Органические материалы в строительстве это

Органические теплоизоляционные материалы и изделия производят из различного растительного сырья: отходов древесины (стружек, опилок, горбыля и др.), камыша, торфа, очёсов льна, конопли, из шерсти животных, а также на основе полимеров.

Многие органические теплоизоляционные материалы подвержены быстрому загниванию, порче различными насекомыми и способны к возгоранию, поэтому их предварительно подвергают обработке. Поскольку использование органических материалов в качестве засыпок малоэффективно в силу неизбежной осадки и способности к загниванию, последние используют в качестве сырья для изготовления плит. В плитах основной материал почти полностью защищён от увлажнения, а следовательно, и от загнивания, кроме того, в процессе производства плит его подвергают обработке антисептиками и антипиренами, повышающими его долговечность.

Теплоизоляционные материалы и изделия из органического сырья.

Среди большого разнообразия теплоизоляционных изделий из органического сырья наибольший интерес представляют плиты древесноволокнистые, камышитовые, фибролитовые, торфяные, пробковая теплоизоляция натуральная, а также теплоизоляционные пенопласты.

4 Органические вяжущие материалы

Плиты древесноволокнистые применяют для тепло-, и звукоизоляции ограждающих конструкций. Изготовляют их из распушённой древесины или иных растительных волокон — неделовой древесины, отходов лесоперерабатывающей промышленности, костры, соломы, камыша, хлопчатника. Наибольшее распространение получили древесноволокнистые плиты, получаемые из отходов древесины. Процесс производства изоляционных древесноволокнистых плит состоит из следующих основных операций: дробления и разлома древесного сырья, проклеивания волокнистой массы, формования и термической обработки, Для уменьшения сгораемости древесноволокнистые плиты пропитывают специальными огнезащитными составами-антипиренами, а для придания водостойкости в состав волокнистой массы вводят парафиновые, смоляные, масляные и другие эмульсии.

Изоляционные древесноволокнистые плиты имеют объёмную массу 250 кг/м3, предел прочности на изгиб — 1,2 МПа и коэффициент теплопроводности — не более 0,07 Вт/м-°С, длину 1200-3000, ширину 1200-1600 и толщину 8-25 мм.

Наряду с изоляционными применяют плиты изоляционно-отделочные, имеющие лицевую поверхность, окрашенную пли подготовленную к окраске. Камышитовые плиты, или просто камышит, применяют для теплоизоляции ограждающих конструкций зданий HI класса, при постройке малоэтажных жилых домов, небольших производственных помещений, в сельскохозяйственном строительстве.

Это теплоизоляционный материал, спрессованный из стеблей камыша в виде плит, которые затем скрепляются стальной оцинкованной проволокой. Для изготовления камышитовых плит используются зрелые однолетние стебли обыкновенного тростника. Наилучшими являются стебли диаметром 7-15 мм, так как они хорошо прессуются.

Помимо обыкновенного тростника может быть использован камыш озёрный, рогоз и другие растения. Заготовку стеблей этих растений следует делать в осенне-зимний период. Прессование плит осуществляют на специальных прессах. В зависимости от расположения стеблей камыша различают плиты с поперечным (вдоль короткой стороны плиты) и продольным расположением стеблей.

По объёмной массе плиты различают трёх марок: 175, 200 и 250 с пределом прочности на изгиб не менее 0,18-0,5 МПа, коэффициентом теплопроводности — 0,06-0,09 МПа, влажностью — не более 18% по массе. Камышитовые плиты производят длиной 2400-2800, шириной 550-1500 и толщиной 30-100мм.

Торфяные теплоизоляционные изделия изготавливают в виде плит, скорлуп и сегментов и используют для теплоизоляции ограждающих конструкций зданий III класса и поверхностей промышленного оборудования и трубопроводов при температуре от -60 до +100°С. Сырьём для их производства служит малоразложившийся верховой торф, имеющий волокнистую структуру, что благоприятствует получению из него качественных изделий путём прессования.

