Кпд это в строительстве расшифровка

В советский период крупнопанельное домостроение было основным направлением жилищного строительства. По большому счету, его массовое распространение имело для градостроительной отрасли не меньшее значение, чем изобретение конвейера для промышленного производства.

Начало негативному отношению к КПД положили страны бывшего соцлагеря, отказавшиеся от данной технологии как от одного из проявлений “тоталитарного” режима. Индустриальное домостроение попало в русло протестных настроений с явно выраженным политическим оттенком.

Несмотря на то что появилось оно вообще-то во Франции и уже от нас начало обратное шествие на Запад.

Не заставил себя ждать отрицательный результат и в нашей республике. Его иллюстрируют следующие цифры: если в советские времена в Беларуси строилось порядка 3 млн м2 сборного жилья, то по состоянию на 1 января 2005 г. этот показатель составил всего 846 тыс. м2 (из них 400 тыс. м2 возведено ОАО МАПИД).

В то же время изучение современного зарубежного опыта, в частности Германии и России, дает основание утверждать, что “хоронить” идею полносборного домостроения не стоит. Сейчас оно начинает постепенно возвращаться и за рубежом. Первыми поняли, что зря закрыли заводы КПД, немцы и теперь потихоньку их реконструируют.

КПД ДВИГАТЕЛЯ теплового 8 класс физика Перышкин

Продолжают строиться крупнопанельные дома в Швейцарии, во Франции. Конечно, это жилье другого уровня, но по-прежнему с фиксированной планировкой. Но в Беларуси пошли дальше: используя индустриальный метод, мы стремимся открыть внутреннее пространство.

Солидарен в этом с нами и первый заместитель главного архитектора Москвы Ю.П. Григорьев:

— Сегодня крупнопанельное домостроение спасает положение прежде всего в решении задач массового жилого строительства, и будущее тоже за ним. Я совершенно убежден в полнейшей бессмыслице пророчеств по поводу отмирания такого домостроения.

Просто его надо постоянно совершенствовать, идти вперед и поэтапно, оперативно переходить на сборно-монолитный вариант: часть заводского изготовления, часть на месте. Строителям это даст мобильность, а архитекторам — возможность пофантазировать, разнообразить городскую архитектурную среду. Небольшая модернизация массового индустриального строительства открывает огромные перспективы улучшения как планировок, так и внешнего вида жилья. Мало того, что мы сможем жить в комфортных, удобных квартирах, так и внешний вид домов будет соответствовать лучшим европейским образцам, не подавлять граждан, а, наоборот, достойно отражать лицо города, подчеркивать его индивидуальность, органично вписываться в окружающую природу. А чем больше город, тем больше в нем должно быть зелени, воды, ландшафтной архитектуры.

Архитектура — это идеология, а строительство — исполнение, реализация в натуре этой идеологии. К сожалению, инерция мышления прошлых лет в этом постулате еще сильна.

Привлекательность индустриального метода, как известно, заключается в быстроте возведения зданий и сравнительно низкой их стоимости. Но эти несомненные достоинства сопровождались рядом известных недостатков, вызывавших в свое время немало нареканий. С течением времени, однако, менялись не только представления об “идеальном” жилище, но и строительные технологии, и первые панели не идут ни в какое сравнение с современными конструкциями. Что касается потребительских качеств крупнопанельного жилья, то и они сейчас существенно выросли, приблизившись к каркасному домостроению, а порой и конкурируя с ним.

В Беларуси заявленные мощности заводов крупнопанельного домостроения составляют 1,5 млн м2, но используются не более чем на 50–60%. Кроме того, отсутствуют генеральные планы, предусматривающие размещение этих объектов. Имеют место и другие негативные факторы.

Однако без развития полносборного домостроения невозможно обеспечить выполнение жилищной программы. Напомним, что в 2006 г. намечено построить 4,2 млн м2 жилья, а в 2010 г. — 6,2 млн м2. Разработана комплексная программа развития строительной отрасли на предстоящее пятилетие, которая предусматривает качественное изменение белорусской стройиндустрии с упором на модернизацию и увеличение мощностей заводов крупнопанельного домостроения. Их необходимо реанимировать, поднять выпуск изделий до прежних объемов, изменив номенклатуру, чего требует переход на строительство жилья нового поколения.

Как уже упоминалось, одним из факторов снижения востребованности КПД был сравнительно низкий потребительский уровень жилья этого типа.

Его неконкурентоспособность еще ярче проявилась на фоне экспериментального строительства жилых домов на основе каркасных конструктивных систем, разрушивших сложившийся стереотип и продемонстрировавших возможность “гибкой планировки”, то есть проектирования и строительства квартиры “на заказ”. Тем не менее отрыв новых конструктивных систем по стоимости заставил опять повернуться к КПД. Но мы должны понимать, что нужно строить жилье нового поколения, адаптированное ко времени.

Специалисты НИПТИС предложили варианты перехода от стеновой системы крупнопанельного домостроения к полной каркасной, доказав, что КПД может конкурировать с каркасом на новых конструктивных решениях.

Следует отметить, что с начала поиска прогнозных вариантов, способных заменить “узкий шаг” (одной из причин неконкурентности КПД), пройден большой путь. Так, в 1996 г. по инициативе нашего института в ОАО МАПИД были изготовлены и в БНТУ испытаны две плиты перекрытия осевым размером 5,7 х 3,20 м. Изделия работают не по контуру, а оперты углами. Результаты показали жизнеспособность данной схемы. Она позволяет исключить внутренние стеновые панели и совершить переход на колонны. Это подтвердили и дальнейшие исследования, ставшие предпосылкой для начала разработки проектов на неполном каркасе.

