Информационное моделирование зданий — современное понимание
В современных условиях требуется уже не просто проект возводимого здания, а содержащая всю необходимую информацию модель объекта, которая может быть востребована в течение всего периода его существования. И эта модель должна быть не выполненным с помощью компьютера аналогом обычного картонного макета, дающего представление о формах объекта, а полноценной виртуальной копией здания со всей его начинкой, с количественными геометрическими и технологическими характеристиками конструкций, материалов и оборудования. Причем все данные об объекте должны быть не просто собраны воедино (например, в виде некой таблицы или справочника), а являться параметрами модели, корректировка которых с учетом существующих между ними зависимостей влечет за собой автоматическое изменение всей модели.
Скачать статью в формате PDF — 500.7 Кбайт
Главная » CADmaster №4(54) 2010 » Архитектура и строительство Информационное моделирование зданий — современное понимание
Наше время ставит перед проектировщиками зданий и сооружений новые задачи и предъявляет совершенно иные, ранее не возникавшие требования. Даже если перечислить лишь основные, список получается весьма внушительный:
Нормативное обеспечение формирования информационной модели
- широкомасштабная реконструкция или реставрация ранее построенных объектов;
- высокие темпы строительства и необходимость быстрого проектирования новых или реконструируемых объектов;
- принципиальный рост внешнего объема вновь проектируемых объектов и уровня их сложности;
- высокая насыщенность новых зданий и окружающей их инфраструктуры инженерными коммуникациями и оборудованием, высокая плотность строительства (рис. 1);
- возрастающая важность юридического обеспечения проекта и увеличение объема рабочей документации;
- необходимость энергоэффективного и экологичного проектирования с учетом постоянно возрастающих требований к создаваемым объектам, а также появления новых технологий и материалов;
- необходимость рассчитывать при проектировании нового объекта его эксплуатационные (прежде всего экономические) характеристики;
- обеспечение возможности будущей работы с проектом здания в период его эксплуатации и ремонта, оптимизация текущих расходов, достижение коммерческой эффективности проекта;
- необходимость исследования и пересмотра в сторону усиления конструкции, устройства и коммуникаций уже существующих зданий в связи с возрастающими сейсмическими, террористическими и иными угрозами;
- высокая информационная насыщенность зданий, широкое распространение и внедрение в строительную практику концепции «умного дома»;
- необходимость быстрого и эффективного поиска, а также квалифицированного заказа оборудования, необходимого для оснащения здания;
- оптимизация проекта по различным видам параметров;
- возрастающая потребность в сносе и утилизации старых зданий;
- интернационализация и международная кооперация в проектировании, когда благодаря компьютерным технологиям работа над общим проектом может продолжаться круглосуточно в разных точках земного шара;
- высокая международная унификация проектирования; Рис. 1. Застройка в одном из районов Нью-Йорка (2009 г.)
- резкое повышение цены ошибки, особенно уже просочившейся в проект и требующей исправления на стадии строительства или в процессе эксплуатации;
- потребность сделать само проектирование менее затратным и более эффективным, более гибким и устойчивым к кризисным явлениям в экономике.
Все перечисленное логично приводит к пониманию, что в современных условиях требуется уже не просто проект возводимого здания, а содержащая всю необходимую информацию модель объекта, которая может быть востребована в течение всего периода его существования.
Использование информационной модели (BIM) при строительстве высокотехнологичного предприятия
И эта модель должна быть не выполненным с помощью компьютера аналогом обычного картонного макета, дающего представление о формах объекта, а полноценной виртуальной копией здания со всей его начинкой, с количественными геометрическими и технологическими характеристиками конструкций, материалов и оборудования. Причем все данные об объекте должны быть не просто собраны воедино (например, в виде некой таблицы или справочника), а являться параметрами модели, корректировка которых с учетом существующих между ними зависимостей влечет за собой автоматическое изменение всей модели.
Все эти, а также многие другие проблемы и призвано решать начавшее совсем недавно входить в реальную практику новое направление развития проектирования — информационное моделирование зданий.
Рубеж конца ХХ — начала XXI веков ознаменовался появлением принципиально нового подхода в архитектурно-строительном проектировании, в основу которого положено создание компьютерной модели здания, несущей в себе все сведения о будущем объекте. Это стало естественной реакцией человека на кардинально изменившуюся информационную насыщенность окружающей нас жизни и следствием осознания невозможности эффективно обрабатывать прежними средствами хлынувший на проектировщиков огромный и неуклонно возрастающий поток «информации для размышления», предваряющей и сопровождающей само проектирование.
Причем этот поток информации не иссякает и после того, как здание уже спроектировано и построено. Так что возникшая в результате концепция информационного моделирования зданий — это намного больше, чем просто новый метод в проектировании. Это также принципиально иной подход к возведению, оснащению, обеспечению эксплуатации и ремонта здания, к управлению жизненным циклом объекта, включая его экономическую составляющую, к управлению окружающей нас рукотворной средой обитания. Это изменившееся отношение к зданиям и сооружениям вообще. Наконец, это наш новый взгляд на окружающий мир и переосмысление способов воздействия человека на этот мир.
Подход к проектированию зданий через их информационное моделирование предполагает прежде всего сбор и комплексную обработку в процессе проектирования всей архитектурно-конструкторской, технологической, экономической и иной информации о здании со всеми ее взаимосвязями и зависимостями — здание и все, что имеет к нему отношение, рассматриваются как единый объект.
Правильное определение этих взаимосвязей, а также точная классификация, хорошо организованное структурирование и достоверность используемых данных — залог успеха информационного моделирования.
Если внимательно приглядеться, то нетрудно увидеть, что при такой концепции принципиальные решения по проектированию по-прежнему остаются в руках человека, а компьютер опять выполняет лишь порученную ему техническую функцию по обработке информации. Но главное отличие нового подхода от прежних методов проектирования заключается в том, что возникающий объем этой технической работы, выполняемой компьютером, носит принципиально иной характер, и самому человеку его уже не одолеть.
Новый подход к проектированию объектов и был назван информационным моделированием зданий или, сокращенно, BIM (Building Informational Modeling) .
