Как рассчитать продолжительность строительства котельной

Содержание

Определим температуру обратной сетевой воды на входе в котельную:

з — КПД подогревателя ГВС на ЦТП 0,98(98%).

Определим энтальпию конденсата греющего пара после охладителя:

Дt — недоохлаждающего конденсата до t обратной сетевой воды в охладителе.

Температура насыщения в сетевом подогревателе:

Определяем энтальпию в сетевом подогревателе по tНАС

Расход пара на сетевой подогреватель

зСП — кпд сетевого подогревателя 0,98

Определяем расход продувочной воды для паровых котлов

где К•DП — выражает расход пара на собственные нужды К — 0,08 — 0,15

-процент продувки котлов

Найдем расход продувочной воды уход в канализацию

Энтальпия продувочной воды из барабана котла (по Р в барабане котла)_

энтальпия пара и кипящей воды на выходе из СНП (по Р=0,12мпа в деаэраторе )

Расход вторичного пара из СНП идущий в питательный деаэратор

Определяем расход водопроводной воды на входе в котельную для восполнения потерь

ТОП РЕШЕНИЙ ПРИ ПРОЕКТИРОВАНИИ КОТЕЛЬНОЙ

Здесь — не возврат конденсата с производства потери воды в тепловых сетях потери конденсата и воды внутри котельной

вода, уходящая с непрерывной продувки котла в канализацию

Температура водопроводной воды после охладитея

Здесь tохл = 50 0С — температура воды удаляемой в канализацию

температура холодной воды

коэф. теплопотерь охладителя

— темпер воды уход из сепаратора непрерывной продувки

Расход пара на подогреватели водопроводной воды

температура воды за подогревателем перед ХОВ = 300С

tН — температура насыщения в деаэраторе (по давлению в деаэраторе 0,12 МПа);

iд”, iд’ — энтальпия пара и конденсата (по давлению в деаэраторе 0,12 МПа).

Расход пара на деаэратор подпиточной воды

Расход ХОВ на входе в деаэратор подпиточной воды:

Температура подпиточной воды после охладителя

Здесь tХОВ = 27 0С — температура ХОВ за ХВО;

Расход пара на подогреватель ХОВ, поступающей в деаэратор питательной воды:

Здесь GХОВ2 — расход ХОВ на входе в питательный деаэратор:

Здесь tК = 950С — температура конденсата с производства и мазутного хозяйства.

Производительность питательного деаэратора:

Уточненный расход на собственные нужды:

DСН = Dд1+ Dд2+ DП1+ DП2+ DМХ = 0,068+0,03+0,12+0,15+0,08 = 17,97 кг/с

Расход воды, впрыскиваемой в пароохладитель РОУ1 при получении редуцированного промышленного пара:

Здесь iК” — энтальпия пара за котлом (по давлению в барабане);

iП” — энтальпия пара на пром. нужды на выходе из котельной или на входе в магистраль

— энтальпия питательной воды перед котлом

Расход воды, впрыскиваемой в пароохладитель РОУ2 при получении пара, идущего на собственные нужды котельной:

Здесь iСН” — энтальпия редуцированного пара (по давлению за РОУ2 = 0,6 МПа)

Уточненная паропроизводительность котельной:

Результат сравним с предварительно принятой паропроизводительностью

Материальный баланс котла

Требования к котельной 2021 -2022 году

17,97 = 17,01 + 0,84

Транспортировка горячей воды

Алгоритм схемы расчета установлен нормативно-технической документацией, государственными и санитарными нормами и выполняется в строгом соответствии с установленным порядком.

Расчет длительности строительства тепловых сетей

В статье приведен пример расчета гидравлического расчета теплосети. Процедуру выполняют в следующей последовательности:

  1. На утвержденной схеме теплоснабжения города и района отмечаются узловые точки расчета, источник тепла, трассировку инженерных систем с указанием всех ответвлений, подключенных объектов потребителей.
  2. Уточняют границы балансовой принадлежности сетей потребителя.
  3. Присваивают номера участку по схеме, начиная нумерацию от источника к конечному потребителю.

Система нумерации должна четко подразделять виды сетей: магистральные внутриквартальные, междомовые от теплового колодца и до границ балансовой принадлежности, при этом участок устанавливается как отрезок сети, заключенный двумя ответвлениями.

На схеме указывают все параметры гидравлического расчета магистральной тепловой сети от ЦТП:

  • Q — ГДж/час;
  • G м3/час;
  • Д – мм;
  • V — м/с;
  • L — длина участка, м.

Расчет диаметра устанавливается по формуле.

Расчет длительности строительства тепловых сетей

4 Определение нормируемых эксплуатационныхтепловых потерь с потерями сетевой воды

2.4.1
Нормируемые эксплуатационные тепловые потери с потерями сетевой воды
определяются в целом по системе теплоснабжения, т.е. с учетом внутреннего
объема трубопроводов ТС, находящихся как на балансе энергоснабжающей
организации, так и на балансе других организаций, а также объема систем
теплопотребления, с выделением тепловых потерь с потерями сетевой воды в ТС на
балансе энергоснабжающей организации.

Объем ТС на
балансе энергоснабжающей организации в составе АО-энерго составляет (см.
таблицу настоящих
Рекомендаций)

Объем ТС на
балансе других, в основном муниципальных, организаций составляет (по
эксплуатационным данным)

Объем систем
теплопотребления составляет (по эксплуатационным данным)

Суммарные объемы
сетевой воды составляют по сезонам:

— летний сезон
(ремонтный период учтен в числе часов работы ТС в летнем сезоне при определении
Vср.г):

Среднегодовой
объем сетевой воды в трубопроводах ТС и системах теплопотребления Vср.г определяется
по формуле (37) РД
153-34.0-20.523-98 :

В том числе в ТС
на балансе энергоснабжающей организации

2.4.2
Нормируемые эксплуатационные годовые тепловые потери с нормируемой утечкой
сетевой воды
определялись по формуле (36) РД
153-34.0-20.523-98 :

где ρср.г — среднегодовая
плотность воды, кг/м3; определяется при температуре , °С;

с — удельная
теплоемкость сетевой воды; принимается равной 4,1868 кДж/(кг
× °С)
или 1 ккал/(кг × °С).

Среднегодовая
температура холодной воды, поступающей на источник тепловой энергии для
последующей обработки с целью подпитки ТС, (°С) определяется по
формуле (38) РД
153-34.0-20.523-98 :

Температура
холодной воды в отопительный период принимается = 5 °С; в летний
период = 15 °С.

