Классификация горных пород в строительстве

Генетическая классификация горных пород учитывает условия их образования, которые предопределяют строение и, следовательно, свойства пород. В соответствии с этой классификацией выделены следующие типы пород: магматические — первичные , образующиеся при остывании магмы; — осадочные — вторичные , образовавшиеся в результате выветривания магматических пород; — метаморфические — осадочные и магматические породы, изменившие свое строение и свойства в результате длительных физико-химических процессов, -протекающих под воздействием высоких давлений, температур и минерализованных вод, во время нахождения их в земной коре.

Магма представляет собой высокотемпературный силикатный расплав, который в зависимости от режима охлаждения может образовать: — плотные кристаллические породы, если остывание магмы происходило медленно и под большим давлением в глубине земной коры

Если порода образовалась из основной магмы, в ней преобладают темноокрашенные железистомагнезиальные алюмосиликаты. Практически во всех изверженных кристаллических породах основная доля объема приходится на полевые шпаты.

География. 8 класс. Классификация горных пород и минералов /08.10.2020/

Ниже рассмотрены главнейшие представители изверженных пород. Глубинные породы характеризуются кристаллической структурой, отсутствием пор, высокой прочностью, твердостью и морозостойкостью. В полированном виде глубинные породы очень декоративны. К ним относятся: граниты, сиениты, габбро и диориты.

Гранит — зернисто-кристаллическая порода , сложенная из трех минералов: кварца (20…40 %), полевых шпатов (40…70 %) и слюды (5…20 %); иногда слюду заменяет роговая обманка.

Строительные свойства гранитов (в среднем) следующие: плотность — 2600…2700 кг/м ; предел прочности при сжатии — 100… 250 МПа, а при растяжении, как и у других каменных материалов, в 20…30 раз ниже; вследствие малой пористости и низкого водопогло-щения ( < 1 %) граниты очень морозостойки (F >1000); химическая стойкость их также высока; граниты — твердые породы (твердость более 6).

Цвет гранитов определяется цветом полевого шпата и бывает чаще всего серым, розовым и темно-красным. Граниты хорошо полируются, приобретая декоративный вид. Граниты широко применяют для облицовки зданий и инженерных сооружений (набережные, мосты и т. п.), устройства полов общественных зданий и монументальной скульптуры.

Сиениты — аналоги гранита, но без кварца (образовались из средних магм); свойства и области применения такие же, как у гранита.

Диориты — темно-серая мелкокристаллическая порода, состоящая в основном из полевых шпатов (около 75 %) и темноокрашенных минералов. Плотность — 2800…3000 кг/м3. Отличается повышенной ударной вязкостью. Применяют для облицовки и в дорожном строительстве (брусчатка и т. п.).

Габбро — крупнокристаллическая порода, образовавшаяся из основной магмы; состоит из полевых шпатов (около 50 %) и темноокрашенных минералов (авгита, роговой обманки и т. п.). Плотность — 2900…3300 кг/м3; предел прочности при сжатии — 200…350 МПа. Как и гранит, габбро характеризуется высокой морозостойкостью и стойкостью против выветривания.

Урок 12 Горные породы и минералы

Цвет — темно-серый, темно-зеленый до черного. Габбро хорошо полируется и имеет красивую текстуру. Одна из разновидностей габбро — лабрадорит — очень декоративна благодаря содержащемуся в ней ирризирующему полевому шпату.

Излившиеся плотные породы имеют слабозакристаллизованную или стеклообразную структуру. Для ряда излившихся пород характерна порфировая структура (рис. 4.2, б), когда в общей аморфной массе вкарплены кристаллы какого-либо минерала. Так, излившийся аналог гранита — кварцевый порфир — имеет вкрапления кристаллов кварца, аналог диорита — порфирит — имеет вкрапления полевых шпатов. Некоторые виды порфиров очень декоративны.

Базальт — аналог габбро — самая распространенная излившаяся порода; в зависимости от условий образования имеет стекловатую или скрытнокристаллическую структуру. Цвет базальта — темно-серый до черного. По физико-механическим показателям базальт аналогичен габбро, а по прочности даже превосходит его (Лсж достигает 500 МПа). Базальты очень твердые, но хрупкие породы, что затрудняет их обработку.

Плотные излившиеся породы менее декоративны и менее стойки к выветриванию, чем их глубинные аналоги. Применяют их главным образом как щебень для бетона, отсыпки железнодорожных путей и т. п. Базальт также используют в качестве сырья для каменного литья и получения высококачественной минеральной ваты. Излившиеся пористые породы образовались непосредственно при извержении вулканов. Первичными продуктами извержения являются вулканические пеплы, пески и пемза; с течением времени они могли цементироваться, образуя туфы.

Вулканические пепел и песок — порошкообразные частицы, имеющие стеклообразное строение, благодаря чему при добавлении извести или цемента, а иногда и самостоятельно они способны к твердению. Используются как активная добавка к вяжущим (впервые были использованы в Древнем Риме — пепел Везувия — для придания извести водостойкости).

Пемза — очень пористая легкая порода в виде кусков размером 5… 100 мм. Плотность пемзы в куске — 500… 1000 кг/м . Большая пористость (до 80 %) обусловливает низкую теплопроводность (0,14…0,23 Вт/(м * К)). Прочность при сжатии пемзы не велика — 2…4 МПа, но этого достаточно для получения на базе пемзы легких бетонов. Кроме того, пемза используется в молотом виде как добавка к цементам и в качестве абразивного порошка.

Вулканические туфы — порода, образовавшаяся из вулканических пеплов, которые омонолитились в результате спекания массы, сохранившей высокую температуру, или в результате природной цементации. Вулканические туфы — пористая порода (П = 30…60 %), имеющая низкую плотность, равную 800…1800 кг/м3.

Поры у туфа в большинстве своем замкнутые, что обусловливает его высокую морозостойкость. Прочность при сжатии зависит от пористости и составляет 2…20 МПа. Теплопроводность у туфа в 1,5…2 раза ниже, чем у кирпича. Цвет туфов разнообразный, но не яркий, а глухой; основные оттенки: красно-оранжевые и до коричневато-лиловых. Крупнейшие месторождения туфов, возникшие в результате деятельности ныне потухшего вулкана Арарат, имеются в Армении.

Туфы используют как облицовочный материал, а в местах крупных месторождений — как эффективный материал для кладки стен. Благодаря низкой твердости туфа стеновые камни из него вырезают механизированным способом прямо в карьере (рис. 4.3). В тонкомолотом виде туф используют как добавку к цементам.

Туфовая лава — разновидность вулканических туфов, образовавшаяся при попадании пепла и пемзы в огненно-жидкую лаву. По структуре, свойствам и областям применения туфовая лава аналогична вулканическому туфу, но благодаря большей доле замкнутых пор более долговечна.

Осадочные породы

Осадочные породы в зависимости от происхождения принято делить на: — механические осадки , при образовании которых главную роль играли физико-механические процессы (воздействие воды, мороза, нагрева и охлаждения и т. п.); при этом, как правило, не менялся минеральный и химический состав исходных пород; — органогенные осадки , которые образовались из остатков (скелетной части) живых организмов, как правило, морской фауны (ракушки, кораллы и т. п.); — хемогенные осадки , образовавшиеся в результате растворения первичных пород и последующей кристаллизации из водных растворов.

Механические осадочные породы могут быть рыхлые ( гравий, песок, глина ) и сцементированные — те же рыхлые осадки, частицы которых склеены природным цементом (брекчии, конгломераты, песчаники). Рыхлые механические осадочные породы: глины, песок .

Необходимо подчеркнуть причины, по которым преобладающим минералом песка является кварц . При выветривании гранита кварц оказывается самым твердым и химически стойким минералом, не подвергающимся разрушению, а разрушающим более слабые соседствующие с ним минералы (полевой шпат, слюду и т. п.). Его зерна лишь слегка окатываются при перемещении ветром или водой.

Не менее распространенной, чем песок, рыхлой осадочной породой является глина , поскольку источником ее образования служат самые распространенные минералы изверженных пород — полевые шпаты .

Под действием минерализованных грунтовых вод и давления вышележащих горных пород рыхлые осадочные породы могут цементироваться, образуя так называемые сцементированные осадочные породы: песчаники, брекчии и конгломераты .

Песчаники состоят из зерен кварцевого песка, сцементированного природным цементом, например, карбонатом кальция , водным кремнеземом, гипсом и т. п. Цементация происходит путем постепенного осаждения на зернах песка цементирующего вещества из воды (как накипь в чайнике). В зависимости от цементирующего вещества песчаники называют известковыми, кремнистыми и т. д. Цвет их зависит от цвета цементирующего вещества.