Это понятие появилось в лексиконе специалистов сравнительно недавно, хотя сама концепция компьютерного моделирования с максимальным учетом всей информации об объекте начала формироваться и приобретать конкретные очертания намного раньше: еще с конца ХХ века она постепенно «вызревала» внутри бурно развивающихся CAD-технологий.
Понятие информационной модели здания было впервые предложено в 1975 году профессором Чаком Истманом (ChuckEastman) в журнале Американского института архитекторов (AIA). Тогда же появилось и рабочее название: Building Description System (Система описания здания).
В конце 1970-х — начале 1980-х это понятие развивалось параллельно в Старом и Новом Свете, причем в США чаще всего употреблялся термин Building Product Model, а в Европе (особенно в Финляндии) — Product Information Model. При этом в обоих случаях слово Product ориентировало внимание на объект проектирования, а не на процесс. Можно предположить, что несложное лингвистическое объединение этих двух определений и привело к рождению термина Building Information Model.
В середине 1980-х европейцы применяли также немецкий термин Bauinformatik и голландский Gebouwmodel, которые в переводе опять же соответствовали английскому Building Model или Building Information Model.
Лингвистические сближения терминологии сопровождались и выработкой единого наполнения используемых понятий. С 1992 года в научной литературе термин Building Information Modelиспользуется в его нынешнем понимании.
Примерно с 2002-го Building Information Modelввели в употребление и ведущие разработчики программного обеспечения, сделав это понятие одним из ключевых в своей терминологии. В дальнейшем, благодаря деятельности таких компаний, как Autodesk, аббревиатура BIM получила широчайшее распространение, и ее теперь знает весь мир.
Если перейти к содержанию, то сегодня информационная модель здания — это хорошо скоординированная, согласованная, взаимосвязанная, поддающаяся расчетам и анализу, имеющая геометрическую привязку числовая информация о проектируемом или уже существующем объекте, которая используется для:
- принятия конкретных проектных решений;
- создания высококачественной проектной документации;
- предсказания эксплуатационных качеств объекта;
- составления смет и строительных планов;
- заказа и изготовления материалов и оборудования;
- управления возведением здания;
- управления и эксплуатации самого здания и средств технического оснащения в течение всего жизненного цикла;
- управления зданием как объектом коммерческой деятельности;
- проектирования и управления реконструкцией или ремонтом здания;
- сноса и утилизации здания;
- иных связанных со зданием целей (рис. 2).
Иными словами, BIM — это вся имеющая числовое описание и нужным образом организованная информация об объекте, используемая как на стадии проектирования и строительства здания, так и в период его эксплуатации и даже сноса.
Как вы уже поняли, аббревиатура BIM может использоваться для обозначения и самой информационной модели здания, и процесса информационного моделирования — никаких недоразумений при этом не возникает.
В ряде литературных источников употребляется «уменьшенный» вариант сокращения, bim (так называемое «малое BIM»): общее обозначение для всего класса программного обеспечения, работающего в технологии «большого BIM» — информационного моделирования зданий.
Исторически сложилось, что некоторые разработчики компьютерных программ, относящихся к информационному моделированию зданий, кроме общепринятой пользуются еще и своей собственной терминологией. Например, компания Graphisoft, создатель широко распространенного пакета Archicad, ввела понятие виртуального здания (VB — VirtualBuilding), которое в сущности перекликается с BIM. Иногда можно встретить сходное по значению словосочетание «электронное строительство» (e-construction). Но на сегодняшний день термин BIM, уже получивший в мире всеобщее признание и самое широкое распространение, считается в этой области основным.
Близка к BIM и сформулированная компанией Dassault Systemes в 1998 году концепция PLM (Product Lifecycle Management) — управление жизненным циклом изделия, которой сегодня активно пользуется практически вся индустрия САПР, особенно в машиностроении. При этом в качестве изделий могут рассматриваться всевозможные технически сложные объекты: самолеты и корабли, автомобили и ракеты, здания и их системы, компьютерные сети Концепция PLM предполагает, что создается единая информационная база, описывающая три основных компонента создания чего-то нового по схеме «Продукт — Процессы — Ресурсы», а также связи между этими компонентами. Наличие такой объединенной модели обеспечивает возможность быстро и эффективно увязывать и оптимизировать всю указанную цепочку. Так что с большой долей уверенности можно говорить, что BIM и PLM — «близнецы-братья» или, более точно, что BIM является дальнейшим развитием и уточнением концепции PLM в специализированной области человеческой деятельности — архитектурно-строительном проектировании.
Однако терминология — это не главное. Применение информационной модели здания существенно облегчает работу с объектом и имеет массу преимуществ перед иными формами проектирования. Прежде всего оно позволяет в виртуальном режиме собрать воедино, подобрать по предназначению, рассчитать, состыковать и согласовать создаваемые разными специалистами и организациями компоненты и системы будущего сооружения, а также заранее проверить их жизнеспособность, функциональную пригодность, эксплуатационные качества и избежать самого неприятного для проектировщиков — внутренних нестыковок (коллизий) (рис. 3).
В отличие от традиционных систем компьютерного проектирования, результатом информационного моделирования здания обычно является объектно-ориентированная цифровая модель как всего объекта, так и процесса его строительства.
Чаще всего работа по созданию информационной модели здания ведется как бы в два этапа. Сначала разрабатываются блоки (семейства) — первичные элементы проектирования, соответствующие как строительным изделиям (окна, двери, плиты перекрытий так и элементам оснащения (отопительные и осветительные приборы, лифты и многому другому, что имеет непосредственное отношение к зданию, но производится вне рамок стройплощадки и при возведении объекта не делится на части.
Второй этап — моделирование того, что создается на стройплощадке. Это фундаменты, стены, крыши, навесные фасады При этом предполагается широкое использование заранее созданных элементов — например, крепежных или обрамляющих деталей при формировании навесных стен.
Таким образом, логика информационного моделирования зданий ушла из области программирования и соответствует обычному пониманию, как строить дом, как его оснащать и как в нем жить. Что существенно облегчает и упрощает работу с BIM как проектировщикам, так и всем остальным категориям строителей и эксплуатантов.