Анализ номенклатуры изделий показал, что самым “больным” вопросом в КПД всегда являлась переоснастка. В советские годы каждый проект с измененной планировкой и новой архитектурой вызывал массу сомнений (насколько увеличится расход металла, каково в связи с этим будет удорожание и т.д.). В наши дни эта тема стала еще более актуальной: теперь каждый дом имеет свой состав квартир, индивидуальную программу для проектирования. Как известно, наиболее переоснащаемым элементом являются панели внутренних стен и перегородок, составляющие порядка 40% всей номенклатуры. Конечно, заводам каждый раз адаптировать свою серию крайне сложно, это требует больших капиталовложений. Возникают также дополнительные проблемы с комплектацией, складированием…

В связи с этим институтом решается, каким образом “вывести за скобки” данный изменяемый элемент, чтобы наиболее рационально использовать базу крупнопанельного домостроения с минимальными переделками.

Поиски осуществлялись в трех направлениях.

Первое — секция, построенная на неполном каркасе. Сохраняются крупнопанельная оболочка наружной стены с повышенными теплотехническими характеристиками, а также лестнично-лифтовые узлы. Из внутреннего пространства здания удаляются все стеновые панели, бывшие перегородочными и несущими. Вместо них появляется один или два ряда колонн, которые не мешают планировке.

Плиты перекрытия, ранее опертые по контуру, опираются на одну сторону и две колонны или же на четыре колонны. В них меняется армирование, и они работают по другой схеме. Внутренние перегородки могут быть газосиликатные, гипсокартонные, какие угодно, но желательно легкие, чтобы не потребовался перерасход металла.

Эта система позволяет включать в общую или жилую площадь все пространство здания и дает возможность проектировать дома коммерческого типа с большим выходом квартир. У проектировщиков появляется свобода по созданию, например, 30-метровых комнат, эркеров, встроенных помещений различного назначения и т.д. Проведенные специалистами НИПТИС и БНТУ лабораторные и натурные испытания показали, что плиты с защемленными углами работают успешно. В реальной жизни два дома по этой схеме построены в Новополоцке.

Второе направление — продольные несущие стены. В наружной стеновой панели делается выступ, внутренняя стеновая панель — сборная. Первый такой объект построен в Уручье для военного кооператива. В развитие данной схемы была разработана “гребенчатая” панель с надетой на нее горизонтальной панелью с отверстиями.

Дома с продольными несущими стенами позволяют предложить застройщикам по 5–6 вариантов планировки квартир. В народе они прослыли “чешскими” (один из устойчивых мифов) и, по данным УКС, продавались еще до начала строительства.

Следующим вариантом является каркас. Выражение “время — деньги” в наши дни перешло из философской категории в экономическую.

Ведь в строительной отрасли ущерб от потерянного времени хоть и не сразу бросается в глаза, но его последствия могут быть весьма ощутимыми. И это заставляет отдавать приоритет быстровозводимым зданиям, каковыми (наряду с панельными) являются дома из сборного каркаса. Однако традиционный вариант каркаса характеризуется рядом негативных моментов (большой номенклатурой плит перекрытия, значительным количеством металлических столиков, плохой работой на ветровые усилия, что требует постановки дополнительных диафрагм жесткости, и т.д.). В связи с этим предложен несколько иной вариант каркаса — продольный, предполагающий небольшую номенклатуру (ригель и колонны с воротником) и типовую пустотку. Наружные стены могут выполняться из мелких элементов или навесных трехслойных панелей (если мы хотим поставить дело на индустриальный поток).

В настоящее время в свете того “бума”, который переживает жилищное строительство, спросом пользуются все квартиры. Однако представления о том, каким должно быть комфортабельное жилье, меняются буквально на глазах. И если сегодня, например, 90-я серия идет “на ура”, то уже завтра потребитель будет требовать гибкие объемно-планировочные решения.

Это, кстати, совсем не мешает работе зарубежных коллег. Например, в Финляндии заводы КПД выступают и как проектировщики, и как подрядчики, а при необходимости — и в качестве эксплуатирующей организации. Там заказчику сначала предлагают смоделировать на компьютере подходящий ему вариант квартиры, а потом обеспечивают выбранную планировку. “Начинка” дома, представляющего собой классическую продольную трехстенку, возможна любая. Жестко привязаны лишь санитарно-гигиенические узлы, кухонные блоки и лестничные клетки. Заинтересованность наших заводов в сохранении объемов также неизбежно приведет их к поискам “собственного лица” на рынке жилья.

Последующий этап развития КПД должен охватить такие архитектурные вопросы, как стыки панелей наружных стен, конструкция этих панелей с увеличенными характеристиками по тепловой защите зданий, а также инженерное оборудование жилых зданий, особенно энергосберегающие системы отопления и вентиляции.

Новые панели наружных стен и их стыки внедрены в ОАО “Гродножилстрой” около 10 лет назад. Это предприятие первым из домостроителей освоило технологии проектирования и возведения монолитных жилых зданий и монолитных фундаментных плит. Успешно работает в направлении модернизации крупнопанельного домостроения и ОАО МАПИД, которое внедрило гибкую планировку квартир и дает определяющие для жилищного строительства в Минске объемы. Заметно активизировали усилия домостроители Гомеля и Витебска.

Предстоящая модернизация КПД на современном этапе должна включить в себя достижения науки и опыт передовых предприятий индустриального домостроения.

Источник ais.by

Что такое коэффициент полезного действия (кпд)

Коэффициент полезного действия (КПД) — характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии. Определяется отношением полезно использованной энергии к суммарному количеству энергии, полученному системой; обозначается обычно η. КПД является безразмерной величиной и часто измеряется в процентах.

Коэффициент полезного действия (сокращенно — КПД) электрической установки показывает, какая доля активной электрической энергии Q, безвозвратно расходуемой данной установкой, приходится на полезную работу A, совершаемую этой установкой по назначению (если речь идет о преобразователе или о потребителе), либо какая доля подводимой к установке механической энергии (или энергии иной формы, например химической или световой) преобразуется в ней в полезную энергию (работу).

