные дома используют минимальное количество энергии для поддержания климата внутри здания. Это практически энергонезависимые конструкции с уровнем потребления энергии не выше 15 кВт/(м2*год), тогда как в обычных домах на обогрев уходит до 300 кВт/(м2*год). У энергопассивных домов теплоэффективность на 30% выше, чем в стандартных коттеджах. Такой объект снижает расходы на электроэнергию до 70%, а на отопление — до 90%.

Читайте также:  Перечень замечаний в строительстве

Уже на этапе подготовки проекта следует стремиться к минимальным потерям тепла во всех составляющих. Строительство по технологии пассивный дом включает в себя комплекс мероприятий, среди которых теплоизоляция, герметизация стен и кровли, реновация инженерных систем с применением терморегуляторов, рекуперация тепла в системах вентиляции, установка тепловых насосов, солнечных коллекторов и другое. Правильно спроектированный дом с учетом всех норм и требований позволяет избежать мостиков холода в конструкции.

Как пример можно привести жилые комплексы девелоперской группы «Аквилон». Комплекс решений позволяет снизить теплопотери на 50%, а жители экономят до 40% на оплате отопления. Во втором квартале 2022 года в эксплуатацию введут ЖК «Аквилон Park»: за счет двухслойного утеплителя размер стен увеличен до 180 мм, что на 30% выше норматива .

Применяемые энергосберегающие технологии в строительстве домов могут различаться в зависимости от региона.

Такой подход влечет дополнительные затраты: плюс 5-15% к смете. Зато использованные технологии в последующем дают 60-70% экономии. А вот переоснащение уже существующего здания обойдется намного дороже, чем возведение энергоэффективного дома с нуля.

О пассивных домах мы писали здесь.

Второй тренд — “активные” дома. Они не только потребляют минимум электроэнергии, но и производят ее самостоятельно и могут снабжать другие объекты. Например, за счет геотермального насоса и солнечных коллекторов.

Возобновляемые источники

Принцип работы геотермального насоса

Нетрадиционные источники тепла, такие как солнечные коллекторы, геотермальные системы, газотурбинные установки, ветрогенераторы становятся все популярнее.

Именно такие энергосберегающие технологии дают наибольшую экономию при эксплуатации здания, хотя и ведут к удорожанию стоимости проекта. На данный момент наиболее популярные и перспективные — солнечные и геотермальные отопительные системы.

Геотермальное отопление (источник тепла — разница температур в слоях грунта, грунтовые воды или открытые водные источники) — одна из самых востребованных экотехнологий на ближайшие 15-20 лет. Она безопасна в эксплуатации, а также может быть использована как на обогрев, так и охлаждение. Независимо от климата или времени года, КПД геотермальной системы достигает 50%. Из недостатков — довольно высокая стоимость оборудования.

Примером реализации такой системы в России можно назвать энергоэффективный дом Natural Balance (Татарстан). Геотермальная система обеспечивает обогрев и горячее водоснабжение здания. В доме нет радиаторов: он отапливается за счет теплого водяного теплого пола. А потребность в классической системе отопления отпала благодаря качественной термоизоляции дома толщиной от 150 до 250 мм.

VRV/VRF системы

VRF системы

VRV/VRF — мультизональная система кондиционирования с переменным объемом хладагента, обладающая низким уровнем энергопотребления. Преимущественно используется в многоэтажных зданиях, комплексах, состоящих их нескольких строений: бизнес-центрах, отелях, ТРЦ, многоэтажных жилых домах.

Архитектура системы отличается от мультисплит-систем. VRV/VRF подключается к единой системе трубопроводов. Такой подход упрощает монтажные работы, а благодаря магистральным трубам с узлами разветвления можно подключать дополнительные блоки, создавая комфортный климат в здании или группе строений. Среди преимуществ системы:

  • Б локи могут располагаться на расстоянии до 150 м: их легко вывести на крышу здания или даже за его пределы;
  • Индивидуальный подход в кондиционировании каждого помещения;
  • Подходит для объектов с большой посещаемостью;
  • Система легко подстраивается под потребности каждого потребителя;
  • Точный контроль температуры;
  • Мониторинг и оперативная корректировка работы системы;
  • Применение систем VRV/VRF с рекуперацией тепла дает возможность работать одновременно на нагрев и охлаждение.