А деление на этапы (первый и второй) при создании BIM носит достаточно условный характер — вы можете, например, вставить окна в моделируемый объект, а затем менять их, и в проекте будут появляться уже измененные окна.
Построенная специалистами информационная модель проектируемого объекта затем активно используется для создания рабочей документации всех видов, разработки и изготовления строительных конструкций и деталей, комплектации объекта, а также для заказа и монтажа технологического оборудования, экономических расчетов, организации возведения самого здания, решения технических и организационно-хозяйственных вопросов последующей эксплуатации (рис. 4).
Информационная модель существует в течение всего жизненного цикла здания, и даже дольше. Содержащаяся в ней информация может изменяться, дополняться, заменяться, отражая текущее состояние здания. Такой подход в проектировании, когда объект рассматривается не только в пространстве, но и во времени, то есть «3Dплюс время», часто называют 4D. Иногда, правда, под 4D понимают «3D плюс информацию» (в этой терминологии, как видно, тоже пока нет полного единства), но это очень близко по содержанию.
Технология BIM уже сейчас показала возможность достижения высокой скорости и качества строительства, не говоря уже о значительной экономии бюджетных средств. Например, при строительстве сложнейшего по форме и внутреннему оснащению нового корпуса Музея искусств в американском городе Денвере для организации взаимодействия субподрядчиков при проектировании и возведении каркаса здания (металл и железобетон), а также при разработке и монтаже сантехнических и электрических систем была использована специально созданная для этого информационная модель. По данным генерального подрядчика, такое чисто организационное применение BIM сократило срок строительства на 14 месяцев и привело к экономии примерно 400 тысяч долларов при сметной стоимости объекта в 70 миллионов долларов (рис. 5).
Но одно из самых главных достижений BIM — возможность добиться практически полного соответствия эксплуатационных характеристик нового здания требованиям заказчика. Технология BIM позволяет, с высокой степенью достоверности воссоздав и сам объект со всеми его конструкциями и оснащением, и протекающие в нем процессы, отладить на модели основные проектные решения.
Иными способами такая проверка неосуществима — пришлось бы просто построить макет здания в натуральную величину. Что в прежние времена периодически и происходило: правильность проектных расчетов проверялась на уже созданном объекте, когда исправить что-либо было почти невозможно.
При этом особо важно подчеркнуть, что информационная модель здания (BIM) — это виртуальная модель. В идеале BIM — виртуальная копия здания. На начальном этапе создания модели мы имеем некоторый набор информации, почти всегда неполный, но достаточный для начала работы в первом приближении. Затем введенная в модель информация пополняется по мере ее поступления, и модель становится более насыщенной.
Таким образом, процесс создания BIM всегда растянут во времени (носит практически непрерывный характер), поскольку может иметь неограниченное количество «уточнений». А сама информационная модель здания — весьма динамичное и постоянно развивающееся образование, «живущее» самостоятельной жизнью.
При этом надо понимать, что физически BIM существует только в памяти компьютера. И ею можно воспользоваться только посредством той программы, в которой она была создана.
Результатом развития компьютерного проектирования является то обстоятельство, что на сегодняшний день работа на основе CAD-технологий представляется достаточно организованной и отлаженной. Спустя примерно 25 лет после своего появления формат файлов DWG, создаваемых пакетом AutoCAD, занял место неофициального, но общепризнанного стандарта работы с проектом в CAD-программах и начал жить независимой от своего создателя жизнью.
То же относится и к формату DXF, разработанному Autodesk для осуществления обмена данными между различными CAD-программами и другими, в том числе вычислительными, комплексами.
Теперь практически все CAD-программы могут принимать и сохранять информацию в этих форматах, хотя их собственные «родные» форматы файлов порой существенно отличаются от последних. Так что еще раз констатируем, что форматы файлов, создаваемых пакетом AutoCAD, стали неким «унификатором» информации для CAD-программ, причем это случилось не по команде сверху или решению некоего общего совещания разработчиков программного обеспечения, а определилось самой логикой естественного развития автоматизированного проектирования в мире.
Поскольку повсеместное внедрение технологии BIM в мировую проектную практику находится на начальной стадии, единый стандарт для файлов программных систем, создающих информационные модели зданий, еще не выработан, хотя понимание его необходимости назревает и попытки разработать единые «правила игры» уже предпринимаются.
Думается, должно пройти еще какое-то время, чтобы мировое сообщество проектировщиков выработало общепризнанные «шаблоны» для BIM, унифицирующие правила передачи, хранения и использования информации. Возможно, решение этого вопроса будет найдено по аналогии с CAD-системами, когда одна из BIM-программ станет наиболее популярной.
К сожалению, по указанной только что причине отсутствия единого стандарта перенос информационной модели с одной программной платформы на другую без потери данных и существенных переделок (часто почти все надо повторить заново) пока невозможен. Так что работающие сегодня в BIM архитекторы, строители, смежники и другие специалисты существенно зависят от правильного выбора используемого программного обеспечения, особенно на начальном этапе своей деятельности, поскольку в дальнейшем они будут к нему прочно привязаны, фактически станут его «заложниками».
Конечно, такое положение дел не способствует развитию информационного моделирования зданий. Проектировщики, перешедшие на технологию BIM, всецело зависят от уровня развития, уровня понимания проблемы и мастерства создателей компьютерных программ. Они ограничены в своей профессиональной деятельности теми рамками, которые им предоставляют программисты. Это плохо, но ничего другого пока нет.
С другой стороны, в машиностроении, например, уровень развития авиации напрямую зависит от уровня развития станкостроения. И это не мешает прогрессу. Если все правильно координировать в масштабе целых отраслей.
Напрашивается парадоксальный вывод: дальнейшее развитие проектирования будет зависеть от уровня развития программирования. Возможно, это не всем понравится, но это уже реальность.
Как и то обстоятельство, что задачи, возникающие в проектировании, стимулируют развитие программирования. Все взаимосвязано.