Читайте также:  Где взять смету на строительство

Что такое коэффициент полезного действия (КПД)

Таким образом КПД является безразмерной величиной, значение которой всегда меньше единицы, и может быть записано в виде десятичной дроби, или в виде числа (количества процентов) — от 0% до 100%.

Что такое коэффициент полезного действия (КПД)

Нагревательные приборы

Наибольшим КПД (близким к 100%) обладают электрические нагревательные приборы, в которых энергия электрического тока преобразуется непосредственно в тепло.

Практически это — так называемое джоулево тепло, которое выделяется по закону Джоуля-Ленца на нагревательном элементе (например на нихромовой спирали) при прохождении через него электрического тока, и является в данном случае полезной работой.

Что такое коэффициент полезного действия (КПД)

Пример такого прибора — масляный радиатор. Если, скажем, в электродвигателе или в трансформаторе нагрев обмоток является чистыми потерями, то в масляном радиаторе нагрев — это и есть полезная работа, других (неполезных) потерь здесь нет.

Асинхронные двигатели

Что такое коэффициент полезного действия (КПД)

У асинхронных электродвигателей КПД обычно не превышает 80-90%. Полезной работой здесь является механическая работа, выполняемая валом двигателя.

К двигателю подводится переменный ток из сети, этот ток, проходя по обмотке статора, порождает в магнитопроводе (статора) переменное магнитное поле, которое, действуя на ротор, вращает его. При этом неизбежно возникают активные потери мощности в проводе обмотки (джоулево тепло) и в магнитопроводе (вихревые токи, нагревающие металл статора и ротора).

По этой причине корпус работающего под нагрузкой двигателя всегда разогревается. Для отвода тепла, на роторе двигателя устанавливается крыльчатка вентилятора, а снаружи на корпусе делаются радиаторные ребра для лучшего охлаждения — для отвода тепловых потерь и сохранения рабочих характеристик двигателя на приемлемом уровне.

КПД электродвигателя можно узнать из шильдика (паспортной таблички).

Светодиод

Что такое коэффициент полезного действия (КПД)

В осветительном светодиоде полезной работой является производство видимого света.

КПД таких светодиодов достигает сегодня 35%, это значит, что 65% подводимой к нему электрической энергии все же теряется в форме тепла.

Поэтому данные светодиоды всегда имеют металлическую подложку как часть корпуса, при помощи которой они плотно крепятся к радиатору, либо просто массивные выводы, чтобы обеспечить необходимый отвод тепла.

Солнечная батарея

Что такое коэффициент полезного действия (КПД)

Рассмотрим случай генерации электроэнергии из солнечного света при помощи солнечной батареи на основе кремния. КПД обычной монокристаллической солнечной батареи находится в районе от 9 до 24%. Это значит, что в зависимости от количества падающих на солнечный элемент фотонов, ее КПД будет больше или меньше.

Так или иначе, не все фотоны, попадающие на элемент приводят к генерации электрического тока, а только те, что имеют наиболее адекватную для данного элемента длину волны. Другие фотоны просто отражаются, приводят к нагреву, или даже мешают генерации тока. Ученые многих стран мира непрерывно ведут исследования в поиске технологии создания более эффективных солнечных элементов.

Ранее ЭлектроВести писали, что китайскими учеными был разработан полимер, который значительно повышает производительность органических фотоэлементов — технологии, которая до тепершнего открытия проигрывала по КПД другим перспективным разработкам для получения энергии солнца.

Эффективные технологии для тепловой энергетики

В последние десятилетия наметился глобальный тренд стабилизации, а в отдельных случаях и роста доли тепловых электростанций (ТЭС) в генерации энергии.

Работающие за счет сжигания ископаемого топлива (угля, нефтепродуктов или природного газа) теплоэлектростанции сохраняют свою конкурентоспособность, несмотря на развитие атомной и альтернативной энергетики.

Ввиду рисков аварий на атомных электростанциях, высокой стоимости используемых в ветровой энергетике редкоземельных металлов в будущем доля теплоэнергетики в мировом энергобалансе может увеличиваться.

Главные проблемы современных ТЭС — низкая эффективность преобразования тепловой энергии в электрическую при сжигании топлива и недостаточная маневренность (неспособность быстро изменять выдаваемую в сеть мощность).

Новые технологии и материалы позволят в ближайшие десятилетия преодолеть эти недостатки и значительно повысить эффективность угольных, мазутных и газовых электростанций. Среди наиболее перспективных технологических решений для ТЭС — энергоблоки, рассчитанные на суперсверхкритические параметры пара, гибридные энергоустановки с совмещенными газовым и паровым циклами и высокооборотные газовые турбины малой мощности.

Роль угля как ключевого энергоносителя повышается на фоне увеличения потребления энергии в развивающихся странах, многие из которых лишены запасов нефти и газа и не могут позволить себе массовый импорт этих дорогих энергоносителей. Однако у большинства угольных ТЭС коэффициент полезного действия (КПД) невысокий — 35-40%.

Повышение КПД угольных теплоэлектростанций до 45-47%, а в перспективе до 52-55%, позволит сократить удельный объем вредных выбросов в атмосферу на единицу мощности и снизить стоимость вырабатываемой энергии.

Добиться этого можно за счет широкого внедрения энергоустановок, рассчитанных на суперсверхкритические параметры пара (ССКП), то есть на давление более 30 МПа и температуру более 560°С.

К 2015 году в рамках энергопрограммы Европейского союза «Thermie» планируется создание угольного энергоблока с КПД около 55%, рассчитанного на параметры пара 37,5 МПа и 700-720°С.

  • Экономия топлива — 0,5 млн т угля или не менее 400 млн рублей на 1 ГВт установленной мощности в год.
  • Сокращение выбросов CO2 в атмосферу на 16-22%.
  • Повышение эффективности двойного промежуточного перегрева пара, которое может дать дополнительно до 2-3 процентных пунктов прироста КПД.