Годовые потери
тепла всего по системе
теплоснабжения составляют

в том числе в ТС
на балансе энергоснабжающей организации

2.4.3 Нормируемые
эксплуатационные тепловые потери с нормируемой утечкой сетевой воды по сезонам
работы ТС — отопительному и летнему
определяются по формулам (39) и (40) РД
153-34.0-20.523-98 :

— для
отопительного сезона

в том числе в ТС
на балансе энергоснабжающей организации

— для летнего
сезона

в том числе в ТС
на балансе энергоснабжающей организации

2.4.4
Нормируемые эксплуатационные тепловые потери с утечкой сетевой воды по месяцам
в отопительном и летнем сезонах
определялись по формулам (41) и (42) РД
153-34.0-20.523-98 :

— для
отопительного сезона (января)

в том числе в ТС
на балансе энергоснабжающей организации

Аналогично
определяются тепловые потери по другим месяцам, например для летнего сезона
(июня):

= 1768 Гкал,

в том числе в ТС
на балансе энергоснабжающей организации

Аналогично
определяются тепловые потери по другим месяцам, результаты приведены в таблице настоящих Рекомендаций.

2.4.5 По
результатам расчета строятся графики (см. рисунок настоящих Рекомендаций) месячных и годовых тепловых потерь с
утечкой сетевой воды по системе теплоснабжения в целом и на балансе
энергоснабжающей организации.

В таблице приведены значения потерь тепла в
процентах к планируемому количеству транспортируемой тепловой энергии.
Невысокие значения отношения потерь тепла к его отпуску объясняется небольшой
долей ТС (по материальной характеристике) на балансе энергоснабжающей
организации по сравнению со всеми сетями в системе теплоснабжения.

Выбор толщины тепловой изоляции

q1 — нормы тепловых потерь, Вт/м;

R — термическое сопротивление основного слоя изоляции, К*м/Вт;

ф — температура теплоносителя в трубопроводе, 0С;

dИ, dH — наружный диаметр основного слоя изоляции и трубопровода, м;

лИ — коэф. теплопроводности основного слоя изоляции, Вт/м*К;

ДИЗ — толщина основного слоя изоляции, мм.

Прямая линия: dB = 0,259 м tCP = 192 0C q1 = 90 Вт/м

Материал теплоизоляции — маты минераловатные прошивные в оболочках, марки 150;

Обратная линия (конденсатопровод):

dB = 0,07 м tCP = 95 0C q1 = 50 Вт/м

Материал теплоизоляции — маты стекловолокно

Участок 0-1 Прямая линия:

dB = 0,10м ф = 150 0C q1 = 80 Вт/м

Материал теплоизоляции — маты стекловолокно

dB = 0,10 м ф = 70 0C q1 = 65 Вт/м

Материал теплоизоляции — маты стекловолокно

Участок 0-2 Прямая линия:

dB = 0,359 м ф = 150 0C q1 = 135 Вт/м

Материал теплоизоляции — маты стекловолокно

dB = 0,359 м ф = 70 0C q1 = 114 Вт/м

Материал теплоизоляции — маты стекловолокно

Участок 0-3 Прямая линия:

dB = 0,359 м ф = 150 0C q1 = 135 Вт/м

Материал теплоизоляции — маты стекловолокно

dB = 0.359 м ф = 70 0C q1 = 114 Вт/м

Материал теплоизоляции — маты стекловолокно

Показатели нормального давления

Как правило, достичь необходимых параметров по ГОСТу невозможно, поскольку на рабочие показатели оказывается влияние со стороны разных факторов:

Мощность оборудования
, необходимого для подачи теплоносителя. Параметры давления в отопительной системе многоэтажки определяются на теплопунктах, где происходит нагрев теплоносителя для подачи через трубы в радиаторы.

Состояние оборудования
. И на динамическое, и на статическое давление в теплоснабжающей конструкции непосредственно влияет уровень износа элементов котельной таких, как генераторы теплоты и насосов

Немаловажное значение имеет расстояние от дома до теплопункта.

Диаметр трубопроводов в квартире. Если при проведении ремонта своими руками владельцы квартиры установили трубы большего диаметра, чем на входном трубопроводе, то произойдет снижение параметров давления.

Расположение отдельной квартиры в многоэтажке

Безусловно, необходимое значение напора определяют, согласно нормам и требованиям, но на практике немало зависит от того, на каком этаже находится квартира и ее расстояние от общего стояка. Даже когда жилые комнаты располагаются недалеко от стояка, натиск теплоносителя в угловых помещениях всегда ниже, поскольку там часто имеется крайняя точка трубопроводов.

Степень износа труб и батарей
. Когда элементы отопительной системы, расположенные в квартире, прослужили не один десяток лет, то некоторого снижения параметров оборудования и производительности не избежать. Когда имеют место подобные проблемы, желательно изначально произвести замену изношенных труб и радиаторов и тогда удастся избежать аварийных ситуаций.

Требования ГОСТ и СНиП

В современных многоэтажных домах монтаж системы отопления осуществляют, опираясь на требования ГОСТа и СНиП. В нормативной документации оговорен диапазон температур, которые центральное отопление должно обеспечить. Это от 20 до 22 градусов С при параметрах влажности от 45 до 30%.

Чтобы достичь этих показателей, необходим просчет всех нюансов в работе системы еще при разработке проекта. Задача теплотехника — обеспечить минимальную разность значений давления жидкости, циркулирующей в трубах, между нижними и последними этажами дома, сократив тем самым теплопотери.

На реальную величину давления влияют следующие факторы:

  • Состояние и мощность оборудования, подающего теплоноситель.
  • Диаметр труб, по которым теплоноситель циркулирует в квартире. Бывает, что желая повысить температурные показатели, хозяева сами меняют их диаметр в большую сторону, снижая общее значение давления.
  • Расположение конкретной квартиры. В идеале это не должно иметь значения, но в действительности существует зависимость от этажа, и от удаленности от стояка.
  • Степень износа трубопровода и нагревательных приборов. При наличии старых батарей и труб не следует ожидать, что показатели давления останутся в норме. Лучше предупредить возникновение нештатных ситуаций, заменив отслужившую свое теплотехнику.

Расчет длительности строительства тепловых сетей

Проверяют рабочее давление в высотном доме при помощи трубчатых деформационных манометров. Если при проектировании системы конструкторы заложили автоматическую регулировку давления и его контроль, то дополнительно устанавливают датчики разных типов. В соответствии с требованиями, прописанными в нормативных документах, контроль осуществляют на наиболее ответственных участках:

  • на подаче теплоносителя от источника и на выходе;
  • перед насосом, фильтрами, регуляторами давления, грязевиками и после этих элементов;
  • на выходе трубопровода из котельной или ТЭЦ, а также на вводе его в дом.

Обратите внимание: 10% разницы между нормативным рабочим давлением на 1 и 9 этаже — это нормально

Общие сведения

Для качественного обеспечения всех потребителей требуемым количеством теплоты при централизованном теплоснабжении необходимо обеспечить заданный гидравлический режим. Если заданный гидравлический режим в тепловой сети не выполняется, то качественное теплоснабжение отдельных потребителей не обеспечивается даже при избытке тепловой мощности.