Информационная модель здания сегодня — это специальным образом организованный и структурированный набор данных из одного или нескольких файлов, допускающий на выходе как графическое, так и любое иное числовое представление, пригодное для последующего использования различными программными средствами проектирования, расчета и анализа здания и всех входящих в него компонентов и систем.
Сама информационная модель здания как организованный набор данных об объекте непосредственно используется создавшей ее программой. Но специалистам важно также иметь возможность брать информацию из модели в удобном виде и широко использовать ее в своей профессиональной деятельности вне рамок конкретной BIM-программы.
Отсюда возникает еще одна из важных задач информационного моделирования: предоставлять пользователю данные об объекте в широком спектре форматов, технологически пригодных для дальнейшей обработки компьютерными средствами.
Поэтому современные BIM-программы предполагают, что содержащуюся в модели информацию о здании можно получать для внешнего использования в большом спектре видов, минимальный перечень которых на сегодняшний день уже достаточно четко определен профессиональным сообществом и не вызывает никаких дискуссий (рис. 7).
К таким общепризнанным формам вывода или передачи содержащейся в BIM информации о здании прежде всего относятся:
- чертежная 2Dрабочая документация и чертежные 3D-виды моделей;
- плоские 2D-файлы и объемные 3D-модели для использования в различных CAD-программах;
- таблицы, ведомости, спецификации;
- файлы для использования в Интернете; Рис. 8. Леонид Скрябин. Этнографический центр на Камчатке. Дипломная работа. Модель выполнена в Autodesk Revit Architecture. НГАСУ (Сибстрин), 2010 г.
- файлы с инженерными заданиями на изготовление входящих в модель изделий и конструкций;
- файлы-заказы на поставку оборудования и материалов;
- результаты тех или иных специальных расчетов;
- видеоматериалы, отражающие моделируемые процессы;
- файлы с данными для расчетов в других программах;
- файлы презентационной визуализации и анимации модели (рис. 8);
- виды объемных разрезов и других полных или неполных фрагментов проектируемого здания (рис. 9);
- файлы для трехмерной печати;
- данные для изготовления модели или ее частей на станках с ЧПУ, лазерных или механических резаках либо других подобных устройствах;
- любые другие виды предоставления информации, которые потребуются при проектировании, строительстве или эксплуатации здания.
Все это многообразие форм выводимой информации обеспечивает универсальность и эффективность BIM как нового подхода к проектированию зданий и гарантирует ему в ближайшем будущем определяющее положение в архитектурно-строительной отрасли.
В заключение хочется выразить глубокую благодарность компании Autodesk за бесплатно предоставленное программное обеспечение, на котором были выполнены все представленные в статье учебные работы.
Источник: www.cadmaster.ru
Как построить качественную 4D BIM модель: особенности и типичные ошибки
В статье мы разберем, что такое 4D моделирование, для каких целей его действительно стоит использовать, и рассмотрим на примерах, какие распространенные ошибки допускаются при создании информационной модели строительного объекта.
Что такое 4D моделирование
4D BIM моделирование — это процесс создания 3D моделей в сочетании с информацией о времени, календарными и сетевыми графиками, управлением логистикой и визуализацией строительства. 4D модель — это визуализация процесса строительных работ, поэтому ее также называют строительной информационной моделью (СИМ).
Александр Лапыгин, обозначает цели создания 4D BIM модели следующим образом:
Для создания качественной 4D модели нужно разобраться с целями, для чего она нужна. Ведь строгого определения этого термина нет, и все его понимают по-своему.
Главная ошибка — это делать 4D ради 4D, то есть не определить цель процесса. От цели уже будут ставиться конкретные задачи, что моделировать, как, в каких программных продуктах и с какими допущениями.
Цели создания модели могут быть, например, такими:
- поиск пространственно-временных коллизий на стройплощадке (при стесненных условиях строительства, крайне ограниченных сроках и/или при наличии большого числа подрядчиков и техники), чтобы заранее запланировать все перемещения техники, материалов и конструкций, исключить физически невозможные технологические операции из-за неверной последовательности работ в графике Это довольно дорого, требует большой предварительной работы, но используется в некоторых проектах;
- контроль соблюдения графика строительства с визуальной составляющей. Для этого также нужно сохранить связь 3D модели и графика программно, чтобы можно было в процессе строительства на регулярной основе вносить в график фактические данные, и визуализация процесса позволяла видеть отклонения от графика в виде элементов, которые монтируются с отклонением по времени.
- планирование сроков поставки оборудования и конструкций на площадку на основе 4D модели.
Александр Лапыгин, Генеральный директор РОСЭКО-СТРОЙПРОЕКТ
Календарно-сетевое планирование в строительстве в сокращенном виде
Анализ строительства с применением информационной модели строительного объекта позволяет:
- наглядно представить весь процесс строительства и технологии выполнения работ;
- проверить правильность выбранного сценария выполнения работ;
- оптимизировать зоны строительной площадки;
- выявить и устранить на стадии проекта пространственно-временные коллизии;
- автоматизировано разработать план поставки материально-технических ресурсов с привязкой ко времени;
- оценить возможность альтернативных вариантов монтажа конструкций, траекторий передвижений транспортных средств, перемещений рабочих, разделения элементов конструкции на захватки и фронты работ.
Благодаря этим возможностям, планирование в формате 4D BIM сводит к минимуму риски, сроки и затраты, а также улучшает взаимодействие участников строительства в реальном времени.
Переводом модели из 3D (цифровой информационной модели, или ЦИМ) в 4D занимаются инженеры ПОС (проекта организации строительства) и ППР (проект производства работ). 3D модель в процессе перевода в 4D трансформируется в разряды ресурсов: материальные, технические, трудовые, энергетические и ресурс времени. Корректировка, актуализация и ведение СИМ в ходе работы возможны только при сотрудничестве со специалистами на строительной площадке.
Синхронизация календарно-сетевого графика и 3D-модели
Особенности 4D BIM модели
Если исходить из того, что 4D — это 3D + время, то качественная 4D BIM модель — это трёхмерная информационная модель строительного объекта, в которой все элементы или группы элементов программно связаны с календарным графиком планируемого выполнения работ в соответствии со структурой декомпозиции этих работ, принятых на проекте.