Маневренные генерирующие установки с совмещенными газовым и паровым циклами

По мере роста энергопотребления актуализируется проблема управления пиковыми нагрузками в электросетях и минимизации рисков каскадных аварий. Быстро менять вырабатываемую мощность в широких пределах и покрывать пиковые нагрузки могут гидроаккумуляторные и гидроэлектростанции.

Но первых еще недостаточно и, кроме того, их использование связано с дополнительными потерями энергии, а для строительства вторых природные возможности во многом уже исчерпаны. На современных тепловых электростанциях применяются, в основном, паротурбинные генерирующие установки.

Намного маневреннее газотурбинные, у которых лопатки турбины вращаются не паром, а непосредственно продуктами сгорания топлива. Причем от запуска и выхода на полную мощность до остановки газовой турбины проходят минуты, а парового агрегата — часы.

Газотурбинные установки имеют недостаток — высокое удельное потребление топлива на единицу выработанной электроэнергии.

Сократить расход топлива можно путем создания единого парогазового агрегата. В такой установке остаточная теплота продуктов горения природного газа, прошедших через газовую турбину, используется для производства водяного пара, приводящего в движение паровую турбину. Коэффициент полезного действия подобной установки достигает 55-60% (у газотурбинной не превышает 35%).

Снижение затрат на управление пиковыми нагрузками и компенсация реактивной мощности в сетях.Компенсация перепада нагрузок в сетях крупных городских агломераций.Предотвращение сжатия освоенного пространства в восточных и северных регионах страны за счет использования их мощностей в населенных пунктах зоны децентрализованной энергетики. $200 млрд К 2023 году в мире будет изготовлено более 11,5 тыс. газотурбинных установок суммарной стоимостью около 200 млрд долларов. Значительная их часть будет использоваться в составе парогазовых установок. Почти 60% газотурбинных установок будут иметь мощность менее 50 МВт и поставляться преимущественно в развивающиеся страны, в которых нет единых энергосистем. Разработки парогазовых агрегатов поддерживает глобальный тренд перехода к распределенной генерации — удобной и выгодной в тех населенных пунктах, газификация которых не целесообразна по экономическим или другим причинам. Развитие тренда сдерживается необходимостью предварительного создания в регионе дорогостоящей инфраструктуры по доставке и распределению газа.
Что такое коэффициент полезного действия (КПД) Что такое коэффициент полезного действия (КПД) «Заделы» — наличие базовых знаний, компетенций, инфраструктуры, которые могут быть использованы для форсированного развития соответствующих направлений исследований.

Автономные микротурбинные энергоустановки

Объединять объекты генерации и потребителей в единые энергосистемы целесообразно в регионах с высокой плотностью населения и развитой промышленностью. На малозаселенных территориях (например, в Восточной Сибири и на Дальнем Востоке России) более выгодны технологии локальной генерации.

Особенно актуальны для таких территорий когенерационные установки, вырабатывающие и электроэнергию, и горячую воду для централизованного отопления и горячего водоснабжения.

Для небольших мини-ТЭЦ в районах децентрализованной энергетики, а также для резервных энергоустановок на стратегических объектах целесообразно применять микротурбины мощностью до нескольких мегаватт, которые способны работать на различных видах горючего газа и жидкого топлива.

Электрический коэффициент полезного действия микротурбинных энергетических установок составляет 25-30%, коэффициент использования топлива (в зависимости от степени преобразования тепла сбросных газов для нагрева воды) — 70%.

Наиболее перспективными считаются микротурбины малой мощности (десятки киловатт).

По сравнению с генераторами, созданными на базе дизельных или газопоршневых двигателей внутреннего сгорания, такие установки имеют большую маневренность, пониженный уровень вредных выбросов и более длительный ресурс автономной работы. Однако их производство в России пока не налажено.

Наиболее перспективными считаются микротурбины малой мощности (десятки киловатт). По сравнению с генераторами, созданными на базе дизельных или газопоршневых двигателей внутреннего сгорания, такие установки имеют большую маневренность, пониженный уровень вредных выбросов и более длительный ресурс автономной работы. Однако их производство в России пока не налажено.

  1. Движущими силами тренда являются рост цен на электроэнергию и увеличение платежей за выбросы загрязняющих веществ в атмосферу, постепенное сокращение государственного финансирования строительства крупных электростанций и дальнейшее развитие децентрализованной генерации, например в Арктической зоне РФ.
  2. Серьезным барьером может стать политика стимулирования производства традиционных видов генерирующего оборудования малой мощности (газопоршневые и дизельные электрогенераторы).

Мониторинг глобальных технологических трендов проводится Институтом статистических исследований и экономики знаний Высшей школы экономики (issek.hse.ru) в рамках Программы фундаментальных исследований НИУ ВШЭ.

При подготовке трендлеттера использовались следующие источники: Прогноз научно-технологического развития РФ до 2030 года (prognoz2030.hse.ru), материалы научного журнала «Форсайт» (foresight-journal.hse.ru), данные Web of Science, Orbit, iea.org, eia.gov, rao-ees.ru, innovation.gov.ru, komienergo.ru, mpoweruk.com и др.

Коэффициент полезного действия

Вся та энергия, которая потребляется механизмами, расходуется для того, чтобы преодолевать как полезные, так и вредные сопротивления.

Под полезными в технике подразумеваются те сопротивления, преодоление которых и является основным предназначением машины. Например, для металлообрабатывающих станков таковым является сопротивление резанию металла, в подъемных механизмах и машинах – масса поднимаемого груза и т.п.

Что такое коэффициент полезного действия (КПД)

Под вредными в технике подразумеваются те сопротивления, которые для своего преодоления требуют расходования энергии не дающей полезного эффекта. Таковыми являются, например, сила трения, возникающая при функционировании механизмов между их составными частями, а также сопротивление той среды, в которой происходит полезное движение.

