Входной контроль лакокрасочных материалов, поступивших от поставщика или со склада, производится обычно исполнителем окрасочных работ, однако инспектор, прежде чем дать разрешение на использование материала, должен окончательно убедиться в его качестве.
Входной контроль лакокрасочных материалов включает в себя проверку сопроводительной документации, осмотр транспортной тары и установление соответствия свойства материала требованиям, указанным в технической документации на материал.
Сопроводительная документация, подтверждающая соответствие полученного материала заказанному и его качество (сертификат или паспорт, информация на транспортной таре, гигиенический сертификат, паспорт безопасности, инструкция по применению материала) должна содержать следующие сведения:
- марку материала;
- наименование фирмы – поставщика;
- цвет материала и номер колера по каталогу;
- дату изготовления и срок годности;
- количество материала в каждой тарной упаковке;
- основные технические характеристики материала;
- особые свойства материала (токсичность, пожаро-взрывоопасность и др.).
- условия хранения.
При осмотре транспортной тары инспектор должен убедиться в ее целостности, наличии необходимой маркировки, полной комплектности поставки.
Входной контроль
Качество полученных от изготовителя лакокрасочных материалов часто оценивается путем сопоставления основных технических характеристик, указанных в сертификате на партию материалов и тех же характеристик в технической документации изготовителя (спецификациях, инструкциях, технических картах, проспектах и т.п.). Однако в сомнительных случаях инспектор вправе потребовать испытаний по тем или иным показателям.
Наиболее информативными показателями, объективно характеризующими качество и технологические свойства лакокрасочных материалов и не требующими длительных и трудоемких испытаний, являются:
Обязательному контролю подвергаются также используемые в процессе лакокрасочных материалов растворители, разбавители, сиккативы и другие компоненты.
Пробы материалов для испытаний отбирают согласно требованиям стандарта ИСО 15528. Используют оборудование для выполнения двух отдельных операций: перемешивания продукта для достижения наибольшей однородности и для отбора представительной пробы. Минимальное число емкостей, из которых отбирают пробы, зависит от общего числа емкостей в данной партии лакокрасочного материала. Пробы анализируют непосредственно после взятия во избежание изменения свойств материалов (особенно содержащих воду или после хранения при повышенной температуре).
Пробы исследуют и готовят к испытанию в соответствии со стандартом ИСО 1513. при этом отмечают:
- наличие поверхностей пленки и ее особенности (сплошная, твердая, мягкая, тонкая, толстая и т.д.),
- наличие тиксотропности или желатинизации,
- разделение на слои,
- тип осадка (мягкий, твердый, твердо-сухой),
- наличие и вид примесей.
Образцы, в которых наблюдаются желатинизация, или выпадение твердо-сухого осадка, бракуют и не допускают испытаний.
Гайд №7. Как заполнять Акт входного контроля (АоРПИ)
Образцы красок наносятся на пластины, которые изготавливаются из различных материалов в соответствии со стандартом ИСО 1514. Особое внимание должно уделяться подготовке поверхности пластин перед нанесением испытуемых материалов.
Вязкость лакокрасочных материалов – основной технологический показатель, т.к. выбор окрасочного оборудования зависит от вязкости и, наоборот, применяя то или иное оборудование, необходимо использовать материал с соответствующей рабочей вязкостью.
Имеются понятия динамической и кинематической вязкостей. Динамическая вязкость измеряется в Паскаль-секундах (Па•с), либо в пуазах (П); 1Па•с = 10 П. Кинематическая вязкость – это отношение динамической вязкости к плотности жидкости. величину кинематической вязкости измеряют в мм2/с.
Для оценки вязкости лакокрасочных материалов используются две методики в зависимости от того, к какому типу жидких систем относится данный материал: ньютоновской либо неньютоновской. Ньютоновские жидкости характеризуются постоянством вязкости во времени и независимостью ее от механического воздействия – напряжения сдвига (например, перемешивания). У неньютоновских жидкостей вязкость зависит от времени, либо от напряжения сдвига. Если с увеличением напряжения сдвига вязкость уменьшается, то жидкости называют тиксотропными.
Учитывая выше изложенное, для оценки вязкости лакокрасочных материалов, представляющих собой Ньютоновские жидкие системы и близкие к ним, пользуются методикой стандарта ИСО 2431, основанной на определении времени истечения определенного объема материала через сопло заданного размера. При применении этой методики кинематическая вязкость исследуемых материалов не должна превышать 7002 мм/с, а время истечения из сопла заполненного объема от момента первого прерывания струи вытекающего материала должно находиться в пределах от 30 до 100 с.