Рассмотрим, что это означает на практике.
ТИМ-проектирование с 1 января 2022 года: в каком виде все заработает
Элементы сгруппированы по принципу монтажа
Сама по себе 3D модель должна быть предварительно построена с учётом того, что она будет использоваться для связки с календарным графиком. То есть элементы этой модели сгруппированы так, чтобы каждая группа элементов объединяла элементы, являющиеся частью одной конкретной позиции в графике. Должно быть соответствие модели графику. Хороший метод такой привязки — технология AWP, Advanced work packaging. То есть уже при 3D моделировании должны учитываться все особенности технологии монтажа оборудования.
Типовые ошибки: в большинстве моделей группировку делают не по принципу стадии строительства, а по подобию: кирпичи — к группе стены.
Заполнены все параметры для отдела закупок
Для планирования сроков поставки оборудования и материалов на площадку в трёхмерной модели у каждого элемента, представляющего собой поставочную единицу, должны быть корректно заполнены все параметры, важные для отдела закупок. Для оборудования это может быть наименование производителя и модели, для возводимых на месте элементов — материал, цвет, возможно даже поставщик, если он известен заранее,
Для крупногабаритного оборудования должно соблюдаться условие соответствия его габаритов в модели реальным размерам, а также понадобится заполнить параметр массы, чтобы можно было проверить соответствие заложенных в модель характеристик грузоподъемных механизмов той массе, которую им предстоит поднимать.
Структура графика повторяет структуру модели
График должен быть разработан с учётом того, что он будет связываться с 3D моделью. То есть его структура должна повторять структуру модели, а степень детализации (число уровней) должна обеспечивать очередность и объем выполнения работ, должно быть дробление с учетом очередности производимых работ.
Если эти условия соблюдены, такую 4D модель можно использовать для всех трёх целей, озвученных выше.
Назначение трудовых ресурсов. Привязка к каждому элементу модели группы работ
Ошибки 4D модели
Александр Лапыгин, Генеральный директор РОСЭКО-СТРОЙПРОЕКТ делится опытом:
Разберем возможные ошибки, которые могут возникнуть случайно, из-за нечёткого представления целей и задач моделирования, либо непреднамеренно в силу отсутствия подходящего ПО:
- Нельзя обновить модель в связке с графиком в процессе строительства. Это приводит к необходимости каждый раз создавать 4D модель заново для анализа текущей ситуации на площадке, это очень трудозатратно и как правило эту работу перестают выполнять, модель теряет связь с реальностью.
- Структура 3D модели не соответствует структуре графика выполнения работ. В таком случае один элемент модели оказывается задействован в нескольких позициях графика, это усложняет анализ модели.
Пример: перекрытие площадью 1000 м² в модели является одним элементом, а по графику в него укладывают бетон в три параллельных (или последовательных, неважно) захватки, одна 500 м², другая 300, третья 200. Получается, что эти позиции графика нельзя привязать каждую к своему элементу, он у них получается общий, и с такой разбивкой не получится корректно рассчитать сроки его монтажа.
- Модель разрабатывается в отрыве от реального графика выполнения работ и реальных поставочных спецификаций. Это происходит в случае если моделью занимается обособленное подразделение, а рабочий процесс тем временем идёт «по старинке» и его руководители не разбираются в моделировании, его целях, задачах и преимуществах. Такая модель оказывается неверной и от того бесполезной.
- Слишком детализированная 3D модель. Это создаёт сложности для просмотра из-за требуемой высокой производительности компьютеров, а также на одну строку графика приходится слишком много позиций модели и их сложно контролировать человеку.
Пример: производитель противопожарных датчиков заказал разработку семейств своего оборудования. Их выполнили в высокой детализации, чтобы порадовать заказчика: каждый датчик включает в себя сложной формы геометрию, отверстия под саморезы, красивый логотип производителя, и имеет вес например 5 Мб (из-за этой сложной геометрии, лого и резьбы). Когда 10 таких датчиков попадают в модель коттеджа, это не сказывается на производительности компьютера, так как вес модели пожарной сигнализации будет около 50 Мб (если брать в расчёт только датчики). А вот когда такие датчики ставят в модель торгового центра площадью 100 000м2, вес системы ПС только из-за датчиков будет под 10 Гб, хотя ценность в них — только место расположения, и параметры (марка), то есть 10 Гб пустой информации занимают оперативную память. Вес «кружка с параметрами» позволил бы иметь объём модели ПС в 50 Мб вместо 10 Гб.
Есть рекомендации производителей софта, например, Autodesk, что одна модель не должна весить больше 500 Мб. Можно ориентироваться на этот показатель. Строго детализация не ограничивается, но нужно понимать, какая детальность минимально достаточна, чтобы не делить файлы на десятки и сотни кусочков, которые потом сложно координировать, и в целом это напрасный труд.
- Слишком детализированный график: руководитель или планировщик не может его проанализировать.
Степень детализации графика тоже зависит от проекта. График строительства завода СПГ точно будет иметь тысячу строк или более, а иногда бывает и 10 000 позиций. На таких проектах для анализа этих графиков нанимают специального планировщика, или даже команду планировщиков, которые всё время работают только с графиком.
А вот если мы строим себе коттедж, вряд ли позиций будет больше 100. Вручную можно контролировать от 100 строк (если меньше — то график недостаточно детален) до 2000 (если это не уникальный проект с отдельной командой планировщиков).
- Недостаточная степень детализации модели и/или графика — тогда период контроля результатов работ на площадке оказывается сильно короче длительности позиций нижнего уровня в графике.
- Главная ошибка — повторюсь — непонимание цели моделирования, и отсутствие связи задач моделирования с этой целью. Если просто пытаться сделать всё, на что способно имеющееся ПО, не задумываясь о том как в строительстве будет использоваться результат, есть риск потратить большие ресурсы на моделирование и календарно-сетевое планирование, и никак не повысить эффективность работ. Тогда моделирование превращается в карго-культ, и результат вызывает у всех участников разочарование.