VRV и VRF система ничем не отличается: название VRV принадлежит исключительно компании Daikin, тогда как название VRF система предполагает аналогичную продукцию других производителей.

Абсорбционный охладитель-нагреватель

абсорбционный чиллер

Использование абсорбционных чиллеров/нагревателей — оптимальный вариант для обеспечения объекта строительства горячим и холодным водоснабжением.

Тогда как компрессорные установки кондиционирования воздуха работают на электрической энергии, абсорбционная система функционирует на газе. Срок окупаемости порядка трех лет.

Система состоит из генератора, насоса, абсорбера, рекуперативного теплообменника. Все блоки размещают непосредственно в здании, благодаря чему удается избежать потерь, связанных с транспортировкой энергии. Как правило, установки разной мощности размещают на верхнем этаже, что позволяет корректировать подачу воды в соответствии с потребностями пользователей.

LED-освещение и автоматизация

В строительной отрасли наблюдается массовый переход на LED-освещение. Комплексное снабжение светодиодными устройствами дает экономию 50%. В общественных зонах, таких как лифт, коридоры, входы, холл используют энергосберегающее освещение с датчиками движения. Получили распространение интеллектуальные осветительные системы и комплексы автоматизации осветительных устройств.

С их помощью можно удаленно управлять светильниками разных типов. Энергосберегающие технологии в строительстве домов включают использование пультов, панелей, приложений на смартфонах и других девайсах. Для энергосбережения активно используются датчики движения, сумеречные датчики, диммеры. Интеллектуальная система помогает регулировать интенсивность освещения, настраивать разные сценарии.

Перспективна технология передачи данных Li-Fi, которая позволяет использовать внутренние светодиодные лампы для создания системы связи. Современные осветительные приборы могут обмениваться данными, обеспечивать связь всей системы и людей. Система освещения с функцией LED навигации для торговых площадей оптимизирует маршрут с учетом списка покупок, указывает на акционные товары и помогает оптимально выстроить маршрут.

Инсоляция зданий

ЖК

Важное значение при возведении энергоэффективного здания имеет его положение относительно частей света. Максимальное число окон и светопрозрачных конструкций должно выходить на южную сторону. Так, в течение дня солнце будет подогревать фасад, что позволит экономить на отопление в зимнее время.

Еще один интересный подход, помогающий по-максимуму использовать энергосберегающие технологии и естественное освещение — световые дворы. Они расположены внутри секций и дают наилучшее естественное освещение всех помещений. Примером такого новшества может послужить ЖК «Акварели» (девелопер — Tekta Group) в подмосковной Балашихе.

При отделке фасадов использованы светоотражающие материалы. А благодаря переменной этажности и эффекту отражения, окна, выходящие в световой двор, получают больше освещения. Так обеспечивается максимальная инсоляция объекта.

Исследование: Будущее управления строительством

Как цифровые решения изменят управление проектами в 2022 и дальнейшем?

Цифровые инструменты

Цифровые решения для строительства

Строительство новых энергоэффективных зданий невозможно без современного программного обеспечения. Цифровая модель здания, созданная в современном проектном ПО, дает возможность до начала работ увидеть все конфликты и дефекты, спрогнозировать энергоэффективность и найти дополнительные решения для энергосбережения в строительстве.

Яркий пример — применение энергетического моделирования одного из производственно-логистических комплексов в Московской области. На этапе проектирования определили, что расходы составят более 26 млн рублей. После использования цифрового моделирования нашли новые решения: удалось снизить ежегодные расходы практически в два раза. Вычислительное моделирование, оценка и анализ масштабных проектов занимают в несколько раз меньше времени при более низких затратах.