Плиты изготавливают размером 1000x500x30 мм путём прессования в металлических формах торфяной массы с добавками (или без них) и с последующей сушкой при температуре 120-150°С. В зависимости от начальной влажности торфяной массы различают два способа изготовления плит: мокрый (влажность 90-95%) и сухой (влажность около 35%). При мокром способе излишняя влага в период прессования отжимается из торфяной массы через мелкие металлические сетки. При сухом способе такие сетки в формы не закладываются.

Торфяные изоляционные плиты по объёмной массе делят на М 170 и 220 кг/ м3 с пределом прочности на изгиб — 0,3 МПа, коэффициентом теплопроводности в сухом состоянии 0,06 Вт/м-°С, влажностью не более 15%. Цементно-фибролитовые плиты представляют собой теплоизоляционный и теплоизоляционно-конструктивный материал, полученный из затвердевшей смеси портландцемента, воды и древесной шерсти.

Древесная шерсть выполняет в фибролите роль армирующего каркаса. По внешнему виду тонкие древесные стружки длиной до 500, шириной 4-7, толщиной 0,25-0,5 мм приготавливают из неделовой древесины хвойных пород на специальных древесношерстяных станках.

Шерсть предварительно высушивают, пропитывают минерализаторами (хлористым кальцием, жидким стеклом) и смешивают с цементным тестом по мокрому способу или с цементом по сухому (древесная шерсть посыпается или опыляется цементом) в смесительных машинах различного типа. При этом следят, чтобы древесная шерсть была равномерно покрыта цементом.

Формуют плиты двумя способами: прессованием и на конвейерах, где фибролит формуют в виде непрерывно движущейся ленты, которую затем разрезают на отдельные плиты (подобно вибропрокату железобетонных изделий). При прессовании плит удельное давление для теплоизоляционного фибролита принимают до 0,1 МП а, а для конструктивного — до 0,4 МПа. После формования плиты пропаривают в течение 24 ч при температуре 30-35°С. По объёмной массе цементно-фибролитовые плиты делят на М 300, 350, 400 и 500 с пределом прочности при изгибе соответственно не менее 0,4, 0,5, 0,7 и 1,2 МПа, коэффициентом теплопроводности — 0,09-0,15Вт/м-°С, водопоглощением — не более 20%. Длина плит 2000-2400, ширина 500-550, толщина 50, 75, 100 мм.

Читайте также:  Тендер на строительство и ремонт что такое

Фибролитовые плиты на портландцементе применяют в качестве теплоизоляционного, теплоизоляционно-конструктивного и акустического материала для стен, перегородок, перекрытий и покрытий зданий. Фибролитовые плиты получают также формованием и тепловой обработкой (или без неё) органического коротковолокнистого сырья.

В качестве такого сырья может быть использована дроблёная станочная стружка или щепа, сечка соломы или камыша, опилки, костра и др. Вторым компонентом при изготовлении фибролитовых плит является портландцемент. Объёмная масса в сухом состоянии составляет 500 кг/ м3, предел прочности при изгибе — не менее 0,7 МПа, коэффициент теплопроводности в сухом состоянии — не более 0,12 Вт/м-°С, влажность — не более 20% по массе. Плиты формуют длиной и шириной 500, 600 и 700 мм, толщиной 50, 60 и 70 мм.

Пробковые теплоизоляционные материалы и изделия (плиты, скорлупы и сегменты) применяют для теплоизоляции ограждающих конструкций зданий, холодильников и поверхностей холодильного оборудования трубопроводов при температуре изолируемых поверхностей от -150 до +70°С, для изоляции корпуса кораблей. Изготавливают их путём прессования измельчённой пробковой крошки, которую получают как отход при производстве закупорочных пробок из коры пробкового дуба или так называемого бархатного дерева, растущего в Дальневосточном крае, в Амурской области и на Сахалине. Пробка вследствие высокой пористости и наличия смолистых веществ является одним из наилучших теплоизоляционных материалов. Из неё изготавливают плиты, скорлупы и сегменты.

Пробковые теплоизоляционные материалы и изделия могут быть изготовлены с добавкой органического связующего (органического клея, желатины, битума, смол и т. п.) и без него. В первом случае пробковую крупу, покрытую тонким слоем органического клеящего вещества, спрессовывают в виде плит, имеющих длину 500-1000, ширину 500 и толщину 20-80 мм. Такие плиты называют «импрегнированными».