Наибольшее применение в строительстве получили достаточно водостойкие известковые и кремнистые песчаники. Известковые песчаники легче обрабатываются, кремнистые более прочные и стойкие.

Плотность песчаников — 2300…2500 кг/м , прочность — от 10 до 100 МПа. Песчаники использовали для возведения зданий с глубокой древности, так как добывать их значительно легче, чем магматические породы, а свойства их достаточно хорошие.

Известно много памятников архитектуры: соборов и замков (например, Виндзорский замок — резиденция английских королей), построенных из песчаника. В настоящее время песчаники используют для фундаментов, подпорных стенок, тротуаров, а особо стойкие — для облицовок; кроме того, из песчаников делают щебень для бетонов и дорожных покрытий.

Известняки плотные — широко распространенная на Земле горная порода, состоящая в основном из кальцита СаС03 ; кроме кальцита они содержат примеси магнезита, глины и кремнезема. Цвет известняков в зависимости от примесей: белый, светло-серый, серовато-кремовый или желтоватый.

Плотность известняков — 2000…2600 кг/м , прочность при сжатии у них сравнима с прочностью бетона и составляет 10… 100 МПа. Твердость небольшая — З. 3,5, что позволяет легко добывать и обрабатывать известняк. Морозостойкость известняков существенно зависит от пористости, степени цементации, наличия примесей и нуждается в постоянном контроле. Абсолютно не стойки они к воздействию кислых сред.

Известняки — одна из самых важных горных пород для строителей. Они издавна использовались для возведения зданий и их облицовки (достаточно вспомнить слова «Москва белокаменная»), из известняков делались фундаменты. Самый распространенный щебень для бетонов и дорожных покрытий — известняковый, и, наконец, известняк — сырье для получения извести и цемента.

Мраморовидные известняки — переходные породы от плотных известняков к мраморам . Они имеют большую плотность (до 2700 кг/м ) и прочность (60…150 МПа), чем обычный известняк.

Известняк-ракушечник — пористая порода, состоящая из раковин и панцирей моллюсков, сцементированных известковым цементом. Плотность ракушечника — 900…2000 кг/м , прочность при сжатии — 0,5…15 МПа. Он имеет низкую теплопроводность и легко поддается распиловке. Используют в виде камней и блоков как местный стеновой материал. Декоративные разновидности ракушечника применяют как облицовочный материал.

Мел — землистая горная порода, состоящая из мельчайших обломков раковин и скелетов морских микроорганизмов, представляет собой почти чистый кальцит СаС03. Используют при производстве извести, цемента, стекла и благодаря высокой дисперсности для приготовления красок и шпатлевок.

Диатомиты и трепелы — рыхлые землистые породы белого, серого или желтоватого цвета, в основном состоящие из аморфного кремнезема Si02 * лН20; по внешнему виду и физическим свойствам похожи на мел. Они образовались из остатков мельчайших водорослей, а также кремневых скелетов морской микрофауны (диатомий, радиолярий и т. п.) с примесью глины и ила. Со временем под давлением вышележащих слоев горных пород диатомиты и трепелы уплотняются и превращаются в плотную, прочную и трудно размокающую в воде породу — опоку.

В диатомите и трепеле до 75…95 % активного кремнезема, поэтому их применяют как гидравлическую добавку к вяжущим. Их также используют при производстве теплоизоляционных материалов. Хемогенные осадочные породы образовались главным образом при испарении вод, содержащих минеральные соли. Для строителей интерес представляют сульфаты и карбонаты кальция и магния: гипс, ангидрит, известковый туф, магнезит и доломит.

Известковый туф образовался в результате выпадения СаСОэ из источников подземных углекислых вод. Туфы пористы и имеют ноздреватое строение. Они легко поддаются распиловке и используются для внутренней облицовки помещений, улучшая их акустические свойства. Для этих целей приобрела популярность разновидность туфа — травертин.

Магнезит — порода, состоящая в основном из минерала магнезита MgC03. Используют для получения огнеупорных материалов и магнезиальных вяжущих.

Доломит — порода, состоящая в основном из минерала доломита СаС03 * MgC03, с примесью глины, оксидов железа и др. По структуре и физическим свойствам доломит близок к плотным известия-кам: рт = 2200…2800 кг/м ; Дсж = 50…200 МПа. Поэтому его применяют в качестве строительного камня и щебня для бетона.

Гипс — горная порода обычно белого или серого цвета, состоящая из минерала того же названия CaS04 -2H20. В строительстве используют как сырье для получения гипсовых вяжущих. Благодаря низкой твердости применяют для изготовления мелких поделок по камню.

Ангидрит — плотная горная порода, состоящая преимущественно из минерала ангидрита CaS04. Цвет породы белый с голубым или серым оттенком. Используют для получения вяжущих и для внутренней отделки и скульптурных работ. На открытом воздухе быстро выветривается, переходя в гипс.

Метаморфические породы

Горные породы, находящиеся в земной коре, со временем могут существенно изменить структуру и свойства, не меняя принципиально свой химический состав. Причина таких изменений — воздействие давления, повышенных температур и минерализованных вод.

Метаморфизироваться могут как магматические, так и осадочные породы. Яркий пример метаморфизма — превращение массивной магматической породы перидотита в слоистую породу серпентинит, имеющую в своем составе тонковолокнистый минерал — асбест. Среди метаморфических пород для строителя представляют интерес мрамор, кварцит, глинистый сланец и гнейс.

Мраморы — метаморфизированные известняки, состоящие из плотно сросшихся между собой кристаллов кальцита (СаС03) , иногда с примесью доломита (СаС03 * MgC03). Кристаллы в мраморе прочно связаны друг с другом без цементирующего вещества.

Это произошло за счет огромного многостороннего давления на известняки в условиях повышенных температур. Мрамор имеет высокую плотность (2600…2800 кг/м ) и прочность (RQX = 30… 100 МПа); водо-поглощение мрамора менее 1%. При всем этом твердость мрамора не высока — З. 3,5, что облегчает его обработку.

Мраморы могут быть как чисто белого цвета, так и самых разнообразных цветов с характерным «мраморовидным» рисунком. Окраска мрамора объясняется проникновением в известняк в процессе мета-морфизации минерализованных вод, из которых впоследствии кристаллизуются окрашивающие мрамор минералы — примеси: гематит, лимонит, хлорит и др. Отличает мрамор от известняков еще одно свойство: мраморы хорошо полируются.

Мраморы широко применяют для отделки зданий и общественных сооружений.
Цвет кварцитов белый, красный, темно-вишневый. Применяют их в ответственных частях зданий и сооружений, для облицовки, а также в виде щебня для бетона и сырья для получения огнеупоров.

Гнейсы — слоистая порода, образовавшаяся в результате перекристаллизации гранитов и других магматических пород при одноосном давлении. Поэтому гнейсы имеют слоистое (сланцеватое) строение, что облегчает их добычу и обработку, но снижает стойкость к выветриванию. Раскалываются гнейсы по слоям слюды.

Глинистый сланец образовался из глин в результате перекристаллизации в условиях одноосного давления и повышенных температур. Сланцы имеют темно-серый цвет и легко раскалываются на плоские плитки. Такие плитки, называемые шифером (от нем. schiefer — сланец), используются в качестве долговечного кровельного материала. Многие архитектурные памятники в Европе имеют сланцевую кровлю. В настоящее время сланцевые кровли стали популярны в коттеджном строительстве.

Щебень для дорожного строительства
Из всех природных материалов, используемых в дорожном строительстве щебень, пожалуй, можно считать основным. Объемы производства щебня превышают 3 млрд. кубометров в год. Доля России составляет .
Читать полностью

Слэбы
Натуральный камень придает зданиям и сооружениям монументальность, экологичность, а нередко и особый шик. Этот материал широко используется для изготовления лестниц, фонтанов, малых архитектурных ф .
Читать полностью
Читайте также:  Расчет блоков на строительство перегородок

Инженерно-геологические изыскания в Москве
Продолжаем знакомиться с отечественными компаниями на портале ELport.ru, сегодня представляем нашим читателям московскую фирму «Геотоп Инжиниринг», которая предлагает услуги геодези .
Читать полностью

Морозостойкость щебня. Прочность щебня
Морозостойкость щебня Морозостойкость щебня характеризуют числом циклов замораживания и оттаивания. Разрешается оценивать морозостойкость щебня по числу циклов насыщения в растворе сернокислого .
Читать полностью

Известняковый щебень
Известняковый щебень — продукт дробления осадочной горной породы органического происхождения, состоящей из карбоната кальция Са СО3 с примесями. Известняковая порода — относится к широко расп .
Читать полностью

Опубликовать свою статью можно из личного кабинета фирмы.
Зарегистрироваться и получить личный кабинет — здесь.