Используя другие цифровые инструменты по управлению процессов строительства — облачные мобильные решения — реализовывать самые сложные проекты с энергосберегающими технологиями качественно и в сроки. Также такие программные решения, как PlanRadar, могут помочь в оптимизации контроля по управлению объектов недвижимости с энергосберегающими технологиями. PlanRadar имеет открытый API, поэтому его можно интегрировать как со сторонними ПО, так и с системой датчиков. Такая синергия цифрового инструмента и сенсоров обеспечивает умную эксплуатацию здания и сокращает возможные расходы.

Smart building

 Система “умный дом”

Концепция «умного» дома состоит в том, чтобы оптимизировать энергоэффективность и создать для пользователя максимально комфортные условия. Энергосберегающие технологии с системой «Умный дом» в России активно развивается. Если ранее такую систему внедряли только в элитных ЖК, то теперь искусственный интеллект доступен и в более бюджетных жилых новостройках.

Искусственный интеллект управляет всеми системами в здании, совмещая коммуникационные системы, устройства безопасности, осветительное оборудование, электротехнические приборы. Он обеспечивает взаимосвязь всех систем и оптимизирует расход энергоресурсов, делая пользование инфраструктурой удобной для пользователя. Например, освещение в «умном доме» автоматически включается и выключается по датчикам присутствия, а расход наружного воздуха осуществляется по датчикам углекислого газа в общественных зонах. Одна из составляющих концепции «Умного дома» поддержание заданных режимов, которые устанавливаются в зависимости от дня недели и времени суток.

Одним из первых «умных» жилых домов в России стала многоэтажная высотка в Москве, в районе Жулебино, где практически всеми системами управляет компьютер. В частности, специальные датчики позволяют выявить утечки тепла из здания, чтобы предотвратить нерациональный расход энергии. В московском ЖК премиум-класса «Дом на Бурденко» умная система позволяет осуществлять многозонный климат-контроль, дистанционно управлять техникой, электроприводами жалюзей, системой видеонаблюдения, освещением.

Ключевыми функциями в умном доме становятся не только энергосбережение и автоматизация, но и оповещение о проникновении в квартиру, контроль влажности и температуры, отключение от электроэнергии в случае ЧП.

«Зеленые» технологии

Лахта-центр, зеленые технологии

Энергоэффективность зданий является неотъемлемой частью внедрения «зеленых» технологий. Идея устойчивого строительства заключается в использовании энергоэффективных технологий. В России комплексный подход к рациональному использованию ресурсов находится на начальном этапе развития.

Однако проекты, соответствующие международным стандартами эко сертификации BREEAM, Well и Fitwe, постепенно становятся трендом. Ярким примером в России можно назвать Лахта Центр с климатическим оборудованием компании Альфа Лаваль. В 2019 году башня вошла в Топ-5 самых больших «зеленых» зданий мира.

Особенность строения — двойная оболочка фасада, которая обеспечивает теплоизоляцию и естественную вентиляцию. Только за счет этого решения, по оценкам авторов проекта, потребление энергоресурсов, необходимых для отопления и кондиционирования снизилось на 50%.

Энергоэффективность зданий

В качестве нагревателей установлены инфракрасные излучатели, которые повторно используют тепло других устройств. Искусственный интеллект регулирует уровень температуры и освещенности исходя из количества людей, находящихся в каждом помещении. Энергоэффективные теплообменники применяют для отопления, вентиляции, подачи горячей воды и кондиционирования воздуха. Также они снижают количество энергии для подачи воды.

Аккумуляция солнечной энергии

Жилой комплекс Elithis Dan, солнечные панели по фасаду

Один из трендов будущего в строительстве — применение солнечных панелей, которые помогают аккумулировать энергию и использовать ее для функционирования объекта. Интересный пример применения данной технологии — энергопассивный жилой комплекс Elithis Dan во французском Страсбурге. Солнечные панели расположены по всему фасаду здания. За счет инсоляции высотка аккумулирует солнечную энергию, которая затем расходуется для автономного энергообеспечения.