Стабильный гидравлический режим в тепловых сетях обеспечивается путем подачи к отдельным зданиям заданного количества теплоносителя, циркулирующего в ответвлениях. Для выполнения этого условия производят гидравлический расчет системы теплоснабжения и определяют диаметры трубопроводов, падение давления (напора) на всех участках тепловой сети, обеспечивают располагаемое давление в сети в соответствии с требуемым у абонентов и подбирают оборудование, необходимое для транспортирования теплоносителя.

Уравнение Бернулли для установившегося потока несжимаемой жидкости

где Я — полный гидродинамический напор, м. вод. ст;

Z- геометрическая высота оси трубопровода, м;

о — скорость движения жидкости, м/с;

Б_2 — потеря напора; м вод. ст.;

Z + p/pg — гидростатический напор (р = рат + рИ — абсолютное давление);

pjpg — пьезометрический напор, соответствующий манометрическому давлению (рИ— избыточное давление), м вод. ст.

При гидравлическом расчете тепловых сетей не учитывают скоростной напор о212g, так как он составляет небольшую долю полного напора Н и изменяется по длине сети незначительно. Тогда имеем

т. е. считают, что полный напор в любом сечении трубопровода равен гидростатическому напору Z + p/pg.

Потеря давления Ар, Па (напора Д/г, м вод. ст.) равна

Читайте также:  Строительство пирамиды фараона хеопса событие явление процесс

Здесь Д/?дл — потеря давления по длине (рассчитывается по формуле Дарси-Вейсбаха); Арм — потеря давления в местных сопротивлениях (рассчитывается по формуле Вейсбаха).

где X, ?, — коэффициенты гидравлического трения и местного сопротивления.

Коэффициент гидравлического трения X зависит от режима движения жидкости и шероховатости внутренней поверхности трубы, коэффициент местного сопротивления ?, зависит от вида местного сопротивления и от режима движения жидкости.

Потери по длине. Коэффициент гидравлического трения X. Различают: абсолютную шероховатость к, эквивалентную (равнозернистую) шероховатость кэ, числовые значения которой приводятся в справочниках, и относительную шероховатость kid (kjd — эквивалентная относительная шероховатость). Значения коэффициента гидравлического трения X рассчитывают по следующим формулам.

Ламинарный режим течения жидкости (Re X рассчитывается по формуле Пуазейля

Переходная область 2300 Re 4, формула Блазиуса

Турбулентное движение > IT О4), формула А.Д. Альтшуля

При кэ = 0 формула Альтшуля принимает вид формулы Блазиуса. При Re —? оо формула Альтшуля принимает вид формулы профессора Шифринсона

При расчете тепловых сетей используют формулы (4.5) и (4.6). При этом сначала определяют

Если Re uр, то X определяют по формуле (4.5), если Re>Renр, то X рассчитывают по (4.6). При Re >Renp наблюдается квадратичная (автомодельная) зона сопротивления, когда X является функцией только относительной шероховатости и не зависит от Re.

Для гидравлических расчетов стальных трубопроводов тепловых сетей принимают следующие значения эквивалентной шероховатости кэ, м: паропроводы — 0,2-10″3; конденсатопроводы и сети ГВС — 1-10’3; водяные тепловые сети (нормальная эксплуатация) — 0,5-10″3.

В тепловых сетях обычно Re > Renp.

На практике удобно пользоваться удельным падением давления

где /?л — удельное падение давления, Па/м;

/ — длина трубопровода, м.

Для квадратичной области сопротивления формулу Дарси — Вейсбаха при транспорте воды (р = const) представляют в виде

где Л = 0,0894 ?э°’25/рв = 16,3-10-6 при ^ = 0,001 м, рв = 975.

(Л = 13,62 106 при кэ = 0,0005 м).

Используя уравнение расхода G= р • о • S, определяют диаметр трубопровода

Здесь А» = 0,63 L; А* = 3,35 -2—; для 75 °С; рв = 975; = 0,001;

А* = 12110″3; Д? = 246. (При к, = 0,0005 м, А% = 117-10’3, Д? = 269).

Потери в местных сопротивлениях рассчитывают, используя понятие «эквивалентная длина» 1Э местных сопротивлений. Принимая

Подставляя значение X = ОД 1 (кэ / d)0,25 в (4 Л 0), получим

где А1 = 9,1/^з’25. Для р = 975 кг/м3, кэ = 0,001 м, А, = 51,1.

Отношение Арм к Арт представляет долю местных потерь давления

Из совместного решения уравнений (4.6), (4.10) и (4.11) получаем
где

где Apv — располагаемый перепад давлений, Па.

Суммарное падение давления

Значения коэффициентов А и Ав представлены в .

Проверка герметичности системы отопления

Проверку герметичности осуществляют в два этапа:

  • испытание с использованием холодной воды. Трубопроводы и батареи в многоэтажном здании наполняют теплоносителем, не нагревая его, и замеряют показатели давления. При этом его значение в течение первых 30 минут не может составить менее стандартных 0,06 МПа. Через 2 часа потери не могут быть более 0,02 МПа. При отсутствии порывов отопительная система многоэтажки дальше будет функционировать без проблем;
  • испытание с применением горячего теплоносителя. Отопительную систему тестируют до начала отопительного периода. Воду подают под определенным сдавливанием, его значение должно быть наиболее высоким для оборудования.

Расчет длительности строительства тепловых сетей

Но жильцы многоэтажных домов при желании могут установить такие измерительные приборы как манометры в подвале и в случае малейших отклонений давления от нормы сообщать об этом в соответствующие коммунальные службы. Если после всех предпринятых действий потребители по-прежнему недовольны температурой в квартире, возможно, им следует подумать над организацией альтернативного отопления.

Давление, которое должно быть в системе отопления многоквартирного дома, регламентируется СНиПами и установленными нормами

При расчете берут во внимание диаметр труб, типы трубопровода и отопительных приборов, расстояние до котельной, этажность

Поверочный расчет

После того как определены все диаметры труб в системе, переходят к поверочному расчету, цель которого — окончательно убедиться в правильности построения сети, проверить соответствие располагаемого напора на источнике и обеспечение заданного напора у самого удаленного потребителя. На этапе поверочного расчета ведется увязка всей сети в целом. Определяется конфигурация сети (радиальная, кольцевая). При необходимости по карте района корректируются длины / отдельных участков, вновь определяют диаметры трубопроводов. Результаты расчета дают основания для выбора насосного оборудования, используемого в теплосети.

Расчет заканчивается сводной таблицей и составлением пьезометрического графика, на который наносят все потери напоров в тепловой сети района. Последовательность расчета приведена ниже.