Источник: elport.ru

Горные породы в строительстве

Классификация горных пород. В зависимости от условий образования горные породы разделяют на три группы: изверженные или магматические (первичные), осадочные (вторичные) и метаморфические (видоизмененные). В своей основе все группы горных пород образовались из магмы — сложного силикатного расплава, который возникает в земной коре в условиях высокой температуры.
Изверженные (магматические) горные породы образовались непосредственно из магмы в результате ее охлаждения и застывания и слагают около 90% земной коры. В зависимости от условий остывания магмы среди изверженных пород различают глубинные, или интрузивные (лат. intrusio — внедрение) и излившиеся, или эффузивные (лат. effusio — излияние).
Глубинные (интрузивные) породы возникли в результате постепенного остывания высокотемпературной магмы в недрах земной коры при высоком давлении. В этих условиях все составные части магмы успели выкристаллизоваться, а сами кристаллы достигли значительных размеров, благодаря чему из них образовались массивные плотные породы с полнокристаллической структурой (граниты, габбро, диориты и др.), залегающие, как правило, крупными массивами.
Излившиеся (эффузивные) породы сформировались в верхних слоях земной коры вследствие вулканического извержения магмы и в условиях быстрого остывания при низком давлении. Каждой глубинной горной породе соответствует излившаяся, которая образовалась из той же магмы, что и глубинная, вследствие чего химический состав их близок.
В химическом составе изверженных горных пород наибольшее значение имеет кремнезем SiO2. За ним идут глинозем (Al2O3), оксид магния (MgO), оксиды железа, натрия, калия и других элементов. Из минералов преобладают кварц и силикаты (полевые шпаты, пироксены, амфиболы, слюды и др.). В зависимости от содержания кремнезема изверженные породы классифицируют на кислые, средние, основные и ультраосновные (табл. 6.2).

Горные породы в строительстве

Эта классификация имеет большое практическое значение с точки зрения выявления закономерностей изменения свойств изверженных пород в зависимости от содержания в них кремнезема. Так, с уменьшением его содержания увеличивается плотность пород, снижается их температура плавления, изменяется окраска от светлой до темной, облегчается обработка камня. При высоком содержании кремнезема в виде зерен кварца механическая обработка камня затрудняется.
Осадочные горные породы обязаны своим происхождением экзогенным (внешним) процессам и являются продуктами разрушения и переотложения изверженных и метаморфических горных пород. Этот вид горных пород слагает самые верхние слои литосферы, покрывая своеобразным чехлом породы магматической и метаморфической групп. В общем объеме земной коры они составляют всего 1%, занимая при этом около 70-75% всей ее площади. Мощность толщи осадочных пород колеблется в очень широких пределах — в одним местах она очень мала, в других исчисляется кмми. Так, например, толща осадочных образований на дне Черного моря достигает 14000 м.
В зависимости от условий образования различают осадочные породы механического, химического и органического происхождения. Общая их особенность — слоистость залегания, связанная с периодическим изменением условий образования.
Породы механического происхождения отлагались в водоемах или на поверхности земли в результате разрушения изверженных пород и их последующего переотложения. Они делятся на рыхлые и сцементированные отложения. Рыхлые (обломочные) отложения могут быть угловатыми (щебень, песок, глина и др.) или окатанными (валуны, галька, гравий). Сцементированные отложения сформировались в результате цементации рыхлых пород. К наиболее характерным представителям сцементированных отложений относятся: песчаник (из кварцевых песков, связанных кремнистым или известковистым цементом), брекчия (из сцементированного щебня), конгломерат (из сцементированной гальки).
Породы химического происхождения возникли в процессе высыхания озер и заливов, отделившихся от морских бассейнов, в результате выпадения в осадок различных соединений, образованных при прохождении химических реакций. К ним относятся: гипсовый камень, травертин, доломит, ангидрит и др. Общая особенность таких пород — сравнительно повышенная растворимость в воде, трещиноватость, пористость.
Породы органического происхождения (органогенные) образовались в результате жизнедеятельности растительных и животных организмов. К ним относятся: известняк, диатомит, трепел, мел и др.
Метаморфические горные породы образовались путем превращения изверженных и осадочных горных пород в новый вид камня под воздействием внутренних геологических процессов, сопровождаемых значительным давлением и повышенными температурами. В общем объеме земной коры они составляют 4%.

Метаморфические изменения могут быть настолько сильными, что меняется не только внешний облик породы, но и ее структура, минералогический и химический состав. Полная или частичная перекристаллизация пород часто приводит к появлению новых минералов. Среди метаморфических пород различают массивные (зернистые) породы (кварциты, мраморы) и сланцеватые (гнейсы, сланцы). Гнейсы относятся к метаморфическим изверженным породам, а кварциты, мраморы и сланцы — к метаморфическим осадочным.
Структура и свойства горных пород. Каждая горная порода имеет специфическое внутреннее строение, определяемое структурными и текстурными особенностями.
Структура горной породы обусловлена размером, формой и взаимным расположением слагающих ее составных частей. Структуры бывают кристаллические, порфировые, обломочные, стекловатые, оолитовые и др.
Породы с кристаллической структурой состоят либо из полных по форме, либо из неполных кристаллов, так называемых кристаллических зерен (в этом случае структуру называют зернистокристаллической). Кристаллическую структуру имеют кварциты, мраморы, зернисто-кристаллическую — граниты, сиениты.
В породах кристаллической или зернисто-кристаллической структуры кристаллы или зерна срослись друг с другом непосредственно, без какого-либо связывающего вещества.
В породах порфировой структуры отдельные кристаллы различных размеров соединены между собой значительным количеством плотного, тонкозернистого или стекловатого вещества (например, у порфиров). Кристаллические породы, близкие по структуре с порфиром, называются порфировидными.
Породы обломочной структуры состоят из обломков других ранее образовавшихся, а затем разрушившихся пород. В зависимости от крупности обломков, образующих породу, различают грубообломочную и мелкообломочную структуры.
Стекловатая структура характерна для пород, не имеющих кристаллов и по своему виду напоминающих искусственное стекло (обсидиан, базальт).
Оолитовая структура встречается у осадочных пород, сохранивших в своем составе остатки мелких организмов — раковины, скелеты например, у известняков-ракушечников).
Кроме понятия “структура” в петрографии употребляется термин текстура (сложение), т.е. взаимное относительное расположение составных частей породы в пространстве без учета формы и размера этих частей. Текстуры подразделяются на массивные, линейнопараллельные, полосчатые, слоистые, пористые. Текстура существенно влияет на долговечность и декоративные качества горных пород.
Изверженные породы. Глубинные породы имеют высокие показатели прочности, средней плотности, а также незначительную пористость, с которой связаны весьма низкое водопоглощение, высокие теплопроводность и морозостойкость. К числу главнейших глубинных пород относят гранит, сиенит, диорит, габбро и лабрадорит.

Горные породы в строительстве

Горные породы в строительстве

Горные породы в строительстве

Вулканические туфы отличаются стойкостью к выветриванию, малой теплопроводностью, хорошей морозостойкостью, легко обрабатываются, но не полируются. Их отличает большое разнообразие расцветок, придающее породе повышенную декоративность. Прочность их составляет 5-20 МПа, более плотных — до 50 МПа, а средняя плотность — 800-2000 кг/м3.
В современном строительстве туфы применяются как местные материалы в виде стеновых камней и блоков, бутового камня, а также в качестве облицовочных плит преимущественно для наружной отделки зданий.
Осадочные породы. Осадочные породы резко отличаются от изверженных пород, как по своему составу, так и по строению. Для большинства осадочных пород характерно слоистое сложение и значительная пористость.