  • Принято считать, что чем большую часть потребляемой энергии механизм затрачивает для того, чтобы преодолевать полезные сопротивления, тем более совершенным он является. Если выражать степень совершенства механизма математически, то можно использовать следующее соотношение:
  • где: η – коэффициент полезного действия (КПД); An – работа, которая расходуется машиной для того, чтобы преодолеть полезное сопротивление; Aз – работа движущих сил или та энергия, которая затрачивается (потребляется) машиной.
  • В большинстве случаев коэффициент полезного действия (КПД) выражают в процентах, и для этого для его вычисления используют следующую формулу:

Такой показатель, как коэффициент полезного действия, на практике применяется отнюдь не только для того, чтобы оценивать степень совершенства машин.

КПД используют и для того, чтобы определять эффективность любых сложных механических устройств, а также тех приспособлений, которые не относятся к машинам, однако воспринимают, потребляют и отдают энергию.

К таковым относятся, к примеру, топки паровых котлов (в них осуществляется преобразование энергии химической в энергию тепловую), электрических двигателей (в них электрическая энергия преобразуется в механическую), электрических осветительных приборов (в них электрическая энергия преобразовывается в световую) и т.п.

Когда возникает задача определения коэффициента полезного действия сложного по своей конструкции устройства, которое состоит из некоторого количества узлов, агрегатов и механизмов, потребляющих энергию, то наиболее целесообразно вычислять не только общий КПД, но и КПД всех отдельных составных частей.

В качестве примера можно рассмотреть установку, которая предназначается для освещения различных помещений и состоит из следующих частей: станция, вырабатывающая электроэнергию; электрические провода; лампы накаливания.

Читайте также:  Строительство дома на винтовых сваях поэтапно

С практической точки зрения интересно выяснить не только то, какой именно коэффициент полезного действия имеет эта конструкция в целом, но и то, каков именно КПД двигателя, передающего вращение электрогенератору; самого электрогенератора; проводников электрической сети; ламп накаливания. Это позволяет, помимо всего прочего, определить наименее эффективные с точки зрения затрат энергии компоненты системы и, по возможности, использовать вместо них те, которые имеют более высокий КПД (например, светодиодные светильники вместо ламп накаливания).

Коэффициент полезного действия машины, механизма или любого другого устройства, отдельные части которого последовательно потребляют передаваемую от одного компонента к другому энергию, равняется произведению КПД этих компонентов. Что касается коэффициента полезного действия механизмов, то он всегда тем ниже, чем выше потери на трение.

Формула КПД (коэффициента полезного действия)

В реальной действительности работа, совершаемая при помощи какого — либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу — $A_$. При этом имеем:

Определение и формула КПД Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $eta $, тогда:

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия — это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

[A_papprox A_left(3
ight).]

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

[F_1s_1approx F_2s_2left(4
ight).]

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

Кпд при передаче энергии

  • Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):
  • Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:
  • где $Q_n$ — количество теплоты, полученное от нагревателя; $Q_$ — количество теплоты переданное холодильнику.
  • КПД идеальной тепловой машины, которая работает по циклу Карно равно:
  • где $T_n$ — температура нагревателя; $T_$ — температура холодильника.

Примеры задач на коэффициент полезного действия

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана? extit<>

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

[A_p=mgh left(1.1
ight).]

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

Воспользуемся определением коэффициента полезного действия для его нахождения:

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

Ответ. $eta =fraccdot 100%$

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Что такое коэффициент полезного действия (КПД)

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.

1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$.

Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

Газ совершает полезную работу, которую равна:

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_$). В результате имеем:

Преобразуем формулу (2.1) учитывая результаты (2.2) — (2.4):

Так как по условию $A_=A_0, $окончательно получаем:

Ответ. $A_=left(eta -1
ight)A_0$

Читать дальше: формула линейной скорости.

Коэффициент полезного действия — это… что такое коэффициент полезного действия?

  • коэффициент полезного действия — Отношение отдаваемой мощности к потребляемой активной мощности. [ОСТ 45.55 99] коэффициент полезного действия КПД Величина, характеризующая совершенство процессов превращения, преобразования или передачи энергии, являющаяся отношением полезной… … Справочник технического переводчика
  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — или коэффициент отдачи (Efficiency) характеристика качества работы любой машины или аппарата со стороны ее экономичности. Под К. П. Д. подразумевается отношение количества полученной от машины работы или энергии от аппарата к тому количеству… … Морской словарь
  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд), числовая характеристика энергетической эффективности какого либо устройства или машины (в том числе тепловой машины). Кпд определяется отношением полезно использованной энергии (т.е. превращенной в работу) к суммарному количеству энергии,… … Современная энциклопедия
  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд) характеристика эффективности системы (устройства, машины) в отношении преобразования энергии; определяется отношением полезно использованной энергии (превращенной в работу при циклическом процессе) к суммарному количеству энергии,… … Большой Энциклопедический словарь
  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд), характеристика эффективности системы (устройства, машины) в отношении преобразования или передачи энергии; определяется отношением т) полезно использованной энергии (Wпол) к суммарному кол ву энергии (Wсум), полученному системой; h=Wпол… … Физическая энциклопедия
  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — (кпд) отношение полезно используемой энергии W п, напр. в виде работы, к общему кол ву энергии W, получаемой системой (машиной или двигателем), W п/W. Из за неизбежных потерь энергии на трение и др. неравновесные процессы для реальных систем… … Физическая энциклопедия
  • КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ — отношение полезно затрачиваемой работы или получаемой энергии ко всей затраченной работе или соответственно потребляемой энергии. Напр., К. п. д. электродвигателя отношение механ. мощности, им отдаваемой, к подводимой к нему электр. мощности; К.… … Технический железнодорожный словарь
  • коэффициент полезного действия — сущ., кол во синонимов: 8 • кпд (4) • отдача (27) • плодотворность (10) • … Словарь синонимов
  • Коэффициент полезного действия — – величина, характеризующая совершенство любой системы по отношению к какому либо протекающему в ней процессу превращения или передачи энергии, определяемая как отношение полезной работы, к работе, затраченной на приведение в действие.… … Энциклопедия терминов, определений и пояснений строительных материалов
  • Коэффициент полезного действия — (кпд), числовая характеристика энергетической эффективности какого либо устройства или машины (в том числе тепловой машины). Кпд определяется отношением полезно использованной энергии (т.е. превращенной в работу) к суммарному количеству энергии,… … Иллюстрированный энциклопедический словарь

Коэффициент полезного действия (КПД)

Коэффициент полезного действия… Очень интересное название.