Основная аппаратура для проведения испытаний: стандартизированные воронки ИСО с диаметром сопла 3, 4, 5 или 6 мм (рис. 1), термометр, секундомер и термостат, в котором воронка и образец материала могут быть выдержаны при рекомендуемой постоянной температуре.
рис. 1. Воронка для определения вязкости лакокрасочных материалов (ИСО 2431)
а — размеры воронки; б — параметры различных модификаций воронки.
Воронку выбирают по калибровочной кривой ИСО 2431 (рис.2) с таким расчетом, чтобы время истечения материала находилось в пределах от 30 до 100 с. За время истечения материала при стандартной температуре принимается промежуток времени в секундах от момента начала истечения материала из сопла до момента первого прерывания струи.
рис. 2. Калибровочная кривая для воронки ИСО 2431 с диаметром сопла 4 мм.
Имеется ряд лакокрасочных материалов, представляющих собой тиксотропные коллоидные системы, время истечения которых из воронок получается неопределенным и различным. В таких случаях определяется динамическая вязкость материала по стандарту ИСО 2884 с помощью вискозиметров, работающих при высокой скорости сдвига.
Толщина неистекающего мокрого слоя тиксотропных лакокрасочных материалов также характеризует их реологические свойства. Максимальное (предельное) ее значение является величиной, нормируемой для тиксотропного материала.
Для определения предельной толщины неистекающего слоя используется аппликатор длиной 50-60 мм со щелями 0,3-0,8 мм. Лакокрасочный материал наносят на пластинки с помощью аппликатора, начиная с большей высоты щели. Затем пластину ставят в вертикальное положение, и после выдержки в течение 1 ч при температуре (20 2)˚С осматривают состояние пленки. За предельную толщину неистекающего мокрого слоя принимают максимальную высоту щели аппликатора, при которой не наблюдается стекания, т.е. перемещение слоя материала относительно подложки.
Содержание нелетучих веществ в лакокрасочном материале – это отношение массы веществ, остающихся в пленке после испарения летучих веществ, к общей массе испытуемого материала, выражение в процентах. Определение данного показателя (масс.%) производится в соответствии со стандартом ИСО 3251. Методика основана на испарении летучих веществ (растворителей, разбавителей) при нагревании навески этого материала при заданной температуре в течение определенного периода времени (1-3 часа).
Содержание нелетучих веществ в объемных процентах (об.%) определяется по стандарту ИСО 3233 или может быть рассчитано по формуле:
Степень перетира, характеризующаяся степень дисперсности содержащихся в лакокрасочном материале пигментов и наполнителей, оценивается по стандарту ИСО 1524. Для этого используется специальный прибор с клинообразной откалиброванной по глубине канавкой, имеющей шкалу с делениями (рис. 3).
Рис. 3. Приббор для определения степени перетира лакокрасочных материалов (ИСО 1524):
а — общий вид прибора; б — параметры различных модификаций прибора (мкм); в — скребок для проведения измерений; г — характерный вид показания прибора (степень перетира 14 мкм)
За степень перетира принимается показание в микрометрах, которое соответствует глубине канавки на приборе, где отдельные частицы материала становятся легко различимыми. Обычно степень перетира наиболее применяемых лакокрасочных материалов составляет от 30 до 70 мкм.
Цвет и внешний вид пленки покрытия определяется по стандарту ИСО 3668 путем визуального сравнения его с цветом соответствующих образцов (эталонов) цвета при естественном или искусственном рассеянном свете.
Сравнительные образцы должны находиться в одной плоскости на расстоянии 300-500мм от глаз наблюдателя под углом зрения, исключающем блеск поверхности.
Укрывистость лакокрасочных материалов, обуславливающая их расход при нанесении, определяется в соответствии со стандартом ИСО 2814. Метод основан на определении степени (коэффициента) контрастности, т.е. соотношения количества света, диффузно отраженного от черной и белой поверхности, на которые нанесен лакокрасочный материал.
где K — коэффициент контрастности, %,
Rч – отражательная способность окрашенной черной поверхности, %,
Rб – отражательная способность окрашенной белой поверхности, %.
Коэффициент контрастности определяется при помощи фотоэлектрического прибора и стандартной контрастной черно-белой подложки, отражательная способность которой на белом участке составляет 75-85%, а отражательная способность на черном участке – не более 5%.
Поверхность считается укрытой, когда коэффициент контрастности достигнет величины, близкой к единице. Расход материала (в г/м2), соответствующий значению контрастности K= 0,98 и является показателем укрывистости данного материала.
Время высыхания – это промежуток времени от нанесения лакокрасочного материала до момента, когда происходит формирование покрытия до определенной степени высыхания пленки при определенных температуре и влажности воздуха.