Последняя особенно важна, так как оказывает большое влияние на физико-механические свойства пород: прочность, плотность и среднюю плотность, водопоглощение, морозостойкость, механическую обработку и др. Осадочные породы отличаются многообразием структур с широким варьированием формы, размеров частиц и их соотношения. Для них характерно значительное разнообразие минеральных компонентов. Среди породообразующих минералов встречаются осажденные из водных растворов карбонаты, сульфаты, водный кремнезем; продукты выветривания материнских пород — каолинит, монтмориллонит; слюдистые минералы, гидроксиды алюминия и железа, реликтовые минералы, сохранившиеся без изменения, — магматический кварц, полевые шпаты, а также обломки пород различного генезиса и остатки организмов.
Породы обломочного происхождения являются продуктами механического разрушения материнских пород, они сложены преимущественно обломками устойчивых к выветриванию минералов и пород. Осадочные породы этого типа разделяются на грубо-, средне- мелко- и тонкообломочные. Среди них только глинистые породы являются продуктами химического разложения материнских пород, остальные же породы сложены обломками, не подвергшимися существенному выветриванию. Независимо от размеров частиц обломочные породы могут быть рыхлыми или сцементированными.
Из рыхлых грубообломочных пород выделяют породы, состоящие из обломков размером 100-1000 мм, называемые валунами (окатанные) или глыбами (угловатые); 10-100 мм — галькой (окатанные) или щебнем (угловатые), 1-10 мм — гравием (окатанные) или дресвой (угловатые).
Песчаные (среднеобломочные) породы представляют собой рыхлую смесь зерен с размерами 0,1-1 мм. Их принято разделять по крупности зерен на крупнозернистые с диаметром частиц 0,5-1 мм; среднезернистые — 0,25-0,5 мм; мелкозернистые — 0,1-0,25 мм. По минералогическому составу пески могут быть моно- и полиминеральные. Наиболее распространенной мономинеральной породой является кварцевый песок. В составе полиминеральных песков чаще всего встречаются минералы наиболее устойчивые при выветривании — кварц, полевые шпаты, слюды, магнетит.
Глинистые (тонкообломочные) породы состоят более чем наполовину из мельчайших (менее 0,001-0,01 мм) чешуеобразных частиц глинистых минералов, среди которых не менее 25% имеют размеры меньше 0,001 мм. Глины образуются при выветривании полевошпатовых и некоторых других силикатных пород и состоят преимущественно из глинистых минералов типа каолинита, монтмориллонита и гидрослюд с примесью кварца, слюды, вторичного кальцита, опала и др. Они очень широко распространены на земной поверхности и составляют 50% общего объема осадочных горных пород.
К группе глинистых пород тесно примыкают аргиллиты — плотные, обезвоженные, частично перекристаллизованные глины. Одной из разновидностей аргиллитов являются глинистые сланцы. Глинистые породы широко используются в керамической промышленности.

Горные породы в строительстве

Сцементированные обломочные породы образовались путем цементации рыхлых пород разнообразными химическими веществами (рис. 6.7). Среди сцементированных обломочных пород наибольшее значение в строительстве имеют песчаники (рис. 6.8), т.е. сцементированные кварцевые пески.

В зависимости от цементирующего вещества различают песчаники глинистые, мергелистые, известковые, кремнистые, битумные и др. Окраску песчаникам придают цементирующие вещества. Для строительства наиболее часто используют кремнистые и известковые песчаники. Первые сцементированы кремнеземом, вторые — кальцитом.

Наиболее стойки и прочны кремнистые песчаники — предел прочности их при сжатии достигает 250 МПа. Вследствие большой средней плотности (до 2700 кг/м3) и высокой теплопроводности песчаников их можно применять только для стен неотапливаемых зданий, фундаментов, подпорных стенок, набережных, для устройства ступеней и тротуаров, а особенно стойкие — для облицовки зданий и сооружений (опор мостов и др.). Песчаники используют также в виде щебня и бута; щебень применяют для приготовления бетона (в качестве крупного заполнителя), в дорожном строительстве.

Горные породы в строительстве

Конгломераты и брекчии — обломочные породы карбонатного, реже силикатного состава в виде соответственно гальки или щебня, связанных природным цементом в монолитную массу. Средняя плотность их 2600-2850 кг/м3, прочность при сжатии от 50 до 160 МПа. Разнообразные формы, размеры и окраски включений придают конгломератам и брекчиям высокую декоративность, что позволяет их использовать как облицовочный материал. Также применяются в дорожном строительстве.
Породы химического происхождения (хемогенные) образовались в результате выпадения из истинных и коллоидных водных растворов различных веществ, главным образом карбонатного и сульфатного состава. Важным структурным признаком этих пород являются форма и размеры зерен с характерным для них появлением оолитов — скорлуповатых зерен округлой или эллипсоидальной формы размером 1-5 мм и сферолитов -кристаллических агрегатов игольчатого строения, а также зернистых структур. Текстуры химических пород аналогичны обломочным. Окраска их разнообразна и зависит от примесей.
К карбонатным породам относятся известняки, доломиты и магнезиты. Породообразующими минералами известняков являются минералы кальцит или реже арагонит (CaCO3). Порообразующими минералами доломитов и магнезитов служат одноименные минералы CaMg(CO3)2 и MgCO3.
Пористость сцементированных известняков и доломитов не превышает десятых долей процента, а у слабосцементированных может достигать 20% и выше. Средняя плотность этих пород изменяется в пределах 1900-2600 кг/м3, снижаясь до 1000 кг/м3 у сильнопористых и кавернозных разновидностей; предел прочности при сжатии 10-100 МПа.
Основными направлениями применения известняков является использование их как природного камня и сырья для производства вяжущих материалов. Доломиты и магнезит применяют кроме того для производства огнеупоров.
Оолитовые известняки сложены оолитами кальцита, равномерно погруженными в цементирующую массу CaCO3 или, реже, глины и плотно соприкасающимися между собой (рис. 6.9). Они — пористые, малоустойчивые к выветриванию и недостаточно морозостойкие породы. Прочность наиболее плотных их разновидностей мала и составляет всего 15. 20 МПа.

Применяют их для изготовления воздушной и гидравлической извести, цемента, реже как стеновой материал.
Известняковые туфы имеют высокопористую ноздреватую структуру, состоят из кальцита, выпадающего из холодных и горячих углекислых источников при выходе их на поверхность земли. Они отличаются легкостью, небольшой средней плотностью до 1700 кг/м3 и малой прочностью, обычно около 10 МПа, хотя у плотных разновидностей (травертин), она может достигать 80 МПа. Известковые туфы применяют в качестве стенового и декоративного материала.
Главными представителями сульфатных пород являются гипс (гипсовый камень) и ангидрит. Они имеют зернистокристаллическую структуру и сложены из минералов одноименного названия с возможными примесями глины, песка, органических веществ. В зависимости от примесей окрашены в белый, серый, желтоватый, коричневый цвет.

Характеризуются пределом прочности при сжатии около 25 МПа и средней плотностью 2100-2300 кг/м3. Ангидриты — более плотные породы с пределом прочности при сжатии до 60 МПа, залегающие обычно совместно с гипсом. Гипс и ангидрит служат сырьем для производства вяжущих, а также стеновых и отделочных материалов.
Породы органогенного происхождения разделяют на породы кремнистого (силициты) и карбонатного состава, а также фитогенные и зоогенные (по преимущественному происхождению от растений или животных организмов).
Главными представителями кремнистых пород являются диатомиты, трепелы и опоки. Диатомиты образуются из скорлупок диатомовых водорослей, живущих в пресной и соленой воде. Их плотность 400-900 кг/м3. Трепелы по внешнему виду, составу и свойствам весьма схожи с диатомитами и отличаются несколько большей средней плотностью. Диатомиты и трепелы характеризуются огне- и кислотоупорностью, плохо проводят звук и теплоту, используются как адсорбенты, изоляционные и фильтрующие материалы.
Опоки — породы, образованные вследствие уплотнения и цементирования трепелов и диатомитов. Цементирующим веществом является аморфный кремнезем, иногда карбонат кальция, средняя плотность 800-1600 кг/м3, прочность 1-10 МПа. Применяются в качестве стеновых материалов, заполнителей и добавок для бетонов.
Органогенные карбонатные породы состоят преимущественно из кальцита с примесями кремнезема, глинистых и песчаных частиц и пр. Широко распространены органогенные известняки, образованные путем накопления продуктов жизнедеятельности организмов на дне мелководных водоемов: ракушечники, коралловые известняки, мел.
Метаморфические породы. Главными представителями метаморфических горных пород являются: гнейсы, сланцы, кварциты, мрамор.
Гнейсы — кристаллически-зернистые породы, образовавшиеся в результате перекристаллизации гранитов и других изверженных пород при высокой температуре и большом одноосном давлении, обусловившем их слоистое (сланцеватое) строение (рис. 6.10). По минералогическому составу гнейсы похожи на граниты, диориты, сиениты и др., но отличаются от них тем, что минералы в них расположены не беспорядочно, как в магматических породах, а ориентированно, с чем связано появление анизотропии свойств породы.
Средняя плотность их составляет 2500-2600 кг/м3, предел прочности при сжатии 120-300 МПа (обычно этот показатель примерно в 2 раза ниже при приложении силы перпендикулярно сланцеватости).