  • «Коэффициент» – значит, какое-то число.
  • «Полезного действия» – значит, есть некоторое действие и оно «полезно» для кого-то; тогда, по-видимому, существует также и «неполезное» действие.

Рассмотрим КПД сначала на бытовом примере. Допустим, вы хотите купить грецких орехов. Так получилось, что вы купили 505050 орехов. Когда вы начали их колоть и есть – оказалось, что 202020 из этих грецких орехов – пустые. «Полезными» (нужными) оказались только 303030 орехов из 505050. Тогда «эффективность» (коэффициент полезного действия) для вашей покупки грецких орехов можно подсчитать как

η=30 орехов50 орехов=35=0,6=60%eta = frac>> = frac = 0,6 = 60 %η=50 орехов30 орехов​=53​=0,6=60%.

Аналогично «устроен» КПД в механике. КПД фактически показывает долю полезной работы от общей совершенной работы:

Например, вы равномерно затаскиваете груз по наклонной плоскости. Тащите равномерно. Тогда работа вашей силы «тратится» на увеличение потенциальной энергии и на противодействие работе силы трения:

A=∣Fтр.⋅S∣+mghA = |F_ cdot S| + mghA=∣Fтр.​⋅S∣+mgh.

Пояснение – вывод формулы A=∣Fтр.⋅S∣+mghA = |F_ cdot S| + mghA=∣Fтр.​⋅S∣+mgh

Формулу A=∣Fтр.⋅S∣+mghA = |F_ cdot S| + mghA=∣Fтр.​⋅S∣+mgh можно получить, если использовать закон сохранения энергии в присутствии внешних сил. Вспомним, что работа внешних сил равна изменению полной механической энергии:

Aвнешних сил=Eполная мех. 2−Eполная мех. 1A_ ext = E_ ext — E_ extAвнешних сил​=Eполная мех. 2​−Eполная мех. 1​.

Внешними силами являются две силы: сила, которая тянет груз наверх, и сила трения. Тогда работа внешних сил равна сумме работ этих сил:

Aвнешних сил=Aтянущая наверх сила+Aсила тр.A_ ext = A_ ext + A_ extAвнешних сил​=Aтянущая наверх сила​+Aсила тр.​.

При этом полная механическая энергия меняется только за счёт увеличения потенциальной энергии (скорость остаётся постоянной, кинетическая энергия никак не меняется – а потому никак не фигурирует в законе сохранения):

Eполная мех. 2−Eполная мех. 1=mgh−0E_ ext — E_ ext = mgh — 0Eполная мех. 2​−Eполная мех. 1​=mgh−0.

Тогда можно записать:

Aтянущая наверх сила+Aсила тр.=mgh−0A_ ext + A_ ext = mgh — 0Aтянущая наверх сила​+Aсила тр.​=mgh−0.

Тогда – с учётом работы силы трения – можно переписать наше исходное равенство:

Aтянущая наверх сила−Fтр.⋅S=mgh−0A_ ext — F_ cdot S = mgh — 0Aтянущая наверх сила​−Fтр.​⋅S=mgh−0.

Aтянущая наверх сила=Fтр.⋅S+mghA_ ext = F_ cdot S + mghAтянущая наверх сила​=Fтр.​⋅S+mgh.

Дополнительно для красоты можно «накинуть» на выражение для работы силы трения модуль – тогда всё точно будет положительно:

Aтянущая наверх сила=∣Fтр.⋅S∣+mghA_ ext = |F_ cdot S| + mghAтянущая наверх сила​=∣Fтр.​⋅S∣+mgh.

Полезным для вас является только «затаскивание» груза на высоту hhh – повышение потенциальной энергии груза. Тогда КПД в этом случае можно записать как

η=Aполез.Aзатр.⋅100%=mgh∣Fтр.⋅S∣+mgh⋅100%eta = frac>> cdot 100 % = frac <|F_<тр.>cdot S| + mgh> cdot 100 %η=Aзатр.​Aполез.​​⋅100%=∣Fтр.​⋅S∣+mghmgh​⋅100%.​

Обратите внимание, что у КПД есть некоторое максимальное значение.

Для определения КПД наклонной плоскости использовано оборудование, изображённое на рисунке. Ученик с помощью динамометра поднимает брусок с двумя грузами равномерно вдоль наклонной плоскости. Данные эксперимента, записанные учеником, приведены ниже. Чему равен КПД наклонной плоскости? Ответ выразите в процентах.

  • Показания динамометра при подъёме груза, Н – 1,5
  • Длина наклонной плоскости, м – 1,0
  • Масса бруска с двумя грузами, кг – 0,22
  • Высота наклонной плоскости, м – 0,15

Выберите номер правильного варианта ответа.

  1. 10%10 %10%
  2. 22%22 %22%
  3. 45%45 %45%
  4. 100%100 %100%
Читайте также:  Сколько кубов пенобетон строительство дома

(Источник: сайт решуегэ.рф)

Шаг 1. Давайте вспомним формулу для КПД.

Шаг 2. Теперь определим, что для нас полезная работа.

Тогда можем записать: Aполез.=mghA_ = mghAполез.​=mgh.