  • 1. Предварительно рассчитанный диаметр d /-го участка сети округляют до ближайшего диаметра по стандарту (в большую сторону) согласно сортаменту выпускаемых труб. Наиболее широко используются следующие стандарты: Dy = 50, 100, 150, 200, 250, 400, 500, 800, 1000 и 1200 мм. Более крупные трубы Dy = 1400 и ?>у= 1800 мм в сетях используются редко. В черте Москвы наиболее распрострайены магистральные сети с условным диаметром Dy = 500 мм. По таблицам определяют марку стали и сортамент изготавливаемой на заводе трубы, например: d= 259 мм, Сталь 20; d= 500 мм Сталь 15 ГС или др.
  • 2. Находят число Re и сравнивают его с предельным Renp, определяемым по формуле

Если Re > Renp, то трубопровод работает в области развитого турбулентного режима (квадратичная область). В противном случае надо воспользоваться расчетными соотношениями для переходного или ламинарного режима.

Как правило, магистральные сети работают в квадратичной области. Ситуация, когда в трубе возникает переходный или ламинарный режим, возможна лишь в локальных сетях, в абонентских ответвлениях с малой нагрузкой. Скорость v в таких трубопроводах может снизиться до значений v

  • 3. Подставляют фактическое (стандартное) значение диаметра трубопровода в формулы (5.32) и (5.25) и вновь повторяют расчет. При этом фактическое падение давления Ар должно оказаться ниже расчетного.
  • 4. Наносят на однолинейную схему фактические длины участков и диаметры трубопроводов (рис. 5.10).

На схему наносят также основные ответвления, ДТП и секционирующие задвижки, тепловые камеры, компенсаторы на теплотрассе. Схему выполняют в масштабе 1:25 000 или 1:10 000. Например, для ТЭЦ электрической мощностью 500 МВт и тепловой мощностью 2000 МДж/с (1700 Гкал/ч) радиус действия сети составляет около 15 км. Диаметр магистралей на выходе с коллектора ТЭЦ 1200 мм. По мере распределения воды в попутные ответвления диаметр магистральных трубопроводов уменьшается.

Фактические значения /, и dt каждого участка и номера тепловых камер, отметки от поверхности земли заносятся в итоговую табл. 5.3. За нулевую отметку 0,00 м принимается уровень площадки ТЭЦ.

На кафедре котельных установок МЭИ в 1999 г. разработана специальная программа «Gidra», написанная на алгоритмическом языке Фортран-IV и открытая в широком доступе в сети Интернет. Программа позволяет в диалоговом режиме произвести гидравлический расчет и получить сводную таблицу результатов. Кроме таблицы, ре-

Источник: mr-build.ru

Тепловой расчет (на примере котельной больницы)

Тепловой расчет (на примере котельной больницы)

РАСЧЕТ годовой потребности в тепле и топливе на примере котельной Центральной районной больницы.

Приложение №1 к письму Минэкономики России от 27 ноября 1992 г. № ВЕ-261 /25-510

ПЕРЕЧЕНЬ данных, которые должны представляться вместе с ходатайством об установлении вида топлива для предприятий (объединений) и топливо потребляющих установок.

1.Общие вопросы

Природный газ; 0,706; 2011г.

А) Потребность в теплоэнергии

Технологи ческие нужды

Собственные нужды котельной (ТЭЦ)

Потери в тепловых сетях

Б) Состав и характеристики оборудования котельных, вид и годовой расход топлива

Устанавливаемые котлы Vitoplex 100 Viessmann (950кВт)

Примечание:

  1. Годовой расход топлива указать общий по группам котлов.
  2. Удельный расход топлива указать с учетом собственных нужд котельной (ТЭЦ)
  3. В графах 4 и 7 указать способ сжигания топлива (слоевой, камерный, в кипящем слое).
  4. Для ТЭЦ указать тип и марку турбоагрегатов, их электрическую мощность в тыс. кВт, годовую выработку и отпуск электроэнергии в тыс. кВт.ч., годовой отпуск тепла в Гкал., удельные расходы топлива на отпуск электроэнергии и тепла (кг/Гкал), годовые расходы топлива производство электроэнергии и тепла в целом по ТЭЦ.
  5. При расходе более 100 тыс. т условного топлива в год должен представляться топливно-энергический баланс предприятия (объединения)

2. Расчет тепловой потребности в тепле и топливе.

2.1 Общая часть

Расчет годовой потребности в топливе для модульной котельной (отопление и горячее теплоснабжения) средней школы, выполнен по Заданию МО. Максимальные зимние часовые расходы тепла на отопление здания определены по укрупненным показателям. Расходы тепла на горячее водоснабжение определены согласно указаниям п. 3.13 СНиП 2.04.01-85 «Внутренний водопровод и канализация зданий». Климатологические данные приняты по СНиП 23-01—99 «Строительная климатология и геофизика». Расчетные усредненные температуры внутреннего воздуха приняты из «Методических указаний по определению расходов топлива, электроэнергии и воды на выработку тепла отопительными Котельными коммунальных теплоэнергетических предприятий». Москва 1994 г.

2.2 Источник тепла

Для теплоснабжения (отопления, горячего водоснабжения) школы предусматривается установка двух котлов Viessmann Vitoplex 100 (Германия) мощностью 950 кВт каждый в специально оборудованной котельной. Общая мощность устанавливаемого оборудования 1,634 Гкал/ч. В качестве основного топлива запрашивается природный газ. Резервное не требуется.

Источник: www.kotel-modul.ru

Тепловой расчет системы отопления: формулы, справочные данные и конкретный пример

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т1 — Т2) / 1000, где:

  • V – количество воды, потребляемой системой отопления, исчисляется тоннами или м3,
  • Т1 – число, показывающее температуру горячей воды, измеряется в оС и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65оС.
  • Т2 – температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом – 15.
  • 1 000 – коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

Qот = α * qо * V * (tв — tн.р) * (1 + Kн.р) * 0,000001, где

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30оС;
  • V – объем строения по наружным замерам;
  • qо – удельный отопительный показатель строения при заданной tн.р = -30оС, измеряется в ккал/м3*С;
  • tв – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Формулы для расчётов и справочные данные

Расчет тепловой нагрузки на отопление предполагает определение тепловых потерь(Тп) и мощности котла (Мк). Последняя рассчитывается по формуле:

  • Мк – тепловая производительность системы отопления, кВт;
  • Тп – тепловые потери дома;
  • 1,2 – коэффициент запаса (составляет 20%).

Двадцатипроцентный коэффициент запаса позволяет учесть возможное падение давления в газопроводе в холодное время года и непредвиденные потери тепла (например, разбитое окно, некачественная теплоизоляция входных дверей или небывалые морозы). Он позволяет застраховаться от ряда неприятностей, а также даёт возможность широкого регулирования режима температур.