Читайте также:  Сроки строительства завода спг

Горные породы в строительстве

Слоистость облегчает добычу и переработку гнейсов, но при этом образуется нежелательная лещадность щебня. Они используются в виде облицовочных плит, для кладки фундаментов, в качестве бутового камня и др. Гнейсы являются самыми распространенными метаморфическими породами.
Сланцы — плотные и твердые породы сланцеватого строения (рис. 6.11), образовавшиеся в основном из глин, сильно уплотнившихся и частично перекристаллизовавшихся под большим односторонним давлением. В зависимости от состава различают сланцы глинистые, песчано-глинистые, углисто-глинистые, хлоритовые, тальковые, слюдяные и т. д. Цвет сланцев темно-серый, черный, коричнево-серый, красно-коричневый и т. п. Средняя плотность их 2700-2900 кг/м3, предел прочности при сжатии от 60 до 250 МПа, пористость 0,3-3%. Большинство сланцев имеет высокую долговечность. Они отличаются способностью раскалываться на ровные тонкие пластинки и, обладая достаточной плотностью, вязкостью, твердостью и водостойкостью, используются как местный кровельный материал.
Ценным свойством шунгитовых сланцев является их способность превращаться при обжиге в легкий пористый заполнитель — шунгизитовый гравий. Особенностью шунгизитового гравия является наличие стекловатой структуры и инертность по отношению ко всем агрессивным средам.
Кварциты — мелкозернистые породы, образовавшиеся при перекристаллизации кремнистых песчаников и состоящие в основном из кварцевых зерен, связанных кремнистым цементом (рис. 6.12).

Горные породы в строительстве

Средняя плотность 2700-3000 кг/м3, предел прочности при сжатии достигает 400 МПа. Кварциты отличаются слабым сцеплением с вяжущими, большой хрупкостью и трудно обрабатываются; имеют высокую огнеупорность, кислото- и щелочестойкость и применяются главным образом в производстве огнеупорного материала — динаса, а также в качестве абразивных, кислото- и щелочестойких материалов.
Мраморы — зернисто-кристаллические породы с массивной или слоистой текстурой, образовавшиеся в результате перекристаллизации известняков и доломитов под воздействием высокой температуры и больших давлений. Они состоят из кальцита, иногда с примесью доломита, магния и марганца. Кристаллы кальцита часто видны невооруженным глазом и прочно соединены между собой без цементирующего вещества Мрамор бывает белоснежный или розовый, желтый, красный, черный и других цветов (в зависимости от примесей); в нем часто имеются прожилки и узоры.
В современном строительстве под термином “мрамор” понимают часто как собственно мрамор, так и другие плотные переходные карбонатные породы, легко поддающиеся полировке: мраморовидные известняки и доломиты и др. Средняя плотность мраморов 2700-2800 кг/м3, предел прочности при сжатии от 40 до 170 МПа.
Мраморы хорошо обрабатываются — пилятся, шлифуются и полируются, но слабо сопротивляются выветриванию, особенно влиянию воды, содержащей растворенную углекислоту. Мраморы широко применяются для декоративных и внутренних отделочных работ, а в виде крошки — при приготовлении цветных штукатурок, облицовочного декоративного бетона.

Источник: ctcmetar.ru

Естественные каменные строительные материалы

Земная кора, состоит из горных пород, которые в свою очередь сложены из минералов.

Минералы отличаются от других веществ по двум признакам: 1) к минералам относятся только однородные (гомогенные) тела; 2) к минералам относятся только продукты природных физико химических процессов.

Важнейшие свойства минералов.

Для распознавания минералов наибольшее значение имеют следующие свойства: химический состав, кристаллографические очертания, цвет, блеск, излом, плотность, твердость и спайность. Последние два свойства, а также выветриваемость, коэффициент температурного расширения и некоторые другие характеризуют техническое качество отдельных минералов.

Цвет минералов — весьма изменчив, тем не менее минералы делятся на светлые (кварц, полевые шпаты) и темноокрашенные (оливин, пироксены и амфиболы).

Блеск минералов бывает различный: металлический (пирит), стеклянный (кварц), перламутровый (мусковит), шелковистый (волокнистый гипс), жирный (тальк) и др.

Излом это вид поверхности у осколков минерала. Различают излом: раковистый (кварц,), землистый (мел), зернистый (мрамор), крючковатый и занозистый и т. п.
Спайность это способность некоторых минералов раскалываться при ударе по определенным направлениям и давать на поверхности раскола гладкие плоскости, называемые плоскостями спайности. Различают спайность: 1) весьма совершенную (у слюды), когда минерал расщепляется на тонкие пленки, 2) совершенную (у полевых шпатов, кальцита), когда осколки ограничены правильными плоскостями, и 3) несовершенную (у кварца), когда при раскалывании получаются неровные поверхности. Спайность может проявляться по одному направлению (слюда), по двум (полевые шпаты) и по трем направлением (кальцит, каменная соль).
Твердость это способность минерала оказывать сопротивление царапанию. Для диагностики минералов используется относительная шкала твердости Мооса, где 10 минералов (тальк, гипс, кальцит, флюорит, апатит, ортоклаз, кварц, топаз, корунд и алмаз), расположены в порядке возрастания твердости, так, что каждый последующий минерал оставляет царапину на предыдущем.
Выветриваемость это подверженность минералов (а также и горных пород) изменениям под действием разнообразных атмосферных факторов.
Горными породами называются природные образования, состоящие либо из одного и того же минерала (мономинеральные породы), либо из нескольких минералов (полиминеральные породы). В отличие от минерала порода характеризуется значительным объемом, строением и формой залегания.

Согласно генетической классификации все горные породы делятся на три группы:

  1. магматические или изверженные (первичные) горные породы;
  2. осадочные (вторичные) горные породы;
  3. метаморфические горные породы.

§ 2. Магматические горные породы

1. Процессы при образовании и классификация

Магматические (первичные) горные породы образовались в результате извержения и остывания магмы (каменного расплава, находящегося в недрах земли). Если порода образовалась по схеме, представленной на рис. 1а, то она называется глубинной или интрузивной. Если же порода произошла в результате остывания магмы, излившейся наружу, согласно схеме на рис. 1б, то она называется излившейся или эффузивной.

Магматические горные породы

Кроме этих двух групп пород, являющихся массивными, при выбрасывании лавы из вулканов в виде выплесков и брызг образовались рыхлые вулканообломочные породы: вулканические пепел и песок.

Классификация магматических горных пород, процессы при их образовании и основные представители приведены на рис. 2.

2. Минералогический состав магматических горных пород

Все главные породообразующие минералы магматических горных пород можно разделить на четыре группы: 1) кварц, 2) полевые шпаты, 3) слюды и 4) темноокрашенные. Последние в отличие от почти бесцветных кварца и полевых шпатов являются сильно окрашенными. Сопоставление минералов магматических горных пород приведено в табл. 1.

Кварц. В породах кварц (кристаллический кремнезем — SiO2) по преимуществу присутствует в виде обыкновенного кварца — непрозрачных или только слабо просвечивающих плотных зерен, имеющих стеклянный блеск и окрашенных в разнообразные цвета.

Весьма характерно для кварца, что кислоты на него не действуют, за исключением плавиковой. Благодаря химической инертности, кварц почти не выветривается, вследствие чего он является последним остатком от разрушения пород, его содержащих. В то время как остальные минералы превращаются в тончайшие продукты разрушения (глину), кварц образует песок.

Полевые шпаты. К полевым шпатам относится группа из многих минералов, обладающих близкими физическими и химическими свойствами. Все минералы этой группы характеризуются светлыми оттенками разнообразных цветов. От кварца они отличаются .меньшей твердостью (6 по шкале Мооса) и присущей им совершенной спайностью.

Магматические горные породы

Полевые шпаты делятся на две группы: 1) ортоклаз, что в переводе с греческого значит прямо раскалывающийся, и 2) плагиоклазы, что означает косо раскалывающиеся.

В ортоклазе плоскости спайности образуют прямой угол, а в плагиоклазах — отличный от прямого (около 86°).

По химическому составу ортоклаз представляет собою алюмосиликат калия, а плагиоклазы — серию минералов, крайними членами которой являются альбит (алюмосиликат натрия) и анортит (алюмосиликат кальция). Все промежуточные члены между альбитом и анортитом рассматриваются как изоморфные смеси того и другого в различных пропорциях.

Слюды. Из слюд в качестве породообразующих минералов наибольшее значение имеют биотит (черная слюда) и мусковит (прозрачная слюда). От других минералов слюды отличаются весьма совершенной спайностью и низкой твердостью (2-2,5).