В следующей статье мы расскажем о том, в каких программах строятся четырехмерные модели и какие требования предъявляются к разным этапам.
Источник: digital-build.ru
Информационное моделирование зданий (BIM): как построить стадион (или другое здание) с первого раза и под контролем
Пересечение CAD-чертежей и актуальной оперативной информации.
Представьте, что у вас 20 строительных площадок, и на каждой что-то каждый день происходит. Вы, естественно, хотите знать, что, как и почему. Раньше вы обходили их ногами, потом стали пользоваться данными веб-камер, а теперь стандартом в индустрии становится информационное моделирование зданий/сооружений, или BIM (Building Information Modelling).
Это проектирование, строительство и эксплуатация в одной IDE. Собственно, такой подход уже стал государственным в Великобритании, Сингапуре, Норвегии и Китае. У нас же BIM пока применяется для того, чтобы на этапе предпроекта или проекта визуализировать то, что собираются построить. А ещё сейчас делают первые шаги, чтобы ловить проблемы в момент появления, а не когда о них доложат.
Естественно, было бы странно, если бы всё то, что касается финансов и начинается со слов «очень наглядный», не встречалось бы в штыки.
Ещё пример правильного решения — прокладка новой трассы. Нужно решить задачу расчёта оптимальной траектории, обхода преград, оптимизации выкупаемых участков по кадастру, взаимосвязи с существующей сетью дорог и инфраструктурой. Получается довольно объёмная система нелинейных уравнений, и её решение — только начало BIM.
Или, например, вы строите стадион.
В этом случае проект загоняется в среду BIM, и дальше все его части, будь то расчет конструкций, проектирование генплана и ПОС или внутренние коммуникации — всё связано друг с другом. Все разделы живут и взаимодействуют в одной среде, информация приходит из разных источников (данных закупок, отчётов подрядчиков, данных контроля, съёмки и машинного зрения) и по ней выстраивается модель процесса строительства, причём каждое событие связывается с другими. Заехала машина бетона — понятно, куда он пошёл, сколько стоил, на что повлиял.
Дальше этот же проект передаётся в эксплуатацию. Поэтажные планы, снятие информации с датчиков, точные регламенты по инженерке, управление документацией — договора аренды, контрагенты по уборке, обслуживанию, расходникам. Очень наглядный учёт затрат.
Насколько информационное моделирование нужно
Весной 2014 года на Президиуме Совета Российской Федерации была сформирована задача создания поэтапного плана внедрения информационного моделирования в промышленном и гражданском строительстве. Переводя на прикладной русский, это означает:
- Чёткое планирование работ и бюджета. Понятно, сколько и кто своровал (если были нерасчётные издержки).
- Видно момент, когда проект пошёл не по плану (можно сразу действовать, а не постфактум, когда уже поздно). Сейчас объекты по ходу реализации могут поменяться до неузнаваемости.
- В случае если объект менялся по ходу строительства (такое случается не только по раздолбайству, но и осознанно) — сразу новые расчёты в соответствии с нормативами.
- Изменение сметы и материалов отслеживается минимум по трём независимым источникам.
- Каждый день точно видно, что было сделано и кем.
- Как итог всего вышеперечисленного — сокращение затрат на реализацию, или, по-простому, экономия.
Можно пощёлкать по модели и увидеть отчёты.
Весной специалисты Министерства строительства и ЖКХ РФ отобрали два десятка пробных BIM-проектов. В 2017 году по результатам этих бета-строек будет составлен стандарт BIM для РФ. Сейчас параллельно готовится нормативная база для создания условий массового применения BIM-технологий, а также (ура!) разрабатывается классификатор стройматериалов, изделий и конструкций на несколько тысяч позиций.
Но давайте вернёмся к уже затронутой задаче строительства трассы.
Примеры хода работ
Итак, мы собрали все данные (аэрофотосъёмка, лазерное сканирование, геологические изыскания), подключили источники данных о природных заповедниках, географии, кадастровой стоимости участков, другой дорожной инфраструктуре и так далее. Затем просчитали оптимальный вариант расположения этой трассы.
Даже если речь идёт о реконструкции дороги, то сбор данных позволит не затронуть имеющиеся коммуникации: связь, водо- и газообеспечение. На стадии проектирования линейной части важно предусмотреть свой ряд регламентов. В частности, радиус поворота скоростной трассы должен соответствовать стандартам и не превышать ограничений, также есть регламенты по расположению заправочных комплексов вдоль трассы. Похожим образом происходит проектирование искусственных сооружения — мостов, туннелей и подпорных стенок.
Самое вкусное — прогнозирование последствий того, что что-то будет забыто или не сделано, либо сделано не очень вовремя. Это очень снижает потери.
Использование BIM на разных этапах жизненного цикла строительного объекта.
Вторая важная часть — все документы в одном месте. Важно продумать вопросы договорных отношений и бюджетирования. Одна среда собирает все данные, которые используются на разных этапах жизненного цикла объектов дорожного строительства с учётом специфики отдельных подзадач и используемых инструментов. Переводя на русский — эксплуатационщики имеют проект даже через 10 лет, а не слухи о проекте.
Копаем дальше. Проектирование делается обычно 3–4 разными проектными институтами, и им надо как-то между собой общаться. Хорошо, когда общение конструктивное и в единой среде, где сразу применяются все их решения и видны их последствия, а также влияние на другие подсистемы. BIM нужен, чтобы все договорились, как надо (чёрт, как же не хватает этой функциональности на стадионах, когда выясняется, что на твои кронштейны уже повесили свет вместо антенн).
Дальше эта единая модель объекта загружается в BIM-модуль автоматизированного управления строительной техникой, подключаются GPS-датчики всей техники. Делается связка с бухгалтерией по строительству, трекером или другой средой. Я не проверял, но коллеги божатся, что земляные работы можно проводить с точностью до 2–3 сантиметров, что просто чудо в их сфере. Параллельно сокращается простой строительной техники.
Пример интерфейсов стройконтроля, который заказчик назвал «тут недостача, а тут тормозят».