Во втором случае плиты изготавливают таких же размеров с запрессовкой пробковой крупы под давлением 0,7 МПа, но без связующих добавок, путём термической обработки при температуре 250-300°С. При этом происходит возгонка смолистых веществ, содержащихся в пробке, вследствие чего пробковая крупа спекается в монолитную массу. Плиты, полученные по второму способу, известны под названием «экспанзита». Остывшие после горячего прессования плиты распиливают нa требуемые размеры.

Пробковые теплоизоляционные материалы и изделия по объёмной массе в сухом состоянии делят на М 150-350 с пределом прочности при изгибе соответственно 0,15-0,25 МПа, коэффициентом теплопроводности в сухом состоянии при температуре 25°С — 0,05-0,09 Вт/м-°С. К положительным свойствам плит следует отнести также то, что они не горят, с трудом тлеют, не подвержены заражению домовым грибком и не разрушаются грызунами. Пробковые материалы упаковывают в клетки объёмом 0,25- 0,5 м3 и хранят в сухом закрытом помещении, а перевозят в крытых вагонах.

Теплоизоляционные пенопласты. Теплоизоляционные материалы на основе полимеров в виде газонаполненных пластмасс и изделий, а также минераловатных и стекловатных изделий производят на полимерном связующем. По физической структуре газонаполненные пластмассы могут быть разделены на три группы: ячеистые или пенистые (пенопласты), пористые (поропласты) и сотовые (сотопласты). Пенопласты и сотопласты на основе полимеров являются не только теплоизоляционным, но и конструктивным материалом. Теплоизоляционные материалы из пластмасс, по виду применяемых для их изготовления полимеров, делят на: полистирольные — пористые пластмассы на основе суспензионного (бисерного) или эмульсионного полистирола; поливинилхлоридные — пористые пластмассы на основе поливинилхлорида; фенольные — пористые пластмассы на основе формальдегида.

Поризация полимеров основана на применении специальных веществ, интенсивно выделяющих газы и вспучивающих размягчённый при нагревании полимер. Такие вспучивающиеся вещества могут быть твёрдыми, жидкими и газообразными.

К твёрдым вспенивающим веществам, имеющим наибольшее практическое значение, относятся карбонаты, бикарбонаты натрия и аммония, выделяющие при разложении СО2 и NH3, азодниитрилы, эфиры азодикарбоновой кислоты, выделяющие смесь абиетиновой кислоты с углекислым кальцием, выделяющая СО2. К жидким вспенивающим веществам относятся бензол, легкие фракции бензола, спирт и т. п. К газообразным вспенивающим веществам относятся воздух, азот, углекислый газ, аммиак. Для придания эластичности пористым пластмассам в полимеры вводят пластификаторы: фосфаты, фталаты и др. Пористые и ячеистые пластмассы можно получать двумя способами — прессовым и беспрессовым, При изготовлении пористых пластмасс прессовым способом тонкоизмельчённый порошок полимера с газообразователем и другими добавками спрессовывается под давлением 15-16 МПа, после чего взятую навеску (обычно 2-2,5 кг) вспенивают, в результате чего получают материал ячеистого строения.

При изготовлении пористых пластмасс беспрессовым способом полимер с добавками газообразователя, отвердителя и других компонентов нагревается в формах до соответствующей температуры. От нагревания полимер расплавляется, газообразователь разлагается, и выделяющийся газ вспенивает полимер.

Образуется материал ячеистого строения с равномерно распределёнными в нём мелкими порами. Плиты, скорлупы и сегменты из пористых пластмасс применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов при температуре до 70°С. Изделия из пористых пластмасс на суспензионном полистироле по объёмной массе в сухом состоянии делят на М 25 и 35 с пределом прочности на изгиб не менее 0,1-0,2 МПа, коэффициентом теплопроводности — 0,04 Вт/м- °С, влажностью — не более 2% по массе. Такие же изделия на эмульсионном полистироле по объёмной массе имеют М 50-200 предел прочности на изгиб соответственно — не менее 1,0-7,5 МПа, коэффициент теплопроводности — не более 0,04-0,05, влажность — не более 1% по массе. Плиты из пористых пластмасс изготавливают длиной 500-1000, шириной 400-700, толщиной 25-80 мм.