Оценка времени для первой степени высыхания производится по стандарту ИСО 1517. Метод основан на способности лакокрасочного покрытия по мере высыхания удерживать на своей поверхности стеклянные шарики без повреждения поверхностной пленки покрытия. Покрытие считается “сухим”, если шарики скатываются с поверхности или удаляются щеткой без повреждения пленки.
Состояние и время полного высыхания покрытия определяется по стандарту ИСО 9117. За полное высыхание принимается состояние, когда покрытие высохло по всей толщине и на его поверхности не остается следа после наложения и кручения сетки установленной стандартом формы при определенном давлении.
Прочность пленки при ударе характеризует стойкость покрытия к растрескиванию или отслаиванию от подложки при мгновенной деформации под воздействием ударной нагрузки. Оценивается по стандарту ИСО 6272. Метод основан на определении минимальной массы или высоты падения груза, при которых покрытие растрескивается или отслаивается от подложки.
Платину с покрытием закрепляют на основании и, отпуская груз, позволяют ему свободно падать на пластину. Затем исследуют покрытие с помощью лупы на наличие трещин. Отмечается высота, при которой трещины появляются первый раз.
Прочность пленок при изгибе определяется по стандарту ИСО 1519. Стандарт устанавливает эмпирический метод оценки стойкости лакокрасочного покрытия к растрескиванию или тслаиванию от металлической поверхности при изгибе окрашенного образца вокруг цилиндрического стержня в стандартных условиях.
В случае многослойных покрытий можно испытывать каждый слой отдельно или всю систему вместе. При испытании используют комплект цилиндрических стержней диаметром от 2 до 32 мм. Пластины с покрытием равномерно без рывков в течение 1-2 с изгибают вокруг стержня на 180˚ при стандартных условиях окружающей среды : температуре 23 2˚С, относительной влажности 50 5%, если не оговорены другие условия (рис.4 ). Сразу после изгиба покрытие осматривают невооруженным глазом на образование трещин или отслоение от металла. Отмечается диаметр стержня, при испытании на котором появились дефекты в покрытии.
Рис. 4. Прибор типа 1 для определения прочности пленок (ИСО 1519).
1 — оправка; 2 — упор.
Твердость лакокрасочной пленки характеризует механическую прочность полкрытия после высыхания лакокрасочного материала, поэтому часто данный показатель используется для определения степени высыхания покрытий. Оценка показателя твердости производится по стандарту ИСО 1522, методика которого основана на зависимости скорости затухания амплитуды качания маятника от твердости покрытия.
Твердость пленки может также оцениваться методом царапания по методу стандарта ИСО 1518. Этот метод используется редко в связи с его значительной погрешностью.
Более удобен и чаще применяется на практике метод оценки твердости по карандашу (ИСО 15184). Используются карандаши с твердостью от 9В до 9Н.
Адгезия или свойство покрытия взаимодействовать с подложкой с образованием связей является одним из самых важных свойств лакокрасочных материалов. Косвенная оценка этого показателя производится по стандарту ИСО 2409, который устанавливает метод испытания покрытий на стойкость к отслоению от подложки или предыдущего слоя при решетчатом надрезе покрытия до подложки. Метод не позволяет измерить адгезию в физических единицах и не распространяется на покрытия толщиной более 250 мкм. Инструмент для оценки адгезии этим методом показан на рис. 6. испытания проводят при температуре (23 2)˚С и относительной влажности (50 5)% на пластинках с покрытием, полученном стандартным методом. Число надрезов в каждом направлении решетки должно равняться 6. Расстояние между надрезами зависит от толщины покрытия при толщине:
- от 0 до 60 мкм – 1мм;
- от 61 до 120 мкм – 2мм;
- от 121 до 250 мкм – 3мм.
Рис. 6. Инструменты для испытания адгезии лакокрасочных покрытий методом решетчатых надрезов (ИСО 2409).
Полученную решетку чистят мягкой кистью, для твердых подложек дополнительно используют липкую ленту. Затем внимательно исследуют поверхность надрезов испытуемого покрытия невооруженным глазом или пользуясь лупой и классифицируют в соответствии с приведенными в стандарте иллюстрациями по 6-бальной шкале оценки (табл. 1). При испытании многослойных покрытий указывают поверхность раздела слоев, на которой произошло расслаивание.