Если слюды входят в состав горной породы в значительном количестве, они сильно ухудшают ее механические свойства; при большом содержании слюды затрудняется также получение хорошей полированной поверхности.

Пироксены и амфиболы. Пироксенами и амфиболами называются две группы сходных между собою минералов, каждая из которых насчитывает по несколько представителей. Для пироксенов наиболее характерным минералом является авгит, а для амфиболов — роговая обманка, почему часто пироксены называются авгитами, а амфиболы—роговыми обманками.

Лучшим отличительным признаком этих минералов служит угол, образуемый плоскостями спайности; у роговой обманки он равен 124°, а у авгита — 87°. Как амфиболы, так и пироксены отличаются от остальных минералов очень темной окраской и высокой плотностью от 3,0 до 3,6 г/см3. В отношении выветривания они превосходят полевые шпаты.

Рассмотрение табл. 1 позволяет сделать несколько весьма важных заключений.

Магматические породы составлены по преимуществу из различных силикатов и алюмосиликатов! Этим они отличаются от осадочных пород, в которых над солями кремневой кислоты (силикатами) преобладают соли других кислот, в первую очередь угольной, отчасти серной и т. д.

Окраска минералов изменяется от светлой (вверху таблицы) до темной (внизу), так что все кислые породы будут слабо окрашенными, все основные, наоборот, окрашенными весьма сильно.

По стойкости в отношении выветривания наименее желательными в породе являются полевые шпаты, которые выветриваются весьма быстро.

3. Структура магматических горных пород

Наиболее характерными для магматических горных пород являются две структуры: зернисто-кристаллическая (гранитная) и порфировая (рис. 3). Структура горной породы называется зернисто-кристаллической в том случае, когда отдельные минеральные зерна различимы простым глазом и приблизительно одинаковы по размеру.

Магматические горные породы

Существует разновидность зернисто-кристаллической структуры, называемая порфировидной, т. е. похожей на порфировую. Когда порода содержит вкрапленники весьма больших размеров и имеет окружающую их основную массу зернисто-кристаллическую, то это напоминает сильно увеличенную порфировую структуру.

Зернисто-кристаллическая структура характерна преимущественно для глубинных пород, т. к. могла получиться только при медленном охлаждении горной породы, когда ничто не мешало полной ее кристаллизации. Наоборот, порфировая структура присуща излившимся породам. Наличие в последних вкрапленников можно объяснить тем, что кристаллизация магмы начиналась еще в недрах земли, когда температура снижалась очень медленно. После излияния магмы на поверхность застывала оставшаяся масса, но уже при достаточно быстром охлаждении, почему она и получилась плохо закристаллизованной.

Равномерно-зернистые породы превосходят в техническом отношении породы с порфировидной структурой, причем технические свойства (механическая прочность, стойкость против выветривания) повышаются обычно с уменьшением средней величины зерна. Породы порфировой структуры в техническом отношении стоят тем ниже, чем больше в них стекла. Породы стекловатые (например чистое вулканическое стекло — обсидиан) очень хрупки и плохо выдерживают температурные колебания.

4. Классификация магматических горных пород по структуре и минералогическому составу

Классификация магматических горных пород по структуре и минералогическому составу представлена в табл. 2.

В центральной части в трех строках таблицы приведены главнейшие магматические горные породы, употребляемые в качестве строительного материала. Под каждым наименованием глубинных пород записаны по два представителя излившихся, которые являются полными аналогами их по минералогическому составу и отличаются лишь структурой.

Одна и та же магма могла застыть или на глубине или на поверхности земли. Минералогический состав пород мы можем прочитать в том же столбце таблицы сразу над ними. Например, о минералогическом составе гранита и его аналогов (кварцевого порфира и липарита) читаем: кварц – есть, из полевых шпатов присутствует ортоклаз, темноокрашенных минералов – мало. Если мы проследим по таблице слева направо.

Магматические горные породы

за минералогическим составом, то увидим, что кварца (самого кислого минерала), кроме как в граните и его аналогах, в других породах нет. Содержание темноокрашенных минералов (наиболее основных) возрастает от гранита к габбро, а в группе полевых шпатов представители сменяются так, что в граните и его аналогах присутствует самый кислый представитель – ортоклаз, а в габбро, диабазе и базальте – наиболее основной представитель плагиоклазов — битовнит или анортит.

По мере того как мы движемся слева направо, наблюдается уменьшение содержания SiO2, другими словами, снижение кислотности пород. Если вспомнить сказанное в отношении минералов ( см. табл. 1), то можно также еще добавить, что породы, занимающие правую часть таблицы 2, характеризуются более высокой плотностью и более темной окраской по сравнению с породами, находящимися в левой части таблицы. Параллельно увеличению содержания темноокрашенных минералов возрастает механическая прочность пород.

5. Интрузивные (глубинные) горные породы

Все интрузивные горные породы: гранит, сиенит, диорит и габбро весьма сходны между собою по своим техническим свойствам. Они все обладают большой плотностью, ничтожно малой пористостью и сравнительно высокой механической прочностью.

Гранит. Минералогический состав гранита в среднем таков: кварца от 20 до 40%, ортоклаза (реже щелочного плагиоклаза) от 40 до 60%, слюды или роговой обманки (редко авгита) от 5 до 20%.

Структура гранитов преимущественно зернисто-кристаллическая, иначе гранитная (название гранит происходит от латинского слова granum — зерно) и в некоторых случаях порфировидная. Примером гранитов с порфировидной структурой может служить финляндский гранит рапакиви, в котором встречаются вкрапленники ортоклаза с куриное яйцо и более. Красные граниты большинства зданий Санкт-Петербурга имеют порфировидное строение.

Цвет гранитов определяется цветом главной его составной части—ортоклаза. В зависимости от окраски последнего он бывает серый, желтоватый, красноватый, до мясо-красного.

Технические свойства гранита. Плотность гранита колеблется около 2,7 и повышается с увеличением в породе количества темноокрашенных минералов. Временное сопротивление сжатию для гранитов (как и вообще для всех естественных камней) колеблется в очень широких пределах от 80 до 330 МПа. Большей прочностью обладают граниты с мелкозернистой структурой.

Увеличение содержания слюды понижает механическую прочность гранита, кроме того слюда препятствует получению хорошей полированной поверхности, т. к. легко выкрашивается, оставляя щербины. Наоборот, повышение содержания пироксенов или амфиболов является желательным – возрастают механические свойства и способность гранитов принимать полировку.

Стойкость гранита против выветривания в основном достаточно высокая. Лишь отдельные его представители, к которым относится финляндский гранит рапакиви (что значит гнилой камень), широко раньше применявшийся в строительстве Петербурга, разрушаются довольно быстро. Гранит хорошо сопротивляется истиранию, почему он является ценным материалом для изготовления лестничных ступеней, плит для тротуаров, в дорожной одежде. В глубинных горных породах сопротивление истиранию повышается с возрастанием количества темноокрашенных минералов.

Обработка и отделка магматических горных пород настолько дорога (из-за высокой твердости входящих в них минералов), что они редко применяются в обычных зданиях, а используются по преимуществу в сооружениях, особо ответственных, или представляющих большую архитектурную ценность.

Применение гранита. Гранит употребляется в виде штучных камней для фундаментов дорогих зданий, для подпорных стенок, для устройства набережных, для внешней облицовки стен. Часто из него изготовляются тротуарные плиты, ступени. В более крупных кусках гранит употребляется для колонн зданий и памятников. В кусках малого размера он идет для устройства мостовых; для дробления на щебень и т. д.

Сиенит. Отличается от гранита отсутствием кварца; состоит из ортоклаза и темного минерала, чаще всего роговой обманки.

Применяется как и гранит, отличаясь от последнего меньшей твердостью, повышенной вязкостью, в особенности при значительном содержании роговой обманки или авгита, и способностью лучше принимать полировку. Является ценным материалом для мощения дорог и получения щебня.

Диорит. Состоит в основном из кислого плагиоклаза и роговой обманки, реже биотита и авгита; плагиоклаз составляет в среднем 75 % породы.

Соответственно изменению минералогического состава диорит характеризуется более темной окраской, нежели гранит и сиенит, более высокой плотностью (2,75-3,0) и прочностью при сжатии.

Употребляются диориты как дорожный материал (брусчатка, щебень), в виде штучных камней и в качестве декоративного материала (благодаря способности отлично полироваться).

Габбро. Существенными минералами в габбро являются основной плагиоклаз (около 50%) и пироксен, реже роговая обманка. Цвет в большинстве случаев темно-зеленый различных оттенков. Плотность 2,8—3,1, прочность при сжатии в мелкозернистых разновидностях 200-280 МПа, падая в крупнозернистых до 100 МПа. Габбро тяжело обрабатывается, но хорошо принимает полировку.