Как видно – в условии задачи есть все величины: и масса, и высота поднятия.

Шаг 3. Выясним, кто или что совершал(о) полную работу: и полезную, и неполезную (то есть затраченную).

Шаг 4. Нам надо найти «затраченную» работу силы тяги. Для этого надо вспомнить формулу, по которой можно найти работу.

Шаг 5. Все необходимые величины даны в условии задачи. Осталось последнее – вычислить КПД.

η=Aполез.Aзатр.⋅100%=mghF⋅l⋅100%=eta = frac>> cdot 100 % = frac cdot 100 % =η=Aзатр.​Aполез.​​⋅100%=F⋅lmgh​⋅100%=

Источник xn—-dtbchbawj2amueleii7b6i.xn--p1ai

Коэффициент полезного действия (КПД)

Коэффициент полезного действия (КПД)

Любой механизм хочется оценить с точки зрения его пользы. Важно же понять, хорошо он выполняет свою функцию или нет. Для этого нужно такое понятие, как КПД.

· Обновлено 12 июля 2022

Ждём вас 8 октября в 13:00. Вместе с педагогами, психологами и другими экспертами в образовании и воспитании ответим на главные вопросы мам и пап.

КПД: понятие коэффициента полезного действия

Представьте, что вы пришли на работу в офис, выпили кофе, поболтали с коллегами, посмотрели в окно, пообедали, еще посмотрели в окно — вот и день прошел. Если вы не сделали ни одного дела по работе, то можно считать, что ваш коэффициент полезного действия равен нулю.

В обратной ситуации, когда вы сделали все запланированное — КПД равен 100%.

По сути, КПД — это процент полезной работы от работы затраченной.

Вычисляется по формуле:

Формула КПД

η = (Aполезная/Aзатраченная) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Есть такое философское эссе Альбера Камю «Миф о Сизифе». Оно основано на легенде о неком Сизифе, который был наказан за обман. Его приговорили после смерти вечно таскать огромный булыжник вверх на гору, откуда этот булыжник скатывался, после чего Сизиф тащил его обратно в гору. То есть он делал совершенно бесполезное дело с нулевым КПД. Есть даже выражение «Сизифов труд», которое описывает какое-либо бесполезное действие.

Давайте пофантазируем и представим, что Сизифа помиловали и камень с горы не скатился. Тогда, во-первых, Камю бы не написал об этом эссе, потому что никакого бесполезного труда не было. А во-вторых, КПД в таком случае был бы не нулевым.

Полезная работа в этом случае равна приобретенной булыжником потенциальной энергии. Потенциальная энергия прямо пропорционально зависит от высоты: чем выше расположено тело, тем больше его потенциальная энергия. То есть, чем выше Сизиф прикатил камень, тем больше потенциальная энергия, а значит и полезная работа.

Потенциальная энергия

Еп = mg

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g ≃ 9,8 м/с 2

Затраченная работа здесь — это механическая работа Сизифа. Механическая работа зависит от приложенной силы и пути, на протяжении которого эта сила была приложена.

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

И как же достоверно определить, какая работа полезная, а какая затраченная?

Все очень просто! Задаем два вопроса:

За счет чего происходит процесс?

Ради какого результата?

В примере выше процесс происходит ради того, чтобы тело поднялось на какую-то высоту, а значит — приобрело потенциальную энергию (для физики это синонимы). Происходит процесс за счет энергии, затраченной Сизифом — вот и затраченная работа.

Бесплатный курс для современных мам и пап от Екатерины Мурашовой. Запишитесь и участвуйте в розыгрыше 8 уроков

Практикующий детский психолог Екатерина Мурашова

КПД в механике

Главный секрет заключается в том, что эта формула подойдет для всех видов КПД.

Если КПД получился больше 100 — идем проверять на ошибки. Такое может получиться, если неправильно подставили в формулу или перепутали затраченную и полезную работу.

η = (Aполезная/Aзатраченная) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Дальше мы просто заменяем полезную и затраченную работы на те величины, которые ими являются.

Давайте разберемся на примере задачи.

Задача

Чтобы вкатить санки массой 4 кг в горку длиной 12 метров, мальчик приложил силу в 15 Н. Высота горки равна 2 м. Найти КПД этого процесса. Ускорение свободного падения принять равным g ≃9,8 м/с 2

Запишем формулу КПД.

Теперь задаем два главных вопроса:

Ради чего все это затеяли?

Чтобы санки в горку поднять — то есть ради приобретения телом потенциальной энергии. Значит в данном процессе полезная работа равна потенциальной энергии санок.

Потенциальная энергия

Еп = mg

Еп — потенциальная энергия [Дж]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g ≃ 9,8 м/с 2

За счет чего процесс происходит?

За счет мальчика, он же тянет санки. Значит затраченная работа равна механической работе

Механическая работа

А = FS

A — механическая работа [Дж]

F — приложенная сила [Н]

Заменим формуле КПД полезную работу на потенциальную энергию, а затраченную — на механическую работу:

η = Eп/A · 100% = mgh/FS · 100%

η = 4 · 9,8 · 2/15 · 12 · 100% = 78,4/180 · 100% ≃ 43,6 %

Ответ: КПД процесса приблизительно равен 43,6%

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи!

КПД в термодинамике

В термодинамике КПД — очень важная величина. Она полностью определяет эффективность такой штуки, как тепловая машина.

  • Тепловой двигатель (машина) — это устройство, которое совершает механическую работу циклически за счет энергии, поступающей к нему в ходе теплопередачи.

Схема теплового двигателя выглядит так:

Схема теплового двигателя

У теплового двигателя обязательно есть нагреватель, который (не может быть!) нагревает рабочее тело, передавая ему количество теплоты Q1 или Qнагревателя (оба варианта верны, это зависит лишь от учебника, в котором вы нашли формулу).