Таблица 1. Оценка результатов испытания адгезии лакокрасочных покрытий методом решетчатых надресов (ИСО 2409)
Классификация (баллы) |
Описание | Внешний вид поверхности надрезов с отслаиванием (пример для 6 параллельных надрезов) |
0 | Края надрезов полностью гладкие; ни один из квадратов решетки не отслоилсяю |
— |
1 | Отслоение мелких чешуек покрытия на пересечении надрезов. Площадь отслоений немного превышает 5% площади решетки. |
|
2 | Покрытие отслоилось вдоль краев иили на пересечении надрезов. Площадь отслоений значительно превышает 5%, но не более 15% площади решетки. |
|
3 | Покрытие отслоилось вдоль краев надрезов частично или полностью на различных частях квадратов. Площадь отслоений значительно превышает 15%,но не более 35% площади решетки. |
|
4 | Покрытие отслоилось вдоль краев надрезов широкими полосами иили отслоилось частично или полностью. Площадь отслоений значительно превышает 35%,но не более 65% площади решетки. |
|
5 | Любая степеньотслаивается,которую нельзя классифицировать 4 — м баллом шкалы. |
В том случае, когда нужно измерить адгезию покрытия к подложке, используется метод измерения минимального разрывного напряжения, необходимого для нормального отрыва покрытия. Данный метод регламентируется стандартом ИСО 4624.
Испытание производится обычно в лабораторных условиях путем приклеивания к окрашенной пластине металлических образцов стандартного размера (“грибков”). После высыхания клея образцы отрываются от пластины специальным приспособлением, позволяющим определить усилие отрыва. Исходя из величины усилия отрыва и площади “грибка”, определяется величина адгезионной прочности на отрыв (рис. 5). при этом фиксируется не только прочность на отрыв, но и характер разрушения, который может быть адгезионным (полный отрыв пленки от поверхности), когезионным (разрыв пленки) и когезионно-адгезионным (смешанным).
Рис. 5. Приспособие для определения адгезии лакокрасочных покрытий методом отрыва (ИСО 4624) для испытаний на плоской окрашенной поверхности:
1 — внешнее опорное кольцо; 2 — цилиндр для испытаний («грибок»), приклеиваемый к поверхности; 3 — лакокрасочное покрытие; 4 — окрашенная поверхность
Жизнеспособность многокомпонентных лакокрасочных материалов после смешения компонентов определяется по стандарту ИСО 9514. При смешении реакционноспособных компонентов вязкость композиции со временем возрастает до такой величины, когда система теряет текучесть – наступает гелеобразование. Величина максимального времени, в течении которого вязкость системы после смешения компонентов практически не изменяется или изменяется в заданных пределах считается жизнеспособностью системы.
Стандартный метод определения жизнеспособности заключается в измерении условной вязкости материала по воронке ИСО сразу после смешения компонентов, затем после выдержки испытуемой пробы при заданной температуре в течение времени, указанного в технической документации на материал. Материал считается пригодным к использованию, если вязкость пробы, измеренная по истечении заданного времени, не превышает исходную или превышает в допустимых пределах.
Помимо указанных выше показателей при необходимости или в соответствии с требованиями технологической документации могут контролироваться и другие показатели (например, плотность, толщина, блеск и др.), характеризующие те или иные свойства лакокрасочных покрытий. Испытания проводят по методам, регламентируемым стандартами ИСО.
В отдельных случаях проверяется стойкость покрытий в различных средах (вода, атмосфера, солевые растворы и т.п.) или при воздействии отдельных факторов среды (светостойкость, теплостойкость и т.п.). Испытания должны проводиться по методам, регламентируемым стандартами ИСО.
Рассказать друзьям:
1998-2014 “Corrozii.net”
Российская Федерация, 620062,г.Екатеринбург, пр. Ленина, 101/2
тел.: (343) 268-10-53
Источник: www.corrozii.net
Качество бетона и стандартизация правил контроля его прочности
За процессом бетонирования необходимо вести систематический контроль на всех операциях, начиная от приготовления бетонной смеси и кончая распалубкой.
Этот контроль должна осуществлять строительная лаборатория вместе с непосредственными исполнителями.
Для приготовления бетонной смеси применяют качественные и чистые материалы (песок, щебень, цемент).
При этом систематически проверяют крупность песка и щебня, их влажность, количество вредных глинистых и пылеватых частиц, а также прочность щебня на сжатие.
Необходимо организовать лабораторный контроль за такими показателями цемента, как сроки его схватывания, тонкость помола и прочность на сжатие (марка).
Особое внимание уделяют точности дозирования составляющих.
При этом расход воды систематически корректируют в зависимости от фактической влажности заполнителей.
У места укладки бетонной смеси проверяют ее однородность, подвижность и объем.
Если замечено, что смесь при перевозке расслоилась, немедленно корректируют ее состав, изменяют маршрут перевозки, модернизируют транспортные средства и т. д.
При отклонении от заданной подвижности изменяют В/Ц и улучшают условия транспортирования.
На крупных объектах, где одновременно ведут укладку разных бетонных смесей, во избежание их пересортицы на каждую партию смеси, доставленную бетоновозом, нужно иметь паспорт.