Естественная инсоляция в помещениях регулируется благодаря системе «умный дом». Современные энергосберегающие технологии применены в самодостаточном солнечном доме Heliotrop в Германии (Фрайбург). На крыше «Гелиотропа» разместили «солнечный парус»: фотогальваническую установку площадью 54 кв. Дом размещен на вращающемся столбе и в течение дня поворачивается, следуя за солнцем. За счет таких решений, здание генерирует в 5 раз больше энергии, чем ему необходимо, полностью обеспечивая потребителей электроэнергией, отоплением, горячей водой.

Основную массу энергии система накапливает летом, а затем при помощи технологии электролиза воды происходит разделение на водород и кислород, находящихся в разных резервуарах. Далее энергию получают по мере соединения двух компонентов, преобразуя в тепловую или электрическую энергию.

Геодезический купол

 Офис Amazon в Сиэтле

Сферические дома не зря становятся трендом. Они не только имеют необычную форму, но и позволяют экономить как минимум 20% энергетических ресурсов. А расходы на обогрев зимой и кондиционер летом снижается на треть.

Это обусловлено тем, что сфера имеет наименьшую площадь поверхности среди всех фигур одинакового объема. Кроме того, куполообразная форма позволяет до 30 % снизить затраты на строительные материалы. К тому же, это очень легкая конструкция и для постройки купольного дома не нужен мощный и дорогостоящий фундамент. Также купольная крыша обладает повышенной сейсмической устойчивостью.

Вентилируемые фасады

 ЖК Фреш в Москве, использование вентилируемых фасадов

Вентилируемый фасад — это фальш-стена, которая крепится к зданию. Система навесных вентилируемых фасадов дает возможность снизить тепловые потери здания практически в 2 раза. Она состоит из силовой конструкции, утеплителя и облицовки. Главное отличие от других наружных систем утепления — циркуляция воздушного потока между тепловой изоляцией и облицовкой. Воздушный поток создается за счет разницы температур на улице и внутри помещения.Таким образом, удается избежать образования конденсата на поверхности утеплителя, что сохраняет тепло и долговечность самой конструкции.

Примером можно назвать ЖК «Fresh» в Москве. Монтаж фасада осуществляется по давно зарекомендовавшей себя технологии вентилируемого фасада с применением негорючей каменной ваты.

“Солнечные” крыши

Солнечная черепица

Интеграция гибких солнечных модулей в кровлю позволяет рационально использовать квадратные метры для получения электроэнергии. Фотовольтаические модули могут быть интегрированы в рулонный кровельный материал, черепицу, листовой металл, окна, фасадные панели.

Читайте также:  Как оформить дом без разрешения на строительство

Новые энергосберегающие технологии в строительстве — черепица со встроенными солнечными фотоэлементами вырабатывает электричество, которое используется для энергоснабжения дома. Полученная энергия может быть применена в автономной независимой системе или общий электросети. Постоянный электрический ток, который вырабатывают фотоэлектрические элементы, передается в конвертер. Далее он преобразуется в переменный ток. Стоит отметить, что стоимость солнечной черепицы достаточно высока, но обойдется ниже, чем установка солнечных батарей.

Применение черепицы с фотоэлементами оправдано в южных регионах России, где больше всего солнечных дней, а снегопады и осадки, которые могут помешать работе фотоэлементов, случаются редко. Срок эксплуатации составляет 25 лет.

Примерами внедрения солнечных технологий можно назвать Кампус «ТехноСпарка» в Троицке, завод кровельных материалов, Рязань, жилые дома в Санкт-Петербурге.

Тепловое зеркало

Высокую энергоэффективность в строительстве демонстрирует так называемая технология «тепловое зеркало». Внутри стеклопакета расположена полимерная прозрачная мембрана, имеющая низкоэмиссионное покрытие. Такая конструкция задерживает тепловое излучение, при этом не снижая светопропускную способность.