Как видно из этой формулы мощность котла напрямую зависит от теплопотерь. Они распределяются по дому не равномерно: на наружные стены приходится порядка 40% от общей величины, на окна – 20%, пол отдаёт 10%, крыша 10%. Оставшиеся 20% улетучиваются через двери, вентиляцию.

Плохо утеплённые стены и пол, холодные чердак, обычное остекление на окнах — всё это приводит к большим потерям тепла, а, следовательно, к увеличению нагрузки на систему отопления

При строительстве дома важно уделить внимание всем элементам, ведь даже непродуманная вентиляция в доме будет выпускать тепло на улицу. Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное

Материалы, из которых построен дом, оказывают самое непосредственное влияние на количество потерянного тепла. Поэтому при расчётах нужно проанализировать, из чего состоят и стены, и пол, и всё остальное.

В расчётах, чтобы учесть влияние каждого из этих факторов, используются соответствующие коэффициенты:

  • К1 – тип окон;
  • К2 – изоляция стен;
  • К3 – соотношение площади пола и окон;
  • К4 – минимальная температура на улице;
  • К5 – количество наружных стен дома;
  • К6 – этажность;
  • К7 – высота помещения.

Для окон коэффициент потерь тепла составляет:

  • обычное остекление – 1,27;
  • двухкамерный стеклопакет – 1;
  • трёхкамерный стеклопакет – 0,85.

Естественно, последний вариант сохранит тепло в доме намного лучше, чем два предыдущие.

Правильно выполненная изоляция стен является залогом не только долгой жизни дома, но и комфортной температуры в комнатах. В зависимости от материала меняется и величина коэффициента:

  • бетонные панели, блоки – 1,25-1,5;
  • брёвна, брус – 1,25;
  • кирпич (1,5 кирпича) – 1,5;
  • кирпич (2,5 кирпича) – 1,1;
  • пенобетон с повышенной теплоизоляцией – 1.

Чем больше площадь окон относительно пола, тем больше тепла теряет дом:

Расчет мощности системы

Поправочных коэффициентов много. Как рассчитывали нагрузку предки, без проектов? Методом проб, ошибок, учитывали большой запас.

Читайте также:  Договор на оказание транспортных услуг в строительстве

Расчёт в процентах

Главное в самостоятельных расчетах – определить ориентировочный показатель тепла для выбора источника. Нужно учитывать:

  • восполнение тепла при потерях через стены, крышу, окна, двери;
  • отопление для компенсации, при вентилировании воздуха в помещениях;
  • обогрев специфических объектов;
  • резерв для экстремальных ситуаций: аномально холодной зимы, сооружение дополнительных хозяйственно-бытовых объектов.

Рассчитанной нагрузки, с учетом факторов, достаточно для полноценного обогрева зданий. В остальных случаях существуют проектные бюро, где за разработанные тепловые системы специалисты несут персональную ответственность

Методика расчета для природного газа

Примерный расход газа на отопление считается исходя из половинной мощности установленного котла. Все дело в том, что при определении мощности газового котла закладывается самая низкая температура. Это и понятно — даже когда на улице очень холодно, в доме должно быть тепло.

Посчитать расход газа на отопление можно самостоятельно

Но считать расход газа на отопление по этой максимальной цифре совсем неверно — ведь в основном температура значительно выше, а значит, топлива сжигается намного меньше. Потому и принято считать средний расход топлива на отопление — порядка 50% от теплопотерь или мощности котла.

Считаем расход газа по теплопотерям

Если котла еще нет, и вы оцениваете стоимость отопления разными способами, считать можно от общих теплопотерь здания. Они, скорее всего, вам известны. Методика тут такая: берут 50% от общих теплопотерь, добавляют 10% на обеспечение ГВС и 10% на отток тепла при вентиляции. В результате получим средний расход в киловаттах в час.

Далее можно узнать расход топлива в сутки (умножить на 24 часа), в месяц (на 30 дней), при желании — за весь отопительный сезон (умножить на количество месяцев, на протяжении которых работает отопление). Все эти цифры можно перевести в кубометры (зная удельную теплоту сгорания газа), а потом перемножить кубометры на цену газа и, таким образом, узнать затраты на отопление.

Наименование толпива Единица измерения Удельная теплота сгорания в кКал Удельная теплота сгорания в кВт Удельная теплота сгорания в МДж
Природный газ 1 м 3 8000 кКал 9,2 кВт 33,5 МДж
Сжиженный газ 1 кг 10800 кКал 12,5 кВт 45,2 МДж
Уголь каменный (W=10%) 1 кг 6450 кКал 7,5 кВт 27 МДж
Пеллета древесная 1 кг 4100 кКал 4,7 кВт 17,17 МДж
Высушенная древесина (W=20%) 1 кг 3400 кКал 3,9 кВт 14,24 МДж

Пример расчета по теплопотерям

Пусть теплопотери дома составляют 16 кВт/час. Начинаем считать:

  • средняя потребность в тепле в час — 8 кВт/ч + 1,6 кВт/ч + 1,6 кВт/ч = 11,2 кВт/ч;
  • в день — 11,2 кВт * 24 часа = 268,8 кВт;

в месяц — 268,8 кВт * 30 дней = 8064 кВт.

Переводим в кубометры. Если использовать будем природный газ, делим расход газа на отопление в час: 11,2 кВт/ч / 9,3 кВт = 1,2 м3/ч. В расчетах цифра 9,3 кВт — это удельная теплоемкость сгорания природного газа (есть в таблице).

Так как котел имеет не 100% КПД, а 88-92%, придется внести еще поправки на это — добавить порядка 10% от полученной цифры. Итого получаем расход газа на отопление в час — 1,32 кубометра в час. Далее можно рассчитать:

  • расход в день: 1,32 м3 * 24 часа = 28,8 м3/день
  • потребность в месяц:28,8 м3/день * 30 дней = 864 м3/мес.

Средний расход за отопительный сезон зависит от его длительности — умножаем на количество месяцев, пока длится отопительный сезон.

Этот расчет — приблизительный. В какой-то месяц потребление газа будет намного меньше, в самый холодный — больше, но в среднем цифра будет примерно такой же.

Расчет по мощности котла

Расчеты будут немного проще, если имеется рассчитанная мощность котла — тут уже учтены все необходимые запасы (на ГВС и вентиляцию). Потому просто берем 50% от расчетной мощности и далее считаем расход в день, месяц, за сезон.