В нем указывают марку смеси, ее подвижность, вид цемента, крупность заполнителя и объем партии.
Контроль за качеством подачи, распределения и укладки бетонной смеси должен вести технический персонал стройки. Контроль заключается в наблюдении за организацией работ и выполнением всех без исключения технологических операций. Здесь не может быть мелочей.
Как указывалось выше, качество бетона сильно зависит от качества опалубки, отсутствия в ней щелей, мер, принятых против расслоения бетонной смеси при подаче и укладке, послойной укладки, качества подготовки рабочих швов, способа виброуплотнения, ухода за бетоном, своевременной и правильной распалубки.
Поэтому все эти и другие факторы должны постоянно находиться под контролем технических руководителей стройки.
Особое внимание необходимо уделять контролю за виброуплотнением бетонной смеси. Контроль за процессом вибрирования пока ведут визуально, судя по степени осадки смеси, прекращению выхода из нее пузырьков воздуха и появлению цементного молока.
Субъективность оценки приводит к ошибкам и в конечном счете к снижению качества бетона.
В последнее время для контроля за уплотнением бетонной смеси разработаны плотномеры, принцип действия которых основан на измерении поглощения гамма-излучения.
При этом у хорошо уплотненного бетона степень поглощения радиактивного излучения выше, и наоборот.
Созданы приборы, использующие для контроля за степенью уплотнения бетонной смеси изменение ее омического сопротивления. Внедрение такого контроля повышает качество бетона.
Как правильно проверять качество бетона на стройплощадке?
Подскажите, пожалуйста, кто имеет право принимать бетон на стройплощадке, а именно осуществлять отбор образцов-кубов, проверять конус и температуру? Какой нормативный документ это регламентирует? Спасибо.
Бетонная смесь является уникальным строительным материалом, который в процессе использования приобретает новые свойства, а прежние утрачивает и восстановить их невозможно. Важность строгого соблюдения правил приема бетона обусловлена тем, что в случае несоответствия характеристик затвердевшего бетона заявленным и предъявления претензий производителю необходима идентификация свойств исходной смеси.
Основной нормативной документацией, регламентирующей порядок приема, входного контроля качества и процесса укладки бетонной смеси, являются ГОСТ 7473-94, ГОСТ 10181-2000, СНиП 3.03.01-87 и действующее с 2001 года дополнение к нему П2-2000 «Производство бетонных работ на строительных площадках».
Входной контроль качества бетонной смеси производится в соответствии с ГОСТ 7473-94, результаты вносятся в журнал бетонных работ, где также регистрируется:
- название поставщика бетона и номер накладной;
- время приема смеси;
- регистрационный номер автомобиля, доставившего материал;
- точные координаты укладки бетона: конструктивный элемент, ось, отметка.
Исполнителями работ, связанных с приемом и контролем качества бетонной смеси, являются должностные лица, в функции которых входит инженерное сопровождение строительных работ. В зависимости от структуры предприятия это могут быть прораб, мастер, лаборант. Данные о приеме партии смеси в журнале бетонных работ подписывают два специалиста – лаборант и ответственный исполнитель, прораб или мастер.
Лаборант или мастер отбирает образцы и выполняет замеры конуса и температуры поступившей партии бетонной смеси, но персональную ответственность за ненадлежащее качество материала несет лицо, на которое приказом по предприятию возложена функция контроля
Важно! Персональную ответственность за осуществление входного контроля и технологические испытания материала несет должностное лицо, уполномоченное приказом по организации.
Таким образом, прораб или мастер должны принять партию бетонной смеси, лаборант отбирает образцы и выполняет необходимые замеры и в журнале бетонных работ оба ставят подписи под соответствующей записью. Персональную ответственность за ненадлежащий контроль за ходом строительства в спорных случаях понесет лицо, назначенное приказом.
Контроль прочности бетона
Прочность на сжатие монолитного бетона во всех областях строительства, кроме гидротехнического, оценивают по результатам испытаний образцов-кубов 150×150×150 мм в возрасте 28 суток в соответствии с ГОСТом.
Контрольные образцы-кубы готовят на месте укладки из бетонной смеси, непосредственно укладываемой в дело и выдерживаемых в условиях нормального твердения (при 20 (±2)° С и относительной влажности не менее 90%).
Каждая серия контрольных образцов состоит из трех одинаковых кубов.
Количество серий определяют в зависимости от вида конструкций или сооружений, их габаритов и массивности.