Cмарт-стены

Стеновые панели на основе нанотехнологи в течение дня абсорбируют солнечный свет, а с наступлением темноты постепенно отдают накопленную энергию внутрь дома. Такой подход позволяет круглосуточно регулировать температуру в здании. Уровень тепла, которое отдается в ночное время, можно корректировать. Так удастся избежать перегрева здания в летнее время и способствовать энергоэффективности объекта зимой. Примером использования подобных технологий можно назвать стеновые панели RavenBric, которые стали «первопроходцем».

Смарт-стекло

Стекло нового поколения, вырабатывающее электричество

Окна — один из источников утечки тепла в доме. Существует множество разработок, которые способствуют повышению энергоэффективности стекол. Например, аргоновый заполнитель между стеклопакетами повышает коэффициент термического сопротивления до 72%. Однако ряд компаний представили более прогрессивные разработки.

Современные энергосберегающие технологии в строительстве — стекла, способные вырабатывать электроэнергию. Благодаря наногенераторам и солнечным фотоэлементам они способны преобразовывать солнечную энергию в электричество.

Узнать больше о возможностях PlanRadar вы можете здесь — программное обеспечение имеет широчайший функционал и может быть полезен всем специалистам строительной области и сфере недвижимости.

Источник: www.planradar.com

Энергосберегающий дом — что это такое

Можно ли построить энергоэффективный дом в российских реалиях (и стоит ли)?

Борис Бутцев

Постоянный автор Houzz, по образованию физик (окончил МИФИ), кандидат наук. Долгие годы работал в сфере производства окон, продвижения современных систем вентиляции, сейчас консультирую по любым ситуациям с конденсатом и плесенью, микроклимата и комфорта в обитаемых помещениях.

В жизненном цикле здания стартовые вложения при строительстве — только вершина айсберга. После возведения дома последуют многолетние траты на электрическую и тепловую энергию, текущие ремонты и т.д. Можно ли сразу сделать все «по максимуму», чтобы потом платить намного меньше или не платить совсем? Архитекторы всего мира уверяют, что можно: с каждым годом строится все больше энергосберегающих домов.

Критерий: Мерой энергоэффективности принято считать удельный расход тепловой энергии на отопление за отопительный период в кВт час/кв.м. Но для дома с круглогодичным проживанием надо бы рассматривать не только отопительный период, но и весь год с учетом затрат энергии на кондиционирование / охлаждение воздуха в жару.

  • Энергоэффективные — это здания с пониженным потреблением энергии на отопление. Насколько пониженным? Есть классификация зданий согласно СНиП « Тепловая защита зданий » . Здание с классом энергоэффективности выше определенного считается энергоэффективным.
  • Пассивные — здания, у которых ежегодный удельный расход энергии на отопление не превышает 15 кВт час/кв.м.
  • С ультранизким потреблением энергии на отопление — здания, которые за год расходуют на отопление 16 – 35 кВт час/кв.м.
  • Активные — это здания с различным уровнем энергоэффективности, но с повышенным комфортом благодаря автоматическому управлению микроклиматом с помощью системы « Умный дом » и максимальному использованию энергии из возобновляемых источников (ветер, энергия Земли и Солнца). Есть примеры активных домов, которые вырабатывают энергии больше, чем потребляют. Излишки можно даже продавать.
  • С нулевым энергобалансом — это здания, общее энергопотребление которых равно нулю в результате компенсации потерь за счет использования возобновляемых источников энергии.
  • С положительным энергобалансом — здания, которые вырабатывают больше энергии, чем потребляют.

Кто определяет стандарты эффективности домов
В середине 1990-х в немецком городе Дармштадт был основан Институт пассивного дома. Его экспертам принадлежат основные разработки в сфере строительства энергоэффективных зданий. Они же определили и стандарт, согласно которому теплопотери на таких объектах не должны превышать 15 – 25 кВт час на 1 кв.м отапливаемой площади в год. Например, для обычного кирпичного дома нормой считается 200 – 300 кВт в час на «квадрат».