Читайте также:  Кто проверяет разрешение на строительство
Схема теплоизоляции с применением пенополистерола
Схема теплоизоляции с применением пенополистерола

Наиболее распространёнными теплоизоляционными материалами из пластмасс являются полистирольный поропласт, Отпора и др. Полистирольный поропласт —отличный утеплитель в слоистых панелях, хорошо сочетающийся с алюминием, асбестоцементом и стеклопластиком.

Широко применяется как изоляционный материал в холодильной промышленности, судостроении и вагоностроении для изоляции стен, потолков и крыш в строительстве. Полистирольный поропласт, изготовленный из бисерного (суспензионного) полистирола, представляет собой материал, состоящий из тонкоячеистых сферических частиц, спёкшихся между собой.

Между частицами имеются пустоты различных размеров. Наиболее ценными свойствами полистирольного поропласта является его низкая объёмная масса и малый коэффициент теплопроводности. Полистирольный поропласт выпускают в виде плит или различных фасонных изделий.

Полистирольный поропласт производят объёмной массой до 60 кг/м3 , прочностью на 10%-ное сжатие — до 0,25 МПа и коэффициентом теплопроводности — 0,03-0,04 Вт/м-°С. Наиболее распространённый размер плит 900×650х100 мм. Поропласт полиуретановый применяют для теплоизоляции ограждающих конструкций зданий и поверхностей промышленного оборудования и трубопроводов при температуре до 100°С. Получают его из полиэфирных полимеров с введением парообразующих и других добавок.

Полиэфирные полимеры — это большая группа искусственных полимеров, получаемых при помощи конденсации многоатомных спиртов (гликоля, глицерина, пентаэритрита и др.) и главным образом двухосновных кислот — фталевой, малеиновой и др. Для повышения эластичности изготавливаемых изделий во время конденсации многоатомных спиртов и двухосновных кислот приготавливают жирные кислоты или растительные масла.

По объёмной массе в сухом состоянии маты из пористого полиуретана делят на М 35 и 50, коэффициент теплопроводности в сухом состоянии — 0,04 Вт/м-°С, влажность — не более 1% по массе. На основе пористого полиуретана выпускают также твёрдые и мягкие плиты объёмной массы 30-150 кг/м3 и коэффициентом теплопроводности 0,022-0,03 Вт/м-°С.

Маты из пористого полиуретана изготавливают в виде плит длиной 2000, шириной 1000, толщиной 30-60 мм. Мипора представляет собой пористый материал, получаемый на основе мочевино-формальдегидного полимера. Сырьём для производства мипоры является мочевино-формальдегидный полимер и 10%-ный раствор сульфопафтеновых кислот (контакт Петрова), а также огнезащитные добавки (раствор фосфорно-кислого аммония 20%-ной концентрации). Мипору применяют для теплоизоляции строительных конструкций промышленного оборудования и трубопроводов при температуре до 70°С.

Для получения мипоры в аппарат с мешалкой загружают водный раствор мочевино-формальдегидного полимера и вспениватель, которые энергично перемешивают. Полученную пену спускают в металлические формы, которые направляют в камеры, где масса при температуре 18-22°С отвердевает за 3-4 ч. Полученные блоки направляют на 60-80 ч в сушила с температурой 30-50оС. Мипору выпускают в виде блоков объёмом не менее 0,005 м3, пределом прочности на сжатие — 0,5-0,7 МПа, удельной ударной вязкостью — 0,4 кГ-см/см2, водопоглощением — 0,11% за 24 ч, коэффициентом теплопроводности — 0,03 Вт/м -°С.

Войлок строительный применяют как прокладочный и теплоизоляционный материал для теплоизоляции отдельных мест конструкций (концов балок в каменных стенах, оконных и дверных коробок в наружных стенах, стыков щитов в сборных домах) и поверхностей промышленного оборудования и трубопроводов при температуре до 100°С. Войлок используют для подшивки потолков под штукатурку.