Одну серию образцов-кубов назначают на следующие объемы работ:
— на каждые 50 м3 массивных конструкций при объеме блока бетонирования более 1000 м3, при объеме блока меньше 100 м3 — на каждые 250 м3;
— на каждые 100 м3 крупных фундаментов, но не менее одной серии на каждый блок;
— на каждые 50 м3 массивных фундаментов под технологическое оборудование объемом более 50 м3, но не менее одной серии на каждый блок, а при объеме менее 50 м3 — не менее одной серии на каждый фундамент;
— на каждые 20 м3 каркасных и тонкостенных конструкций (колонны, балки, плиты и т. п.);
— не менее двух серий на 200 м3 оснований и покрытий дорог и аэродромов, одна из которых (три образца-куба) — для испытаний на сжатие, другая — три призмы для испытаний на растяжение при нагибе;
на каждые 50 м3 сооружений, возводимых в скользящей опалубке, не менее трех серий (одна для испытаний в возрасте трех суток), но не менее чем на каждые 2 м высоты сооружения.
Помимо образцов-кубов стандартного размера в отдельных случаях прочность на сжатие бетона определяют испытанием образцов-кубов с длиной ребра 10, 20 и 30 см, а также образцов-цилиндров диаметром 15 см и высотой 30 см.
Размеры образцов-кубов зависят от наибольшей крупности заполнителя:
Крупность заполнителя, мм ….. до 20 до 40 до 70 до 150
Куб с длиной ребра, мм …………. 100 150 200 300
Результаты, полученные при испытании образцов-кубов с длиной ребра 10, 20 и 30 см, приводят к стандартной прочности, т. е. прочности при сжатии образцов-кубов с ребром 15 см. Для этого среднеарифметические значения прочности от испытания трех образцов одной серии умножают на поправочные коэффициенты.
Значения поправочных коэффициентов принимают с учетом размеров и формы испытываемых образцов:
Образцы-кубы с ребрами, см 10 20 30
Коэффициент 0,85 1,05 1,10
Для образцов-цилиндров поправочный коэффициент равен 1,10.
Прочность бетона в конструкции или сооружении считают достаточной, если ни в одной из испытанных серий снижение прочности по сравнению с проектной маркой бетона не превышает 15 %.
Если при испытании образцов окажется, что прочность бетона ниже проектной более чем на 15%, состав бетона для дальнейшего бетонирования немедленно корректируют, а возможность использования ранее забетонированных конструкций определяет проектная организация.
В отдельных случаях (например, в дорожном и аэродромном строительстве) помимо определения прочности бетона на сжатие испытывают его также на растяжение при изгибе.
В случаях, оговоренных проектом или специальными техническими условиями, бетон испытывают на прочность при осевом растяжении, на морозостойкость и водонепроницаемость.
Качество торкрета и набрызг-бетона контролируют испытанием образцов на прочность при сжатии и водонепроницаемость.
С этой целью методом торкретирования готовят плиты, из которых выпиливают образцы-кубы необходимых размеров или плитки для испытания на водонепроницаемость.
При подводном бетонировании для проверки прочности бетона на сжатие из «тела» конструкции или сооружения выбуривают образцы-цилиндры.
Контроль качества при зимнем бетонировании по сводам правил
При приемке бетонной смеси на строительной площадке, а также укладке, выдерживании и уходе за бетоном в зимнее время года необходимо осуществлять контроль качества на всех этапах проведения бетонных работ.
Зимний контроль качества осуществляется при наступлении среднесуточной температуре наружного воздуха ниже 5 °С и минимальной суточной температуре ниже 0 °С (согласно п.5.11.1).
Контроль качества бетона при бетонировании в зимних условиях необходимо выполнять в строгом соответствии с п.5.5.16 — п.5.5.17 действующего СП 70.13330.2012 Несущие и ограждающие конструкции. Актуализированная редакция СНиП 3.03.01-87.
А также необходимо не забывать о п.5.5.1 — п.5.5.10 СП 70.13330.2012, касаемых контроля качества при бетонировании в обычных условиях.
5.11.16 Требования к производству работ при отрицательных температурах воздуха приведены в таблице 5.7.
- до В10
- до В25
- В30 и выше
- при пролете до 6 м
- при пролете свыше 6 м
- в преднапряженных конструкциях
- до В15
- до В25
- В30 и выше
- на нормальнотвердеющем цементе по ГОСТ 10178 и ГОСТ 31108
- на быстротвердеющем цементе по ГОСТ 10178 и ГОСТ 31108
- на глиноземистом портландцементе
- при методе термоса
- с противоморозными добавками
- при тепловой обработке
- портландцементе
- шлакопортландцементе
- до 4
- от 5 до 10
- свыше 10
- для стыков
- до 4
- от 5 до 10
- свыше 10
- от 2 до 5
- свыше 5
5.11.17 При среднесуточной температуре наружного воздуха ниже 5 °С должен вестись журнал контроля температуры бетона. Измерение температуры производится в наиболее и наименее прогреваемых частях конструкции. Количество точек измерения температуры определяется размерами и конфигурацией конструкции и указывается в технологических регламентах и ППР.