Читайте также:  Всм в строительстве это

Из декоративных разновидностей глубинных пород особого упоминания заслуживает лабрадорит, крупнозернистая разновидность габбро, характеризующаяся преобладанием плагиоклаза лабрадора над другими минералами. Лабрадорит отличается так называемой ирризацией, т. е. игрой отблесков различных цветов: синего, голубого, зеленого и других. Лабрадорит был например применен для внутренней облицовки мавзолея Ленина, а также для облицовки панелей простенков между окнами “Дома Книги” в Санкт-Петербурге.

6. Эффузивные (излившиеся) горные породы

Для излившихся пород характерна способность давать сильно пористые разности (например, пемзу). Образование таких пористых разновидностей объясняется выделением газов, насыщавших магму в недрах земли. При понижении давления, в результате извержения магмы, растворенные в ней газы выделялись наружу и вспенивали массу в процессе ее застывания. Эффузивные породы могут быть как пористыми, так и плотными, в отличие от интрузивных, которые, в силу условий их образования на глубине, пористых разновидностей давать не в состоянии.

Кварцевый порфир и липарит. Кварцевый порфир и липарит по химическому и минералогическому составу аналогичны граниту. От последнего они отличаются своей порфировой структурой. Вкрапленниками в них являются кварц и, часто, полевой шпат. Стекловатая разность кварцевых порфиров и липаритов называется вулканическим стеклом или обсидианом.

Цвет кварцевых порфиров и липаритов серый, желтоватый, бледнокрасный и кирпично-красный. Друг от друга кварцевый порфир и липарит отличаются своим возрастом и свежестью составляющих их минералов, кварцевые порфиры подверглись изменениям и несколько темнее липаритов.

Технические свойства кварцевых порфиров и липаритов повышаются с уменьшением количества в них вкрапленников. Поэтому плотные фельзиты (породы без вкрапленников) принадлежат к лучшим сортам строительного камня; механическая прочность их достигает 280 МПа. Наименее выгодной является стекловатая структура, ибо порода в этом случае обладает хрупкостью и легче поддается выветриванию. Все сказанное может быть распространено и на остальные эффузивные породы.

Кварцевые порфиры и липариты довольно широко используются в качестве штучного камня и в виде декоративного и поделочного материала, в том случае когда они имеют красивый цвет и рисунок.

Ортоклазовый порфир и трахит представляют излившиеся аналоги сиенита. От предыдущих излившихся пород они обличаются отсутствием кварца. Характеризуются повышенной пористостью и, благодаря этому, сравнительно малой объемной массой (2,20—2,61) и малым временным сопротивлением сжатию, в среднем 60-70 МПа. Окраска серая до зеленовато-серой, желтоватая и красноватая.

Эти породы легче обрабатываются и быстрее истираются, нежели предыдущие. Трахит в силу своего пористого, ячеистого сложения не поддается полировке, а в силу присущей ему шероховатости (трахит по-гречески означает шероховатый) хорошо связывается со строительными растворами.

Порфирит и андезит по минералогическому составу тождественны диориту. Окраска их колеблется от светлосерой до темносерой, причем порфириты характеризуются, как правило зеленоватыми тонами. Объемная масса находится в пределах 2,56— 2,85 г/см3; временное сопротивление сжатию колеблется между 120-240 МПа. Применяются в качестве строительного камня для самых разнообразных целей.

Диабаз и базальт. Диабаз и базальт тождественны по минералогическому составу габбро и благодаря обилию в них темных составляющих характеризуются почти черной окраской и матовым тусклым видом. Диабазы являются продуктом более древнего времени, базальты же относятся к молодым породам.

Диабаз является отличным материалом для мощения улиц, для чего его применяют в виде диабазовой шашки (брусчатки). Механическая прочность диабазов почти всегда превышает 200 МПа.

Базальт является наиболее тяжелой и наиболее прочной из всех рассмотренных излившихся пород, его объемная масса равна 2,7—3,3 г/см3, а прочность лучших образцов может достигать 500 МПа, что превосходит глубинные породы. Для базальтов характерна высокая хрупкость, вследствие чего они сравнительно легко раскалываются.

Базальт хорошо полируется, однако из-за высокой твердости трудно поддается обработке.

Базальт применяется как в дорожном деле, так и для ответственных инженерных сооружений. Базальт является сравнительно легкоплавкой породой, поэтому используется для получения изделий путем литья. В строительстве используются теплоизоляционные и акустические материалы на основе базальтовой ваты.

7. Вулканообломочные породы

Лавой обычно называют огненно-жидкие продукты извержения вулканов. Лавы содержат в себе в растворенном состоянии значительное количество газообразных продуктов, которые или успевают выделиться до застывания лавы (плотные лавы) или вспенивают ее придавая ей пористую или пузырчатую структуру.

Помимо потоков жидкой лавы, вулканы при извержениях выбрасывают в воздух колоссальное количество той же лавы в раздробленном состоянии (вулканические песок и пепел). Последние иногда так и сохраняются в рыхлом состоянии (пуццолана), а иногда подвергаются последующей цементации, превращаясь в более или менее плотные породы, которые называются вулканическими туфами. Наконец, когда к жидкой лаве при вулканических извержениях примешиваются рыхлые продукты вулканической деятельности, порода называется туфовой лавой.

Артикский туф. Около ст. Артик (Армения), расположены большие разработки туфовой лавы вулкана Алагез, которая не совсем правильно называется артикским туфом. По своим техническим свойствам является ценным строительным материалом для стен Жилых зданий при обязательном, однако, оштукатуривании стен снаружи.

По внешнему виду артикский туф представляет собою пористую, звонкую при ударе породу в основном розовато-фиолетового цвета с различными оттенками. При плотности 2,56 средняя объемная масса породы равна 1200 кг/м3. Соответственно малому объемному весу артикский туф характеризуется высокой пористостью и малой теплопроводностью; истинная пористость породы составляет 57-60 %, коэффициент внутренней теплопроводности в сухом состоянии в два раза меньше, чем для красного кирпича; соответственно этому толщина стены из артикского туфа может быть уменьшена вдвое по сравнению с кирпичной. Механическая прочность артикского туфа невелика, но вполне достаточна для применения его в стенах зданий; его временное сопротивление сжатию в среднем равно 10,5 МПа. Помимо этого артикский туф достаточно морозостоек, легко обрабатывается (его можно пилить обыкновенной пилой) и хорошо держит вбиваемые в него гвозди.

§ 3. Осадочные горные породы

1. Процессы при происхождении и классификация

Первичные горные породы, находящиеся на земной поверхности, подвергаясь выветриванию, т. е. разрушению под воздействием разнообразных атмосферных факторов (воздуха, воды, смены температур, растительных и животных организмов и т. п.) постепенно превращаются в рыхлые продукты разрушения, которые отчасти ветром и льдом, главным же образом водой, сносятся в более низкие места, закрытые водные бассейны, моря и океаны, где происходит их осаждение. Произошедшие таким образом горные породы называются вторичными или осадочными.

Вода может переносить продукты разрушения двумя путями: 1) механически — мелкие частицы во взвешенном состоянии, а крупные — перекатывая по дну; 2) в виде водного раствора, т. к. некоторые продукты образуются в растворимом в воде состоянии. В зависимости от этого и образование осадка может быть либо в результате механического выпадения частиц из потока, в случае, например, сильного замедления течения реки, либо в результате выделения растворимого вещества в осадок, в случае, например, испарения воды, или химических реакций, в результате которых образуются нерастворимые соединения. Кроме того, образование осадка происходит в результате жизнедеятельности низших животных или растительных организмов. Поэтому осадочные породы подразделяют на механические осадки или обломочные породы, физико-химические осадки и органогенные породы (рис. 4).

Рыхлые механические осадки (глина, песок, гравий, щебень) с течением времени могут быть пропитаны каким-либо природным связующим веществом и сцементированы им в сплошную монолитную массу. К сцементированным породам относятся, например, песчаник (сцементированный песок), конгломерат (сцементированный гравий), брекчия (сцементированный щебень).

Органогенные породы в свою очередь подразделяются на две группы. Если они произошли в результате жизнедеятельности животных организмов, их называют зоогенными, если растительных — фитогенными. К первым относиться известняк-ракушечник, ко вторым —диатомит, трепел, опока.

Диатомит образовался из скоплений панцирей микроскопических водорослей — диатомей, состоящих преимущественно из аморфного кремнезема. Трепел – порода, вторичная по отношению к диатомиту, состоящая из мельчайших зерен опала (разновидности аморфного кремнезема), округлой формы. Опока является продуктом уплотнения диатомитов и трепелов.