Войлок изготавливают в виде штучных изделий прямоугольной формы путем сваливания шерсти, отходов шерстеперерабатывающей и меховой промышленности и других производств и противомольной пропитки. Объёмная масса войлока в сухом состоянии — 150 кг/м3, коэффициент теплопроводности в сухом состоянии — 0,048 Вт/м-оС, влажность сухого войлока — не более 20% по массе. Выпускают войлок в виде полос длиной 1000-2000, шириной 500-2000, толщиной 12 мм. Войлок не горит, но способен тлеть, а также способен поглощать влагу.

Источник: build.novosibdom.ru

Глава 2. Органические строительные материалы

В зависимости от химического состава все строительные материалы можно условно разделить на органические и неорганические. К органическим материалам относятся: древесина, органические вяжущие, которые могут встречаться как в природе, так и быть полученными путем глубокого окисления нефти, а также синтезированные полимеры.

2.1. Древесина

Древесину применяют издавна в строительстве благодаря ряду присущих ей положительных свойств: высокой прочности при небольшой средней плотности (ККК = 0,7 – 0,8), малой теплопроводности, легкости обработки и декоративности. В строительстве применяют как хвойные, так и лиственные породы. Область их рационального использования представлена в табл. 2.1.

Применение хвойных и лиственных пород в строительстве

Дерево состоит из ствола, кроны и корней. Ствол является основной и наиболее ценной частью, из него получают от 60 до 90 % деловой древесины.

По своему строению древесина является волокнистым пористым материалом, состоящим из живых и мертвых клеток. По назначению клетки подразделяют на проводящие питательные вещества, запасающие и механические. Макроструктуру древесины изучают в поперечном и двух продольных сечениях: радиальном и тангенциальном (рис. 2.1).

Рис. 2.1. Разрезы ствола дерева:

а – торцевой; б – тангенциальный; в – радиальный;

Элементы древесины: 1 – сердцевина; 2 – ядро; 3 – заболонь; 4 – кора

На поперечном сечении у хвойных пород имеются годовые кольца. Каждое кольцо состоит в свою очередь из светлого кольца ранней древесины и более темного – поздней. Ранняя древесина образовалась весной или в начале лета, она состоит из крупных тонкостенных клеток, склонна к загниванию, имеет большую пористость и низкую прочность. Древесина, образовавшаяся летом и в начале осени (поздняя), имеет темный цвет вследствие насыщения смолянистыми веществами, большую плотность и прочность. Следовательно, чем больше образовалось поздней древесины, тем выше ее общая прочность и стойкость по отношению к воде.

Читайте также:  Строительство сарая на участке документы

Вследствие волокнистого строения древесина относится к анизотропным материалам, т. е. все ее физические и механические свойства в разных направлениях различны.

Источник: studfile.net

Органические материалы – идеальное решение для постройки жилых домов

Органические материалы – идеальное решение для постройки жилых домов

Среда, 22 апреля 2015 Потребность в жилье является одним из важных условий нормального существования человека и его комфортного и уютного отдыха. Главное назначение жилых домов и квартир – защищать здоровье людей от неблагоприятных метеорологических факторов. Кроме этого, при их строительстве большое внимание уделяется эстетичному виду здания, его комфортности и экологичности.

Для создания безопасных для проживания людей строений используется органическое сырье. Натуральная древесина, опилки, солома, лен применяются для организации утепления стен, для монтажа каркаса дома или в роли кровельного материала.

Древесина является самым распространенным природным материалом. Она выделяет полезные для человеческого здоровья вещества и является надежным теплоизоляционным материалом. Очень часто деревянные элементы дома пропитываются особым составом, который защищает конструкцию от возгорания или гниения.

Дома из экологически чистых материалов

Дома из органического сырья (опилки, щепа и др.) отличаются великолепным сохранением тепла. Продукты древесной переработки проходят специальную обработку, чтобы избежать появления насекомых. Лучшим способом применения органических стройматериалов в качестве утеплителя – это их использование в виде спрессованных плит.

Часто в состав ДВП, ДСП или фанеры добавляются синтетические элементы, которые позволяют получать более прочный и качественный материал. В качестве утеплителя используется также эковата. Она производится путем переработки макулатуры, поэтому совершенно безвредна.