  • Рабочее тело — это тело, на котором завязан процесс (чаще всего это газ или топливо). Оно расширяется при подводе к нему теплоты и сжимается при охлаждении. Часть переданного Q1 уходит на механическую работу A. Из-за этого производится движение.

Оставшееся количество теплоты Q2 или Qхолодильника отводится к холодильнику, после чего возвращается к нагревателю и процесс повторяется.

КПД такой тепловой машины будет равен:

КПД тепловой машины

η = (Aполезная/Qнагревателя) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа (механическая) [Дж]

Qнагревателя — количество теплоты, полученное от нагревателя[Дж]

Если мы выразим полезную (механическую) работу через Qнагревателя и Qхолодильника, мы получим:

A = Qнагревателя — Qхолодильника.

Подставим в числитель и получим такой вариант формулы.

КПД тепловой машины

η = Qнагревателя − Qхолодильника/Qнагревателя · 100%

η — коэффициент полезного действия [%]

Qнагревателя — количество теплоты, полученное от нагревателя [Дж]

Qхолодильника — количество теплоты, отданное холодильнику [Дж]

А возможно ли создать тепловую машину, которая будет работать только за счет охлаждения одного тела?

Точно нет! Если у нас не будет нагревателя, то просто нечего будет передавать на механическую работу. Любой такой процесс — когда энергия не приходит из ниоткуда — означал бы возможность существования вечного двигателя.

Поскольку свидетельств такого процесса в мире не существует, то мы можем сделать вывод: вечный двигатель невозможен. Это второе начало термодинамики.

Запишем его, чтобы не забыть:

Невозможно создать периодическую тепловую машину за счет охлаждения одного тела без изменений в других телах.

Задача

Найти КПД тепловой машины, если рабочее тело получило от нагревателя 20кДж, а отдало холодильнику 10 кДж.

Решение:

Возьмем формулу для расчета КПД:

η = Qнагревателя − Qхолодильника/Qнагревателя · 100%

Решать будем в системе СИ, поэтому переведем значения из килоджоулей в джоули и затем подставим в формулу:

η = 20 000 − 10 000/20 000 · 100% = 50%

Ответ: КПД тепловой машины равен 50%.

Пошаговый гайд от Екатерины Мурашовой о том, как перестать делать уроки за ребёнка и выстроить здоровые отношения с учёбой.

Учёба без слёз (бесплатный гайд для родителей)

Идеальная тепловая машина: цикл Карно

Давайте еще чуть-чуть пофантазируем: какая она — идеальная тепловая машина. Кажется, что это та, у которой КПД равен 100%.

На самом деле понятие «идеальная тепловая машина» уже существует. Это тепловая машина, у которой в качестве рабочего тела взят идеальный газ. Такая тепловая машина работает по циклу Карно. Зависимость давления от объема в этом цикле выглядит следующим образом

тепловая машина по циклу Карно

А КПД для цикла Карно можно найти через температуры нагревателя и холодильника.

КПД цикла Карно

η = Tнагревателя − Tхолодильника / Tнагревателя · 100%

η — коэффициент полезного действия [%]

Tнагревателя — температура нагревателя [Дж]

Tхолодильника — температура холодильника [Дж]

КПД в электродинамике

Мы каждый день пользуемся различными электронными устройствами: от чайника до смартфона, от компьютера до робота-пылесоса — и у каждого устройства можно определить, насколько оно эффективно выполняет задачу, для которой оно предназначено, просто посчитав КПД.

КПД

η = (Aполезная/Aзатраченная) · 100%

η — коэффициент полезного действия [%]

Aполезная — полезная работа [Дж]

Aзатраченная — затраченная работа [Дж]

Для электрических цепей тоже есть нюансы. Давайте разбираться на примере задачи.

Задачка, чтобы разобраться

Найти КПД электрического чайника, если вода в нем приобрела 22176 Дж тепла за 2 минуты, напряжение в сети — 220 В, а сила тока в чайнике 1,4 А.

Решение:

Цель электрического чайника — вскипятить воду. То есть его полезная работа — это количество теплоты, которое пошло на нагревание воды. Оно нам известно, но формулу вспомнить все равно полезно

Количество теплоты, затраченное на нагревание

Q — количество теплоты [Дж]

c — удельная теплоемкость вещества [Дж/кг · ˚C]

tконечная — конечная температура [˚C]

tначальная — начальная температура [˚C]

Работает чайник, потому что в розетку подключен. Затраченная работа в данном случае — это работа электрического тока.

Работа электрического тока

A = (I 2 ) · Rt = (U 2 )/R · t = UIt

A — работа электрического тока [Дж]

U — напряжение [В]

R — сопротивление [Ом]

То есть в данном случае формула КПД будет иметь вид:

η = Q/A · 100% = Q/UIt · 100%

Переводим минуты в секунды — 2 минуты = 120 секунд. Теперь нам известны все значения, поэтому подставим их:

η = 22176/220 · 1,4 · 120 · 100% = 60%

Ответ: КПД чайника равен 60%.

Давайте выведем еще одну формулу для КПД, которая часто пригождается для электрических цепей, но применима ко всему. Для этого нужна формула работы через мощность:

Работа электрического тока

A — работа электрического тока [Дж]

Подставим эту формулу в числитель и в знаменатель, учитывая, что мощность разная — полезная и затраченная. Поскольку мы всегда говорим об одном процессе, то есть полезная и затраченная работа ограничены одним и тем же промежутком времени, можно сократить время и получить формулу КПД через мощность.

КПД

η = Pполезная/Pзатраченная · 100%

η — коэффициент полезного действия [%]

Pполезная — полезная мощность [Дж]

Pзатраченная — затраченная мощность [Дж]

Ждём вас 8 октября в 13:00. Вместе с педагогами, психологами и другими экспертами в образовании и воспитании ответим на главные вопросы мам и пап.

Источник skysmart.ru
Рейтинг
Загрузка ...