Добиться показателей энергоэффективного дома одним лишь качеством теплоизоляции невозможно. Пассивный дом отличается от обычного всем: особые требования предъявляются к его конструктивным особенностям, качеству окон и дверей, инженерному оснащению. Например, вместо традиционных источников энергоснабжения предлагается использовать альтернативные: солнечные батареи или же системы, которые черпают тепло из недр земли. Есть немало экспериментальных проектов, в которых эти идеи в той или иной степени реализованы.

Пять ключевых принципов в концепции пассивного дома:

1. Надежная теплоизоляция
Хорошо теплоизолированная оболочка здания сохраняет тепло зимой и приятную прохладу летом.

2. Особое внимание — окнам
Окна для энергоэффективного дома должны соответствовать двум условиям. Во-первых, это максимально высокое сопротивление теплопередаче. Такое возможно при использовании низкоэмиссионных стекол, « теплых » дистанционных рамок и заполнении межстекольного пространства в стеклопакетах инертными газами (аргон и криптон), применении многокамерных ПВХ-профилей.

Во-вторых, грамотное расположение. Поскольку окна являются каналами как потерь тепла, так и поступления, рекомендуется ставить их на южном фасаде здания, а на северном свести площадь остекления к минимуму. Посмотрите на схему выше: именно так должен падать свет в пассивном доме.

3. Вентиляция с рекуперацией
Системы вентиляции в пассивном доме обеспечивают энергоэффективность благодаря рекуперации тепла.

4. Воздухонепроницаемость
Пассивные дома проектируются герметичными, чтобы исключить фильтрацию воздуха через наружную оболочку. Это позволяет увеличить энергоэффективность и минимизировать сквозняки и повреждения ограждающих конструкций из-за излишней влаги.

Да, про « дыхание дерева » в плане вентиляции в таких домах лучше забыть.

5. Проектирование без тепловых мостов
Предотвращение тепловых мостов, слабых мест в оболочке здания способствует равномерному распределению температуры, исключает разрушения из-за влаги и улучшает энергоэффективность.

Все пять принципов можно измерить количественно, и часто эти цифры в несколько раз превосходят требования современных норм для массового строительства.

Если говорить об удельных величинах потерь тепла на единицу площади или объема здания, то лучший вариант энергосберегающего дома — это шар: у него минимальное соотношение площади оболочки к объему. К тому же построить его можно из вполне доступных материалов.

Другой хороший вариант для энергоэффективного дома — возвести его в форме куба. Отсутствие наружных углов и выступов на фасаде позволяет минимизировать теплопотери даже в условиях сурового климата.

Пример с фото: энергоэффективный дом построен в Новосибирске и мало соответствует традиционным представлениям о жилье в условиях местного резко континентального климата . Однако по-европейски плоская крыша и панорамные окна в пол хорошо вписались в сибирский климат.

«Разуклонку кровли мы не делали, — рассказывает хозяин дома, — зато крышу сделали с заниженным парапетом, образующим углубление 40 см при норме в метр. Поэтому, несмотря на двух с половиной метровые сугробы вокруг дома, ветер выдувает снег с плоской крыши. В результате плиты перекрытия не перегружаются снегом». Кровля дома хорошо утеплена: кровельный пирог состоит из слоя пароизоляции, утеплителя (экструдированного полистирола толщиной 200 мм) и гидроизоляции из полимерной мембраны

О ПРОЕКТЕ С ФОТО…
Личный опыт: Энергоэффективный дом в Новосибирске

Пример с фото: личный дом архитектора Ольги Макаровой в Новой Москве построен с элементами пассивного дома . Он возведен из кирпича, внутри утеплитель Rockwool , по фасаду — облицовочный кирпич. «Из-за того, что есть расстояние между кирпичом и утеплителем, дом получился очень теплым», — рассказывает мама хозяйки. Кроме того, дом правильно ориентирован по солнцу. А с текла со светоотражающей пленкой задерживают часть УФ-лучей и при этом сохраняют тепло