Из «командного центра» также можно принимать решения и ставить задачи в подсистемы. Это позволяет что-то быстро менять из одной точки и доносить за день до всех.
После того как строительство дороги или искусственного сооружения завершено, начинается этап эксплуатации, который может длиться в среднем от 30 до 80 лет.
Здесь также важно иметь возможность доступа ко всей проектной и предпроектной документации, чтобы спланировать ремонтные работы на объекте с учётом его особенностей, а также фиксировать дефекты, учитывать состояние освещения, разделительных ограждений и проч. в едином пространстве.
Лоскутная автоматизация управления строительством и её сопоставление с организацией работ в рамках концепции BIM
Ещё один важный момент — визуализация возможна на любом этапе. На предпроекте, чтобы посмотреть, что получится. На стройке, чтобы отслеживать, что построили за неделю. Даже в эксплуатации, когда документов давно нет, а модель нужна, для принятия важных решений.
Всё становится намного интереснее, если при визуализации использовать возможности виртуальной реальности. Для оптимального эффекта — комната виртуальной реальности (CAVE) или шлем виртуальной реальности (ВР), ну или хотя бы система голографической визуализации.
Собственно, для чего это нужно? Суть в том, что с помощью ВР на объекте можно побывать и собственными глазами посмотреть, как будет выглядеть объект, а в перспективе ещё и пощупать отдельные строительные конструкции. Но больше всего ВР будет интересна при защите проекта или поиске потенциальных инвесторов, потому как картинка получается сочная, «живая», как раз то, что доктор прописал для презентации услуг.
Но не презентациями едины, с помощью ВР можно проводить подготовку специалистов, которые нуждаются в поддержании высочайшего уровня знаний и умений, чтобы обеспечить их постоянную готовность к безошибочной работе, например, МЧС.
Наш заказчик (НИУ МГСУ) оборудовал свою лабораторию модулем VR-визуализации и планирует его использовать для наглядного отображения своих проектов. На базе вуза работает студенческое проектно-конструкторское бюро. Оно весьма успешно сотрудничает с различными архитектурными бюро, для которых готовит совместные коммерческие проекты. То есть модуль не только развивает научно-техническую базу университета, но и влияет на получение им прибыли.
В свою очередь, мы получили голографическую модель офиса КРОК в виртуальной реальности и выгрузили её в голографический стол (подробнее — в предыдущем посте).
Вообще по мере удешевления средств виртуальной реальности их популярность для отображения проектов и строительных объектов набирает обороты. Многие средства, кстати, стали заметно доступнее по сравнению с ситуацией двух- или трехлетней давности, даже несмотря на поправку в виде курса валют.
Из примеров
Одна американская строительная компания (McCarthy Building Companies) для оснащения строящегося госпиталя в Лос-Анжелесе использовала комнату виртуальной реальности (CAVE). С её помощью руководство больницы и врачебный персонал до начала стройки обошли всё здание, продумали правильную логистику и оптимальное размещение медицинского оборудования.
Аналогичная система используется в Техасском университете для обучения студентов строительных специальностей. Они могут загружать свои проекты и выводить их на экран виртуальной реальности. В результате могут пройти по объекту или проникнуть внутрь стен, чтобы проверить структуру механических, электрических и сантехнических систем.
Disney применяет виртуальную реальность при строительстве объектов под своим брендом — парков развлечений и отелей. По такому принципу будут созданы Диснейленд в Шанхае, землей Аватара для Disney Animal Kingdom в Орландо, площадка Iron Man в Гонг-Конге, аттракционы в стилистике «Звездных войн» для различных парков.
А вот так выглядит реальный район города Манама (Бахрейн), план которого перенесен в виртуальную реальность:
Это визуализация дорожной развязки в Татарстане:
А вот это — большая спортивная арена «Лужники»:
Передача в эксплуатацию
Первый системный разрыв есть между проектом и результатом. Как правило, действует старый анекдот: «а, не будем ровнять, отделкой закроем —… а, не будем отделывать, обоями выровняется». То есть результат может быть похож на проект только издали. Чтобы этого не случилось, нужно ловить любое отклонение от проекта в зародыше, иначе не всегда можно будет откатиться назад и построить правильно.
Здание — не софт, бекапов на стройке не бывает, и если что-то накатили, то теперь с этим жить ближайшие лет восемьдесят.
Второй такой же разрыв бывает между стройкой и эксплуатацией, поскольку делают их разные компании. По большей части проблемы связаны с отсутствием общих регламентов и хранилища данных между различными подрядными организациями. Данные теряются. В среде BIM ничего никуда не уйдёт даже через 20 лет.
Если, конечно, поддерживать всё как надо. А это вопрос цены и постановки рабочего процесса. Процесс ставит государство на уровне стандарта, а цена… — с ценой всё немного печальнее, потому что, естественно, интеграции сейчас разовые, и на поток ничего не поставлено. Поэтому 2–3% от стоимости проекта.
Интерфейс сервисдеска по зданию. Можно построить сводный отчёт по долговечности материалов, стоимости года эксплуатации материала или прибора и так далее. Ещё интересно — у нас было, что смотришь за год: лампочка перегорала 50 раз, и делаешь вывод, что, наверное, проводка битая.
Интерфейс учёта и управления оборудованием.
Интерфейс заявок с привязкой к CAD и диаграммой статусов бюджета.
Примеры по миру
Наши партнёры, Bentley Systems, участвуют в проекте создания Cross Rail — метро Англии в Северном Хемпшире. 10 лет, около 25 миллиардов долларов. Получится новая 10-километровая линия под Лондоном, реконструкция ещё 35 км линии на запад и 50 км на восток. 200 миллионов пассажиров ежегодно. Эффект для инфраструктуры похож на то, как если бы сделали полноценное второе кольцо в Москве.
14 000 тысяч человек на пике строительства.
Естественно, это всё надо было обосновать государству. Началось с подсчётов экономики проекта — каждый фунт, вложенный в строительство железной дороги, в экономику Великобритании будет возвращено в 2,5 раза больше.