Магматические горные породы

2. Минералогический состав осадочных горных пород

В осадочных породах, таких как механические осадки, могут встретиться все минералы первичных пород. Однако для осадочных горных пород характерны и свои, присущие только им минералы. В то время как в магматических породах преобладают соли слабых кислот (кремневой и алюмокремневой) в осадочных горных породах силикаты и алюмосиликаты играют подчиненную роль, уступая первое место солям сильных кислот: угольной, серной и т. д.

Из минералов, присущих только осадочным горным породам, наибольшее значение имеют следующие: кальцит, магнезит, доломит, гипс и каолинит (табл. 3).

Магматические горные породы

Кальцит (известковый шпат). Химический состав кальцита выражается формулой СаСО3. Он встречается в составе известняков и мраморов как в виде прекрасно образованных кристаллов, так и в виде сплошной массы разнообразного сложения, зернистой или плотной. Чистый кальцит бесцветен, при наличии же примесей он бывает сероватым, или белым, или окрашенным в светлые оттенки голубого, желтого, бурого и других цветов. Твердость кальцита равна 3, он характеризуется весьма совершенной спайностью по трем направлениям.

Кальцит распознают по реакции с соляной кислотой, с которой он хорошо реагирует даже на холоду, выделяя с характерным вскипанием углекислый газ. Растворимость кальцита в обычной воде ничтожно мала, однако он хорошо растворяется в воде, содержащей CO2. Последнее обстоятельство нужно учитывать при использовании строительного камня из пород, богатых СаСОз.

Магнезит и доломит. В природе углекислый магний, встречается в виде минерала магнезита (MgCO3) в составе одноименной породы. Как естественный строительный камень магнезит значения не имеет, он главным образом идет для изготовления огнеупорных изделий и для приготовления вяжущего вещества — каустического магнезита.

Доломит представляет по химическому составу двойную соль углекислых кальция и магния; формула его такова: CaCO3·MgCO3. Он встречается как в кристаллическом виде, так и в виде зернистых и, реже, землистых масс в составе породы с таким же названием. Применяется как и магнезит в производстве огнеупоров и для получения вяжущего вещества – каустического доломита.

Твердость магнезита и доломита примерно одинакова 3,5—4. Различают их по действию соляной кислоты. Магнезит не реагирует с соляной кислотой ни при каких условиях, а доломит реагирует, но плохо; при подогревании выделяет СО2. В горных породах кальцит и доломит сопутствуют друг другу в различных соотношениях.

Гипс и ангидрит. Природный гипс представляет собой водную сернокислую соль кальция CaSO4 ·2Н2О. Помимо гипса встречается безводная соль — CaSО4 , называемая ангидритом. Ни тот, ни другой как естественные камни, в строительстве не употребляются. Гипс может иногда являться цементирующим веществом в песчаниках.

Главное применение гипса и ангидрита – получение гипсовых вяжущих веществ.

Каолинит. Каолинит (Al2O3 ·2SiO2 ·2Н2O) образуется при выветривании полевых шпатов и является главной составной частью многих глин. Чистый каолинит имеет белый цвет, землистый вид, на ощупь слегка жирен и легко рассыпается. Твердость 1.

Водный кремнезем. Минерал состава SiO2 в осадочных породах в отличие от магматических горных пород присутствует не только в кристаллическом состоянии (в виде кварца), но также и в аморфном виде, часто в соединении с водою (SiO2·nH2O); таков например опал, содержащий до нескольких процентов воды. Водный аморфный кремнезем слагает такие осадочные породы как диатомит и трепел, а также является очень прочным природным цементирующим веществом, заполняя промежутки между зернами песка (в песчаниках), и кальцита (в известняках).

3. Структура осадочных горных пород

Важнейшее значение имеют следующие виды структур.

  • Зернисто-кристаллическая (мраморовидная), когда порода состоит из кристаллических зерен, ясно различимых простым глазом или под микроскопом. В зависимости от среднего диаметра составляющих породу зерен различают: мелко- (0,25-0,75 мм), средне- (0,75-1,25 мм), крупно- (1,25-2 мм) и грубозернистую структуру (2-3 мм).
  • Плотная (иначе тонкозернистая), когда зерна трудноотличимы друг от друга даже под микроскопом. Условно к плотным относят породы зернисто-кристаллической структуры с величиной зерна менее 0,25 мм
  • Оолитовая, когда порода состоит из круглых шариков радиально- концентрического сложения, сцементированных тем или иным естественным цементирующим веществом. Встречается у известняков, называемых в этом случае оолитовыми.
  • Обломочная (кластическая), когда горная порода состоит из обломков минералов или горных пород, сцементированных тем или иным природным цементом. Такую структуру имеют песчаники, конгломераты и брекчии.
  • Пенистая или туфовая – структура пористых горных пород и другие.

4. Рыхлые обломочные горные породы

В зависимости от размера частиц условно различают следующие рыхлые породы: глину (5 мм), булыжники и валуны (крупные камни).

Глина представляет собой мучнистую, тонкодисперсную породу, сложенную так называемыми глинообразующими минералами: каолинитом, монтмориллонитом (Al2O3·4SiO2·nH2O), гидрослюдами и некоторыми другими, которые состоят из отдельных тончайших частиц (

Глины образуются в результате выветривания горных пород, богатых полевыми шпатами (гранита, сиенита, гнейса, порфира и т. д.) (См. также § 2, гл. 6).

Песок. Пески могут быть кварцевые, полевошпатовые, известковые, доломитовые и т. д.

Речной песок, морской и озерный пески, характеризуются округлой формой зерен и хорошо обточенной поверхностью. Горный и овражный пески имеют угловатую форму и шероховатую поверхность зерен.

Большие количества песка расходуются для приготовления строительных растворов и бетонов, в дорожном деле для устройства оснований дорог и приготовления асфальтобетона. Громадные количества песка потребляет железнодорожное строительство. Чисто кварцевые (без примесей) пески высоко ценятся и употребляются как сырье в стекольной, керамической и металлургической промышленности.

Гравий и щебень. Щебень является породой первичной по отношению к гравию, он образуется непосредственно из материнской породы при ее разрушении и поэтому состоит из обломков, имеющих угловатую, острогранную, неокатанную форму. Гравий образуется из щебня в руслах рек, по берегам морей и озер. Частицы гравия имеют окатанную форму и гладкую поверхность.

Гравий и щебень применяются в дорожном деле, в качестве балласта для железных дорог и как заполнитель для бетона.

Валуны (булыжные камни). Валунами в строительной практике принято именовать обломки горных пород ледникового происхождения, по размерам превышающие гравий.

Валуны употребляются в бетонном и дорожном деле для получения щебня. Издавна булыжный камень применяли для мощения улиц. Наиболее крупные валуны могут быть использованы в качестве штучного камня для построек.

5. Сцементированные обломочные породы

Сцементированные обломочные породы образуются из рыхлых отложений в результате их уплотнения и воздействия просачивающейся сквозь них воды, несущей в себе то иди иное цементирующее вещество.

Песчаники. Различают следующие виды песчаников, перечисленных в порядке возрастания их технических качеств: 1) глинистый; 2) гипсовый; 3) железистый; 4) известковый; 5) кремнистый и др.

Глинистые песчаники содержат в качестве цементирующего вещества глину. Они мало прочны, морозонестойки, размягчаются в воде и быстро выветриваются.

Гипсовые песчаники относятся к слабым породам. Гипс сравнительно легко растворяется, а потому такие песчаники не обладают достаточной устойчивостью.

Железистые песчаники, сцементированные бурым или красным железняком, являются достаточно удовлетворительными строительными материалами.

Известковые песчаники, цементирующим веществом в которых является плотный или кристаллический кальцит, обладают высокой прочностью и устойчивостью. При значительном содержании в цементе MgCO3 песчаники называются доломитовыми.

Кремнистые песчаники, роль цементирующего вещества в которых выполняет кремнезем в виде кварца, халцедона или опала обладают весьма высокой механической прочностью, приближающейся к прочности магматических пород, малой истираем остью, большой твердостью и огнеупорностью. К недостаткам кремнистых песчаников должна быть отнесена лишь их трудная обрабатываемость.

В строительстве песчаники употребляются в качестве штучного камня, облицовочного материала, для изготовления щебня и т. д.

Конгломераты и брекчии. В конгломератах сцементированы округленные обломки горных пород (изверженных или осадочных), а в брекчиях— угля

Источник: www.mining-portal.ru

Рейтинг
Загрузка ...