Частота измерений температуры:
а) при бетонировании по способу термоса (включая бетоны с противоморозными добавками) — два раза в сутки до окончания выдерживания;
б) при прогреве — в первые 8 ч через 2 ч, в последующие 16 ч — через 4 ч, а остальное время не реже трех раз в сутки;
в) при электропрогреве — в первые 3 ч — каждый час, а в остальное время через 2 ч.
В журнале ответственными лицами за прогрев бетона заполняются графы сдачи и приемки смены. Способ прогрева бетона устанавливается в ППР и указывается для каждого конструктивного элемента.
Укладка бетона зимой по действующим сводам правил
Уход за бетоном зимой по действующим сводам правил
Качество поверхности бетонных и жб конструкций по сводам правил
Набор прочности и критическая прочность бетона
Критическая прочность – параметр крайне важный при заливке бетонного раствора в условиях низких температур. Дело в том, что проектная прочность бетона появляется только на 28 день вызревания, при условии соблюдения технологии твердения, а соответственно и температурного режима (не ниже + 30°С). При более низкой температуре срок твердения бетона увеличивается, а при отрицательной прекращается.
При температуре ниже 0°С останавливается набор прочности бетона, в силу прекращения гидратации – связывания молекул воды и клинкерных составляющих цемента, образующих цементный камень. Если температура опускается ниже — 3°С начинаются фазовые превращения воды, что приводит к разрушениям структуры невызревшего бетона и потери прочности. Как показали проведенные опыты, образцы, набравшие критическую прочность, то есть вызревшие до определенного состояния, после замерзания и оттаивания не подвергаются разрушению и в дальнейшем продолжают набирать прочность, а образцы, замороженные на раннем сроке твердения, характеризуются потерей прочности до 50%.
Для растворов разных марок необходимо и различное время для вызревания до критической прочности бетона. На этой странице можно посмотреть таблицу, где указано, какую прочность от проектной должен набрать бетон до замораживания. Однако можно сказать, что недопустимо замораживание в первой фазе – фазе схватывания (первые сутки) и в первые 5-7 дней твердения бетона при нормальном температурном режиме. За первую неделю бетон набирает до 60-70% марочной прочности, после чего замораживание бетона только приостановит процесс вызревания и после оттаивания он возобновится.
Таблица критической прочности для различных марок:
Повышение температуры ускоряет процесс созревания бетона, но необходимо помнить о том, что нагрев свыше 90°С недопустим. При температуре твердения бетона 75-85°С в атмосфере насыщенного пара твердение до 60-70% марочной прочности происходит в течение 12 часов. Прогрев до такой температуры без насыщения паром приводит к высыханию, что также останавливает вызревание (гидратацию). Необходимо помнить, что гидратация невозможна без молекул воды и уход за бетоном заключается, в том числе, и в постоянном увлажнении в процессе набора прочности. В графике твердения бетона можно посмотреть взаимосвязь температурного режима и сроков вызревания бетона (дано для бетона марки М400), но нужно учитывать, что если в раствор вводятся специальные добавки (модификаторы — ускорители твердения), то время набора прочности бетона может быть значительно меньше.
Источник: stroi-s-ka.ru
Контроль качества опалубочных, арматурных и бетонных работ
В процессе опалубливания контролируют правильность установки опалубки, креплений, а также плотность стыка в щитах и сопряжениях, взаимное положение опалубочных форм и арматуры. Правильность положения опалубки в пространстве проверяют привязкой к разбивочным осям и нивелировкой.
В процессе армирования конструкций контроль осуществляет
- — при приемке стали (наличие заводских марок и бирок, качеств арматурной стали);
- — при складировании и транспортировке;
- — при изготовлении арматурных элементов и конструкций.
После установки и соединения всех арматурных элементов в блоке бетонирования проводят окончательную проверку правильности размеров и положения арматуры с учетом допускаемых отклонений.
При транспортировки бетонной смеси следят за тем, чтобы она не начала схватываться, не распадалась на составляющие, не теряла подвижности из-за потерь воды, цемента или схватывания.
На месте укладки следует обращать на высоту сбрасывания смеси, продолжительность вибрирования и равномерность уплотнения, не допускать расслоение бетонной смеси и образования раковин, пустот.
Предъявляемая при сдаче работ исполнительная техническая документация должна содержать:
- — ведомости постоянных реперов;
- — акты геодезической разбивки земляных сооружений; рабочие чертежи сооружений;
- — журнал работ;
- — акты освидетельствования скрытых работ.