При обработке натуральных строительных материалов их структура не меняется. Это дает возможность получать прочные и надежные конструкции. Сегодня для возведения домов часто используется арболит. Смесь дерева с бетоном помогает создавать легкие и прочные здания, которые обладают отличными пожаробезопасными качествами.

Арболит имеет свойство пропускать воздух, поэтому построенное жилье «дышит», обеспечивая природную вентиляцию. Органический материал легко укладывать в возводимые конструкции, поэтому он пользуется большим спросом среди застройщиков.

Источник: nicstroy.ru

Строительные материалы на основе органических веществ

Древесина — строительный материал, получаемый из прокамбия или камбия (т.е. внутренняя часть дерева, лежащая под корой).

Древесину получила широкое распространение в строительстве благодаря комплексу положительных характеристик: высокой прочности при небольшой плотности, малой теплопроводности; легкости обработки; простоте скрепления отдельных элементов; высокой морозостойкости и сопротивляемости действию многих химических реагентов.

Древесина имеет и ряд недостатков, снижающих ее строительные свойства: неоднородность строения; наличие пороков; гигроскопичность, приводящую к изменению размеров древесины, короблению и растрескиванию; склонность к загниванию и возгоранию. [5]

Строение и состав древесины

Растущее дерево состоит из корневой системы, ствола и кроны. Промышленное значение имеет ствол, так как из него получается, от 60 до 90 % древесины.

Макроструктурой называют строение ствола дерева, видимое невооруженным глазом или через лупу, микроструктурой — видимое под микроскопом. Обычно изучают три основных разреза ствола: поперечный (торцовый), радиальный, проходящий через ось ствола, и тангенциальный, проходящий по хорде вдоль ствола.

При рассмотрении разрезов ствола дерева невооруженным глазом или через лупу можно различить следующие основные его части: сердцевину, кору, камбий и древесину.

Гигроскопичность и влажность

Древесина, имея волокнистое строение и большую пористость, обладает огромной внутренней поверхностью, которая легко сорбирует водяные пары из воздуха (гигроскопичность). Влажность, которую приобретает древесина в результате длительного нахождения на воздухе с постоянной температурой и влажностью, называется равновесной. Она достигается в тот момент, когда упругость паров над поверхностью древесины оказывается равной упругости паров окружающего ее воздуха.[5]

По содержанию влаги древесину разделяют на: мокрую (влажность до 100%); свежесрубленную (35 % и выше); воздушно-сухую (15. 20 %); комнатно-сухую (8. 12 %); абсолютно сухую древесину (высушенную при температуре 103+2 °С). Стандартной является влажность древесины равная 12 %.

Влага в древесине содержится в трех состояниях — свободном, физически связанном и химически связанном. Свободная или капиллярная вода занимает полости клеток и сосудов и межклеточные пространства. Физически связанная или гигроскопическая вода находится в стенках клеток и сосудов древесины в виде тончайших гидратных оболочек на поверхности мельчайших элементов, слагающих стенки клеток.

Пределом гигроскопичной влажности называют влажность древесины, при которой стенки клеток насыщены водой, а полости и межклеточные пространства при этом свободны от воды (отсутствие капиллярной воды). Для древесины различных пород она колеблется от 23 до 35 % (в среднем 30 %) от массы сухой древесины.

Усушка, разбухание и коробление

Усушка или разбухание древесины — изменение линейных размеров, вызванное изменение влажности древесины. Величина усушки или разбухания зависит от количества испарившейся или полгощенной влаги, а также от направления волокон.

Коробление и усыхание древесины:

Вдоль волокон линейная усушка для большинства древесных пород не превышает 0,1 %, в радиальном направлении — 3. 6 %, а в тангенциальном — 7. 12%.[5]

Неравномерность высыхания и разница в усушке древесины в тангенциальном и радиальном направлениях вызывает возникновение напряжений в древесине, что сопровождается короблением и растрескиванием.

Стойкость к действию агрессивных сред.

Древесина медленно начинает разрушаться при длительном действии щелочей и кислот.

Источник: bstudy.net

Рейтинг
Загрузка ...