Например, проектная мощность котла — 24 кВт. Для расчета расхода газа на отопление берем половину: 12 к/Вт. Это и будет средняя потребность в тепле в час. Чтобы определить расход топлива в час, делим на теплотворную способность, получаем 12 кВт/час / 9,3 к/Вт = 1,3 м3. Далее все считается как в примере выше:

    в день: 12 кВт/ч * 24 часа = 288 кВт в перерасчете на количество газа — 1,3 м3 * 24 = 31,2 м3

в месяц: 288 кВт * 30 дней = 8640 м3, расход в кубометрах 31,2 м3 * 30 = 936 м3.

Далее добавим 10% на неидеальность котла, получим, что для этого случая расход будет чуть больше 1000 кубометров в месяц (1029,3 куб). Как видите, в этом случае все еще проще — меньше цифр, но принцип тот же.

По квадратуре

Еще более приблизительные расчеты можно получить по квадратуре дома. Есть два способа:

  • Можно посчитать по СНиПовским нормам — на обогрев одного квадратного метра в Средней Полосе России в среднем требуется 80 Вт/м2 . Эту цифру можно применять, если ваш дом построен по всем требованиям и имеет хорошее утепление.
  • Можно прикинуть по среднестатистическим данным:
  • при хорошем утеплении дома требуется 2,5-3 куб/м2;

при среднем утеплении расход газа 4-5 куб/м2.

Каждый хозяин может оценить степень утепления своего дома, соответственно, можно прикинуть, какой расход газа будет в данном случае. Например, для дома в 100 кв. м. при среднем утеплении потребуется 400-500 кубометров газа на отопление, на дом в 150 квадратов уйдет 600-750 кубов в месяц, на отопление дома площадью 200 м2 — 800-100 кубов голубого топлива. Все это — очень приблизительно, но цифры выведены на основании многих фактических данных.

Преимущества и недостатки воздушного отопления

Бесспорно, воздушное отопление дома имеет ряд неоспоримых достоинств. Так, установщики подобных систем утверждают, что коэффициент полезного действия достигает 93%.

Также, благодаря малой инерционности системы, можно в максимально короткие сроки прогреть помещение.

Кроме того, подобная система позволяет самостоятельно интегрировать отопительное и климатическое устройство, что позволяет поддерживать оптимальную температуру помещения. Помимо этого, в процессе передачи тепла по системе промежуточные звенья отсутствуют.

Схема воздушного отопления. Нажмите для увеличения.

Действительно, ряд позитивных моментов очень привлекателен, за счет чего система воздушного отопления на сегодняшний день пользуется огромной популярностью.

Недостатки

Но среди такого ряда достоинств нужно выделить и некоторые минусы воздушного отопления.

Так, системы воздушного отопления загородного дома можно устанавливать только в процессе строительства непосредственно самого дома, то бишь, если вы сразу не позаботились об отопительной системе, то по завершению строительных работ вам это сделать не удастся.

Следует отметить, что устройство воздушного отопления нуждается в регулярном сервисном обслуживании, так как рано или поздно могут возникать некоторые неполадки, которые способны привести к полной поломке оборудования.

Недостатком такой системы является и то, что вы не сможете ее модернизировать.

Если вы, все-таки, решили установить именно эту систему, вам следует позаботиться о дополнительном источнике электроснабжения, так как устройство для воздушной системы отопления имеет немалую потребность в электричестве.

При всех, как говорится, «за» и «против» системы воздушного отопления частного дома, она широко используется во всей Европе, в особенности в тех странах, где климат более холодный.

Также исследования показывают, что около восьмидесяти процентов дач, коттеджей и загородных домов используют именно систему воздушного отопления, так как это позволяет одновременно обогревать комнаты непосредственно всего помещения.

Специалисты настоятельно не рекомендуют в этом деле принимать поспешных решений, которые впоследствии могут повлечь за собой ряд негативных моментов.

Для того чтобы оборудовать отопительную систему своими руками, вам потребуется иметь определенный багаж знаний, а также обладать навыками и умениями.

Помимо этого, следует запастись терпение, ведь этот процесс, как показывает практика, занимает немало времени. Безусловно, специалисты с этой задачей справятся куда более быстрее непрофессионального застройщика, но ведь за это придется заплатить.

Поэтому многие, все же, отдают предпочтение позаботиться об отопительной системе самостоятельно, хотя, все-таки, в процессе работы вам все равно может потребоваться помощь.

Запомните, правильно установленная отопительная система – это залог уютного жилища, теплота которого будет согревать вас даже в самые жуткие морозы.

Пример расчета мощности батарей отопления

Возьмем помещение площадью 15 квадратных метров и с потолками высотой 3 метра.Объем воздуха, который предстоит нагреть в отопительной системе составит:

V=15×3=45 метров кубических

Далее считаем мощность, которая потребуется для обогрева помещения заданного объема. В нашем случае — 45 кубических метров. Для этого необходимо умножить объем помещения на мощность, необходимую для обогрева одного кубического метра воздуха в заданном регионе. Для Азии, Кавказа это 45 вт, для средней полосы 50 вт, для севера около 60 вт. В качестве примера возьмем мощность 45 вт и тогда получим:

45×45=2025 вт — мощность, необходимая для обогрева помещения с кубатурой 45 метров

Нормы теплоотдачи для отопления помещения

Согласно практике для отопления помещения с высотой потолка не превышающей 3 метра, одной наружной стеной и одним окном, достаточно 1 кВт тепла на каждые 10 квадратных метров площади.

Для более точного расчета теплоотдачи радиаторов отопления необходимо сделать поправку на климатическую зону, в которой находится дом: для северных районов для комфортного отопления 10 м2 помещения необходимо 1,4-1,6 кВт мощности; для южных районов – 0,8-0,9 кВт. Для Московской области поправки не нужны. Однако как для Подмосковья, так и для других регионов рекомендуется оставлять запас мощности в 15% (умножив расчетные значения на 1,15).

Существуют и более профессиональные методы оценки, описанные далее, но для грубой оценки и удобства вполне достаточно и этого способа. Радиаторы могут оказаться чуть более мощными, чем минимальная норма, однако при этом качество отопительной системы лишь возрастет: будет возможна более точная настройка температуры и низкотемпературный режим отопления.

Полная формула точного расчета

Подробная формула позволяет учесть все возможные варианты потери тепла и особенности помещения.

Q = 1000 Вт/м2*S*k1*k2*k3…*k10,

  • где Q – показатель теплоотдачи;
  • S – общая площадь помещения;
  • k1-k10 – коэффициенты, учитывающие теплопотери и особенности установки радиаторов.