Входной и операционный контроль осуществляют: мастер, геодезист, лаборант строительной лаборатории.
Приёмочный контроль осуществляют: мастер, геодезист, работник отдела контроля качества СМР, представители технадзора.
Состав и средства контроля опалубочных работ представлены в таблице 6. котлован железобетонный земельный
Таблица 6 — Контроль качества опалубочных работ
Состав и средства контроля
- — наличие паспорта с инструкцией по монтажу и эксплуатации опалубки;
- — наличие ППР на установку и приемку
— качество подготовки и отметки несущего основания;
Акт освидетельствования скрытых работ
— соблюдение порядка сборки щитов
опалубки, установки крепежных элементов;
— плотность сопряжения щитов опалубки между собой и с ранее уложенным
— соблюдение геометрических размеров
и проектных наклонов опалубки;
— надежность креплений щитов опалубки
Общий журнал работ
- — соответствие геометрических размеров опалубки проектным замерам;
- — положение опалубки относительно разбивочных осей в плане и по высоте
опалубки в т.ч. обозначение проектных отметок верха бетонируемой конструкции внутри поверхности опалубки;
— правильность установки и надежность крепления пробок и закладных деталей, а также всей системы в целом
Общий журнал работ.
Акт приемки опалубки
Операционный контроль осуществляют: мастер, инженер, геодезист — в процессе выполнения работ.
Разборно-переставная мелко щитовая инвентарная опалубка для возведения монолитных бетонных и железобетонных конструкций должно удовлетворять требованиям ГОСТ 23478-79.
Опалубка должна поставляться изготовителем комплектно с элементами крепления и с запасными частями к ним. Состав комплекта и класс точности изготовления элементов опалубки определяется заказом потребителя.
Технические требования к опалубке и опалубочным работам представлены в таблице 7.
Таблица 7 — Технические требования к опалубке и опалубочным работам
Точность изготовления опалубки инвентарной
По рабочим чертежам и техническим условиям (ГОСТ 25346-89 и ГОСТ 25347-82*)
Технический осмотр, регистрационный
Не более 1,5 % при нормальном уровне контроля
Измерительный контроль по ГОСТ 18242-72
Точность установки инвентарной опалубки
По ГОСТ 25347-82*
элементов, журнал работ
По ГОСТ 23478-79
Регистрационный, журнал работ
Прогиб собранной опалубки:
- — вертикальный поверхностей;
- — перекрытий
- 1/400 пролета
- 1/500 пролета
Контролируется при заводских испытаниях и на строительной площадке
Минимальная прочность бетона незагруженных монолитных конструкций при
— вертикальный, из условия
наклонных при пролете:
- 0,2-0,3 МПа
- 70% проектной прочности
Контроль качества арматурных работ должен выполняться на всех стадиях выполнения.
Таблица 8 — Контроль качества арматурных работ
Состав и средства контроля
- — наличие паспорта или сертификата на арматурные изделия;
- — внешним осмотром проверить качество изготовления арматурных изделий, при необходимости
провести требуемые замеры
и отбор проб на испытания;
- — качество подготовки и отметки несущего основания, отсутствие пыли, снега, мусора на поверхности основания;
- — правильность установки и закрепления опалубки
- — порядок сборки элементов арматурного каркаса, качество выполнения сварки (вязки) узлов каркаса;
- — точность установки арматурных изделий в плане и по высоте, надежность их фиксации;
- — величину защитного слоя бетон
Общий журнал работ
Приемка установленных арматурных изделий
- — соответствие положения установленные арматурных изделий проектному положению;
- — надежность фиксации арматурных изделий в опалубки;
- — величину защитного слоя бетона;
- — качество выполнения сварки (вязки) узлов каркаса
Акт освидетельствования скрытых работ
Рулетка металлическая ГОСТ 7502-89*
Отвес строительный ГОСТ 7948-80
Арматурные работы следует производить в соответствии с требованиями СНиП 3.03.01-87 и СНиП 3.01.01-85.
После проведения арматурных работ приёмку должны осуществлять: работники отдела контроля качества СМР, прораб, представитель технадзора заказчика.
В процессе входного контроля должно быть проверено:
По результатам осмотра и измерений составляется акт о проведении освидетельствования скрытых работ. Результаты механических испытаний контрольных образцов заносятся в протокол по ГОСТ 10922-90.
Поверхности закладных изделий покрываются антикоррозионным покрытием толщина и вид которого указывается в проекте. Бетонирование разрешается только после завершения проверки арматурных конструкций.
Процесс бетонирования контролируется на каждом этапе проведения работ — таблица 9.
Источник: studwood.net