Пример с фото: энергоэффективный дом в Подмосковье, где вместо привычных бетонных или деревянных стен — стекла, а на первом этаже нет ни единого обогревателя, кроме теплого пола. И при этом в доме (по словам хозяев) никогда не бывает холодно. Все дело в усиленных стеклопакетах толщиной 40 мм и закаленном стекле триплекс, из которого изготовлены порталы. Внутри — энергосберегающий слой, на полу — керамогранит, отличный теплопроводник. Поэтому помещение прогревается очень быстро

Пассивный дом в 16 этажей — так тоже можно?
Чаще всего энергосберегающие технологии используют в частных домах. А можно ли сделать пассивным многоэтажный жилой дом? Да, можно. Но сразу оговоримся: смысл есть только для тех, кто платит за тепло « по индивидуальному счетчику» и понимает цену экономии. Если в вашей квитанции отопление рассчитывается по нормативам — нет смысла даже поднимать вопрос на собрании собственников.

Во что выльется переделка обычного дома в энергоэффективный? Чтобы понять, с чем именно придется бороться, давайте разберемся с потерями. Куда именно расходуется тепло из обычного многоэтажного жилого дом?

Автор схемы теплопотерь и теплопоступлений на фото выше — заведующий кафедрой « Городское строительство и хозяйство » одного из сибирских вузов, строительный эксперт. На примере конкретного жилого дома он показывает, сколько тепла теряется через окна и стены, сколько (почти половина общих потерь) — на подогреве вентиляционного воздуха в нормативном объеме, каковы солнечные и бытовые теплопоступления (в сумме они компенсируют потери через стены). Дом построен по нормам второго этапа по энергосбережению в соответствии с градусо-сутками отопительного периода (ГСОП) Омска. Горячее водоснабжение и потребление электроэнергии здесь не учтены.

А диаграммы слева взяты из статьи руководителя Центра энергосбережения и эффективного использования нетрадиционных источников энергии в строительном комплексе Москвы ГУП « НИИМосстрой » , доктора технических наук Г.П. Васильева.

Здесь изображена структура тепловых и энергетических потерь современного серийного жилого дома П-44. После повышения уровня сопротивления теплопередаче стен до 3 – 4 кв.м град/Вт и окон до 0,5 – 0,6 кв.м град/Вт основной ресурс энергосбережения связан не с дальнейшим утеплением оболочки здания, а с инженерными системами — вентиляции и горячего водоснабжения. Речь идет об утилизации тепла вытяжного воздуха и канализационных стоков.

Получается, даже типовая многоэтажка может приблизиться к пассивному дому. Достаточно просто снизить теплопотери. Как это сделать?

Снижение теплопотерь за счет вентиляции
Есть заблуждение: дескать, снизить вентиляционные тепловые потери можно только за счет теплообмена между приточным и удаляемым воздухом с помощью пластинчатых или роторных рекуператоров. Это не так.

Существует адаптивная вентиляция по реальной потребности, где эффект экономии построен на том, что реально жилые помещения заселены далеко не всегда (люди уходят на работу, дети в школу и т.д.). В пустующих помещениях можно снизить расчетный воздухообмен в разы — без ущерба для качества воздуха.

На фото: автоматическая вытяжная решетка фирмы « Аэрэко » с индикаторами присутствия человека

Делается это автоматически при постоянном мониторинге индикаторов присутствия людей в помещении (концентрация углекислого газа, летучих органических соединений, паров воды, ИК-излучения от людей). Так можно добиться экономии 30 – 50% тепла, уходящего в вытяжку. Правда, оставшийся воздух уйдет в атмосферу, будучи комнатной температуры.

Максимальный результат дает сочетание двух энергосберегающих технологий в одном приборе. С помощью датчиков углекислого газа и датчиков присутствия / движения в жилых комнатах можно снижать общий уровень вентилирования в суточном режиме, а потом использовать традиционный рекуператор (на фото — рекуператор DXR фирмы « Аэрэко » ).

КПД теплообменника системы DXR составляет 82%, а расход воздуха снижается до 50% (учет заселенности помещений). Суммарный эффект по энергосбережению достигает 92%.

Источник: www.houzz.ru

Рейтинг
Загрузка ...