Потом в единый комплекс сводились линейная часть, генплан, архитектура, прочностные расчёты, электрика, слаботочные системы и т. д. Важно скоординировать действия всех участников на разных стадиях, включая проектирование в едином пространстве, эффективное управление действиями субподрядчиков, предоставление актуальной информации на этапе строительства и создание модели объектов для этапа эксплуатации на ранних стадиях в виртуальной реальности. Сделано это для того, чтобы максимально снизить неразбериху и чётко идти по плану все 10 лет строительства.
Аналогичный BIM-проект использовался для строительства объездной дороги в Рочестере — аналога московского МКАДа, только поменьше. Тоже по понятным причинам на всём протяжении — от согласования с властями до контроля сроков и контрактов и эксплуатации.
Ещё пример (это пример просчёта постфактум для демонстрации возможностей технологии). Мы взяли двухполосный Аксайский мост, уже введенный в эксплуатацию, и смоделировали среду для него.
Визуализация процесса строительства искусственных сооружений на примере Аксайского моста.
Также был достаточно интересный момент проектирования развязки, и мы показали правительству Республики Татарстан, как всё просчитывается в BIM, — им это было очень нужно для согласований и ускорения поиска инвесторов, плюс понимания, как идут работы.
Вообще, с дорожным строительством мы работаем уже около 15 лет. В основном при крупных работах стоят задачи обмена документами, но в последние годы мы «подняли» проект, в котором сводятся сведения и отчёты о ходе строительства и обустройства 377 объектов (объекты 2016 года) от 34 подведомственных учреждений Росавтодора со всей страны. Можно посмотреть в GUI, на каком этапе строительства находится тот или иной мост, сколько опор установлено, выполнены ли земляные работы, соответствуют ли сроки контракту. Главных элементов два: интеграция и аналитика всей документации по проекту и визуализация. Раньше на то, чтобы понять статус одного объекта, уходило примерно две недели на копание в бумаге и сопоставление данных.
Пример отчёта:
Резюме
Итак, BIM-технология — это комплексный набор инструментов, где вся информация по проекту пересекается, взаимодействует и отображается в GUI. BIM передаётся от геоподосновы до АХО по мере работы над проектом, и внутри накапливаются все нужные данные.
Для правильной работы BIM-подхода нужны актуальные информационные источники. Кроме статической документации (вроде данных аэрофотосъёмки) нужна точка интеграции с САПР (проектировка), системы управления стройтехникой, бухгалтерией (например, 1С), тикет-системой или регламентами подрядчиков и так далее. Контроль строительства — системы план-факт вроде Спайдера или же модуль ручного заполнения отчётов.
Так что BIM — это не одна новая система уровня «выброси, что у тебя есть, это каменный век, теперь всё будем делать заново», это надстройка, которая позволяет интегрировать любые, даже совсем legacy, варианты внутренних систем стройкомпании. Проектируешь на Автодеске — будешь и дальше так делать, просто теперь проект нужно будет создавать по определённым правилам для того, что потом использоваться в BIM-среде, и необходимая информация пойдёт в другие, смежные системы.
Лицензируется внедрение BIM по модулям (в большинстве случаев). Сначала берётся базовая вещь, потом к ней прикручивается стройконтроль, аналитические отчёты, данные АХО, всякая интеграция со счётчиками и датчиками и так далее. Покупается обычно только то, что реально нужно и будет эксплуатироваться, поэтому возможны самые разные сценарии использования.
В нашей практике подход BIM можно использовать и для того, чтобы застройщик мог показывать квартиры конечным клиентам до конца проекта (на уровне, чтобы каждый мог посмотреть и оценить вид из окна квартиры и сделать по ней тур в виртуальной реальности), и для презентации проектов инвесторам, и мы сами используем подобный инструмент (по большей части, правда, самописный) для эксплуатации инженерных подсистем офиса. На офисах и медицинских учреждениях, где много площадей и много оборудования, — там учитывается всё. В одной клинике, например, в BIM-среду занесено всё — от аппаратов МРТ и вплоть до каждой бактерицидной лампы, плюс там же регламентные ремонты, учёт расходников.
Главная особенность — неоднократное использование информационных моделей. В жилой топовой недвижимости чаще всего налаживается импорт из BIM-среды на уровень конечного клиента, в нефтегазовой сфере — свои задачи эксплуатации, в дорожном строительстве — правильная автоматизированная отчётность (сколько реально песка засыпано, сколько асфальта закатано) и, соответственно, оценка того, с какой ценой реально выходить на конкурс и до какого уровня можно падать по этой цене.
Внедрение лучше всего делать на нулевом цикле, прямо до Мосгорэкспертизы (они планируют в ближайшее время перейти на экспертизу в электронном виде).
В России мы часто замечаем, что история с BIM поднимается, когда заказчик зреет в плане сохранения информации. Один раз было так: «Мужики, вот развязка. Нет паспорта объекта — мы могли сэкономить кучу бабок, а так даже не знаем, насколько опору закопали, как закопали, прогнозировать ничего нельзя. Потом неизвестно кто ремонтировал, опять нужно всё проверять заново».
Ещё как-то раз был объект, которому всего 2 года, а документации уже нет. Потому что объект строили несколько подрядчиков. Документы передавали в бумажном виде, часть не получена, в результате какая бумага актуальна и чему верить — непонятно. У концепции BIM одно из важнейших назначений — иметь один достоверный источник информации.
При появлении противоречий ответственный человек устраняет их вручную: например, проверяет лично, сколько кубов цемента привезли (если бухгалтерия говорит одно, а контроль стройтехники — другое, отчёт подрядчика — третье). При серьёзных противоречиях ответственный сам определяет, где ошибка, например, в ДНК прораба или бухгалтерии.
Вторая уверенная причина внедрения BIM-инструментария — задача «прикрыть задницу». Если объект падает, то первым даёт объяснение главный архитектор. Если у него документы фрагментированы — сюрприз, виноват он. Если же все документы в электронном виде, можно быстро поднять, найти подрядчика по эксплуатации и даже не успеть попасть в телевизор. Если повезёт.
Источник: habr.com