Показать значения коэффициентов k1-k10

k1 – к-во внешних стен в помещения (стен, граничащих с улицей):

  • одна – k1=1,0;
  • две – k1=1,2;
  • три – k1-1,3.

k2 – ориентация помещения (солнечная или теневая сторона):

  • север, северо-восток или восток – k2=1,1;
  • юг, юго-запад или запад – k2=1,0.

k3 – коэффициент теплоизоляции стен помещения:

  • простые, не утепленные стены – 1,17;
  • кладка в 2 кирпича или легкое утепление – 1,0;
  • высококачественная расчетная теплоизоляция – 0,85.

k4 – подробный учет климатических условий локации (уличная температура воздуха в самую холодную неделю зимы):

  • -35°С и менее – 1,4;
  • от -25°С до -34°С – 1,25;
  • от -20°С до -24°С – 1,2;
  • от -15°С до -19°С – 1,1;
  • от -10°С до -14°С – 0,9;
  • не холоднее, чем -10°С – 0,7.

k5 – коэффициент, учитывающий высоту потолка:

  • до 2,7 м – 1,0;
  • 2,8 — 3,0 м – 1,02;
  • 3,1 — 3,9 м – 1,08;
  • 4 м и более – 1,15.

k6 – коэффициент, учитывающий теплопотери потолка (что находится над потолком):

  • холодное, неотапливаемое помещение/чердак – 1,0;
  • утепленный чердак/мансарда – 0,9;
  • отапливаемое жилое помещение – 0,8.

k7 – учет теплопотерь окон (тип и к-во стеклопакетов):

обычные (в том числе и деревянные) двойные окна – 1,17;

k8 – учет суммарной площади остекления (суммарная площадь окон : площадь помещения):

  • менее 0,1 – k8 = 0,8;
  • 0,11-0,2 – k8 = 0,9;
  • 0,21-0,3 – k8 = 1,0;
  • 0,31-0,4 – k8 = 1,05;
  • 0,41-0,5 – k8 = 1,15.

k9 – учет способа подключения радиаторов:

  • диагональный, где подача сверху, обратка снизу – 1,0;
  • односторонний, где подача сверху, обратка снизу – 1,03;
  • двухсторонний нижний, где и подача, и обратка снизу – 1,1;
  • диагональный, где подача снизу, обратка сверху – 1,2;
  • односторонний, где подача снизу, обратка сверху – 1,28;
  • односторонний нижний, где и подача, и обратка снизу – 1,28.

k10 – учет расположения батареи и наличия экрана:

  • практически не прикрыт подоконником, не прикрыт экраном – 0,9;
  • прикрыт подоконником или выступом стены – 1,0;
  • прикрыт декоративным кожухом только снаружи – 1,05;
  • полностью закрыт экраном – 1,15.

После определения значений всех коэффициентов и подстановки их в формулу, можно посчитать максимально надежный уровень мощности радиаторов. Для большего удобства ниже находится калькулятор, где можно рассчитать те же самые значения быстро выбрав соответствующие исходные данные.

2 Сезонные особенности отопления

Температура теплоносителя, нормы которой зависят от массы факторов, в точках разбора должна лежать в диапазоне 60−75 градусов Цельсия. Определенные изменения могут присутствовать в зависимости от текущего сезона. В сеть горячего водоснабжения носитель тепла подается с трубы:

  1. 1. В зимний период — с трубы «обратки», что требуется для защиты пользователей от обжигания кипятком.
  2. 2. В летний период — с прямой трубы, так как летом источник тепла прогревается не выше 75 градусов Цельсия.

В период отопления появляется необходимость составлять температурный график, согласно которому средняя суточная температура воды из «обратки» не должна превышать его на 5% ночью и на 3% днем.

Не секрет, что одной из ключевых составляющих каждой системы отопления является стояк, который позволяет теплоносителю нормально проходить в батарею или радиатор из теплового узла. Актуальные нормы требуют поддержания нагрева в стояке в диапазоне 70−90 градусов Цельсия. Что касается фактических градусов, то они определяются выходными параметрами ТЭЦ или котельной установки. С приходом летнего потепления, когда горячее водоснабжение требуется только для стирки и принятия душа, этот диапазон опускается до показателей 40−60 градусов.

Читайте также:  Иом это в строительстве

Если провести простые наблюдения, можно заметить, что в соседней квартире обогревательные элементы более горячие или холодные, чем в собственной. Подобная разница между температурными показателями объясняется применяемым способом раздачи ГВС. В однотрубных установках жидкость раздается:

  1. 1. Сверху. В таком случае обогревательные радиаторы на верхних этажах прогреваются быстрее и сильнее, чем на нижних.
  2. 2. Снизу. Здесь ситуация выглядит противоположным образом.

Цели и задачи гидравлического расчёта

С инженерной точки зрения жидкостная система отопления представляется достаточно сложным комплексом, включающим устройства генерации тепла, его транспортировки и выделения в обогреваемых помещениях. Идеальным режимом работы гидравлической системы отопления считается такой, при котором теплоноситель поглощает максимум тепла от источника и передаёт его комнатной атмосфере без потерь в процессе перемещения. Конечно, такая задача видится совершенно недостижимой, однако более вдумчивый подход позволяет предсказать поведение системы в различных условиях и максимально приблизиться к эталонным показателям. Это и есть главная цель проектирования систем отопления, важнейшей частью которого по праву считается гидравлический расчёт.

Практические цели гидравлического расчёта таковы:

  1. Понять, с какой скоростью и в каком объёме осуществляется перемещение теплоносителя в каждом узле системы.
  2. Определить, какое влияние оказывает изменение режима работы каждого из устройств на весь комплекс в целом.
  3. Установить, какая производительность и рабочие характеристики отдельных узлов и устройств будут достаточными для выполнения отопительной системой своих функций без значительного удорожания и обеспечения необоснованно высокого запаса надёжности.
  4. В конечном итоге — обеспечить строго дозированное распределение тепловой энергии по различным зонам отопления и гарантировать, что это распределение будет сохраняться с высоким постоянством.

Можно сказать больше: без хотя бы базовых расчётов невозможно добиться приемлемой стабильности работы и долговечного использования оборудования. Моделирование действия гидравлической системы, по сути, является базисом, на котором строится вся дальнейшая проектная разработка.

Важность параметра

С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

  • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
  • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
  • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

Особенности расчета тепловой энергии на отопление здания

Помещения со стандартной высотой потолков

Расчет числа секций радиаторов отопления для типового дома ведется исходя из площади комнат. Площадь комнаты в доме типовой застройки вычисляют, умножив длину комнаты на ее ширину. Для обогрева 1 квадратного метра требуется 100 Вт мощности отопительного прибора, и чтобы вычислить общую мощность, необходимо умножить полученную площадь на 100 Вт.

Полученное значение означает общую мощность отопительного прибора. В документации на радиатор обычно указана тепловая мощность одной секции. Чтобы определить количество секций, нужно разделить общую мощность на это значение и округлить результат в большую сторону.

Комната с шириной 3,5 метра и длиной 4 метра, с обычной высотой потолков. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций.

  1. Определяем площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м 2 .
  2. Находим общую мощность отопительных приборов 14·100 = 1400 Вт.
  3. Находим количество секций: 1400/160 = 8,75. Округляем в сторону большего значения и получаем 9 секций.

Также можно воспользоваться таблицей:

Таблица для расчета количества радиаторов на М2

Для комнат, расположенных с торца здания, расчетное количество радиаторов необходимо увеличить на 20%..

Помещения с высотой потолков более 3 метров

Расчет количества секций отопительных приборов для комнат с высотой потолков более трех метров ведется от объема помещения. Объем – это площадь, умноженная на высоту потолков. Для обогрева 1 кубического метра помещения требуется 40 Вт тепловой мощности отопительного прибора, и общую его мощность вычисляют, умножая объем комнаты на 40 Вт. Для определения количества секций это значение необходимо разделить на мощность одной секции по паспорту.

Комната с шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов отопления.

  1. Находим площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м 2 .
  2. Находим объем комнаты, умножив площадь на высоту потолков: 14·3,5 = 49 м 3 .
  3. Находим общую мощность радиатора отопления: 49·40 = 1960 Вт.
  4. Находим количество секций: 1960/160 = 12,25. Округляем в большую сторону и получаем 13 секций.

Также можно воспользоваться таблицей:

Как и в предыдущем случае, для угловой комнаты этот показатель нужно умножить на 1,2. Также необходимо увеличить количество секций в случае, если помещение имеет один из следующих факторов:

  • Находится в панельном или плохо утепленном доме;
  • Находится на первом или последнем этаже;
  • Имеет больше одного окна;
  • Расположена рядом с неотапливаемыми помещениями.

В этом случае полученное значение необходимо умножить на коэффициент 1,1 за каждый из факторов.

Угловая комната с шириной 3,5 метра и длиной 4 метра, с высотой потолков 3,5 м. Расположена в панельном доме, на первом этаже, имеет два окна. Мощность одной секции радиатора – 160 Вт. Необходимо найти количество секций радиаторов отопления.

  1. Находим площадь комнаты, умножив ее длину на ширину: 3,5·4 = 14 м 2 .
  2. Находим объем комнаты, умножив площадь на высоту потолков: 14·3,5 = 49 м 3 .
  3. Находим общую мощность радиатора отопления: 49·40 = 1960 Вт.
  4. Находим количество секций: 1960/160 = 12,25. Округляем в большую сторону и получаем 13 секций.
  5. Умножаем полученное количество на коэффициенты:

Угловая комната – коэффициент 1,2;

Панельный дом – коэффициент 1,1;

Два окна – коэффициент 1,1;

Первый этаж – коэффициент 1,1.

Таким образом, получаем: 13·1,2·1,1·1,1·1,1 = 20,76 секций. Округляем их до большего целого числа – 21 секция радиаторов отопления.

При расчетах следует иметь в виду, что различные типы радиаторов отопления имеют разную тепловую мощность. При выборе количества секций радиатора отопления необходимо использовать именно те значения, которые соответствуют выбранному типу батарей .

Для того чтобы теплоотдача от радиаторов была максимальной, необходимо устанавливать их в соответствии с рекомендациями производителя, соблюдая все оговоренные в паспорте расстояния. Это способствует лучшему распределению конвективных потоков и уменьшает потери тепла.

  • Расход дизельного котла отопления
  • Биметаллические радиаторы отопления
  • Как сделать расчет тепла на отопление дома
  • Расчет арматуры для фундамента

Параметры для расчета тепловых нагрузок

Информация дается в ознакомительных целях, для расчётов нагрузки, не предназначенных проектной документации, нужной для подключения здания к центральной теплосети — в качестве статистической базы расходов теплоэнергии.

Произвести точный расчет сложно, — трудно учесть нюансы здания. Хорошо воспользоваться опытом знакомых, статистическими данными похожих объектов (расходы теплоэнергии в течение нескольких лет). Если нет, придется осваивать навык проектирования, расчета нагрузок самостоятельно.

  • Перед вычислениями нужно определить назначение здания. Выявить, составить температурную смету по оптимальным режимам каждого помещения, — данные можно найти в СНиП 2.04.05, ДВН В.2.5-39:2008. Содержатся рекомендации по теплоносителю, оптимальным режимам для помещений. Правильный режим поможет в учёте, распределении тепловой энергии.
  • Нужно изучить конструктивные особенности здания, используемые строительные материалы, толщину стен, теплоизоляцию, тип, характер кровли, чердачного помещения, количество, площадь дверных, оконных проемов. Каждый стройматериал обладает теплопроводностью, нужно знать, какой материал где используется, определить площадь, выявить общие теплопотери здания.
  • В отдельные расчеты нужно отнести сауны, бани, оранжереи.
  • Система вентиляции — значительная нагрузка на систему отопления.
  • Интенсивность использования помещений. Нужно ли постоянное поддержание температуры для проживания или только для обслуживания.

Уточняющих факторов для расчета нагрузки может быть больше.

Расчет отопления частного дома

Обустройство жилья отопительной системой – главная составляющая создания в доме комфортных температурных условий проживания в нем

В обвязку теплового контура входят много элементов, поэтому важно уделить внимание каждому из них. Не менее важно грамотно выполнить расчет отопления частного дома, от которого во многом зависит эффективность работы теплового блока, равно как и его экономичность. А как рассчитать систему отопления по всем правилам, вы узнаете из этой статьи

А как рассчитать систему отопления по всем правилам, вы узнаете из этой статьи.

  1. Из чего складывается нагревательный узел?
  2. Подбор нагревательного элемента
  3. Определение мощности котла
  4. Расчет количества и объема теплообменников
  5. От чего зависит количество радиаторов
  6. Формула и пример расчета
  7. Трубопроводная отопительная система
  8. Монтаж отопительных приборов

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста!

Извините за беспокойство. Анатолий.

Источник: geostart.ru

Расчет расхода теплоносителя

Расход теплоносителя формула

Упрощенно расход теплоносителя по тепловой нагрузке можно определить по формуле :

где G — расход воды, м 3 /ч,
Q — тепловая нагрузка, Гкал/ч,
Тпод — температура на подающем трубопроводе,°С
Тобр — температура на обратном трубопроводе,°С.

Расчет расхода теплоносителя

Предлагаем вам воспользоваться калькулятором расхода теплоносителя. Заполните три поля формы и получите результат. При вводе обращайте внимание на размерность тепловой нагрузки, по умолчанию используются ГКал/час , не забудьте её изменить, если вы применяете другую размерность.

Калькулятор расхода теплоносителя:

Ссылки на другие калькуляторы:

Информация предоставлена исключительно в ознакомительных целях. Администрация сайта не несет ответственность за все возможные последствия, возникшие по причине использования этой информации.

Источник: tem-sv.ru

Рейтинг
Загрузка ...