Основания и фундаменты в строительстве

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

Проектирование и устройство оснований и фундаментов зданий и сооружений

Design and construction of soil bases and foundations for buildings and structures

1 РАЗРАБОТАН Научно-исследовательским, проектно-изыскательским и конструкторско-технологическим институтом оснований и подземных сооружений им. Н.М.Герсеванова (НИИОСП) — филиалом ФГУП «НИЦ «Строительство»

ВНЕСЕН Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России

3 ВВЕДЕН ВПЕРВЫЕ

ВНЕСЕНЫ: правки на основании информации об опечатках, опубликованной в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2008 г.; информации об опечатках, опубликованной в Информационном Бюллетене о нормативной, методической и типовой проектной документации N 8, 2010 г.

Правки внесены изготовителем базы данных

Введение

Свод правил по проектированию и устройству оснований и фундаментов зданий и сооружений разработан в развитие обязательных положений и требований СНиП 2.02.01-83* и СНиП 3.02.01-87.

ОСНОВАНИЯ И ФУНДАМЕНТЫ. Лекция 12. Фундаменты глубокого заложения.

Свод правил содержит рекомендации по проектированию и устройству оснований и фундаментов зданий и сооружений, в том числе подземных и заглубленных, возводимых в различных инженерно-геологических условиях, для различных видов строительства.

Разработан НИИОСП им. Н.М.Герсеванова — филиалом ФГУП НИЦ «Строительство» (доктора техн. наук В.А.Ильичев и Е.А.Сорочан — руководители темы; доктора техн. наук: Б.В.Бахолдин, А.А.Григорян, П.А.Коновалов, В.И.Крутов, В.О.Орлов, В.П.Петрухин, Л.Р.Ставницер, В.И.Шейнин; кандидаты техн. наук: Ю.А.Багдасаров, Г.И.Бондаренко, В.Г.Буданов, Ю.А.Грачев, Ф.Ф.Зехниев, М.Н.Ибрагимов, О.И.Игнатова, И.В.Колыбин, Н.С.Никифорова, B.C.Поляков, В.Г.Федоровский, М.Л.Холмянский; инженеры: Я.М.Бобровский, Б.Ф.Кисин, А.Б.Мещанский); ГУП Мосгипронисельстрой (д-р техн. наук B.C.Сажин).

1 Область применения

Настоящий Свод правил (далее — СП) распространяется на основания и фундаменты вновь строящихся и реконструируемых зданий и сооружений*, возводимых в открытых котлованах.

* Далее вместо термина «здания и сооружения» используется термин «сооружения», в число которых входят также подземные сооружения.

Настоящий СП не распространяется на проектирование и устройство оснований и фундаментов гидротехнических сооружений, опор мостов и труб под насыпями дорог, аэродромных покрытий, сооружений, возводимых на вечномерзлых грунтах, свайных фундаментов, а также оснований глубоких опор и фундаментов машин с динамическими нагрузками.

2 Нормативные ссылки

В настоящем Своде правил приведены ссылки на следующие нормативные документы:

СНиП II-7-81* Строительство в сейсмических районах

СНиП II-22-81* Каменные и армокаменные конструкции

СНиП 2.01.07-85* Нагрузки и воздействия

СНиП 2.01.09-91 Здания и сооружения на подрабатываемых территориях и просадочных грунтах

▪️ПРАВИЛЬНОЕ ОСНОВАНИЕ под ФУНДАМЕНТ▪️подробно ИНЖЕНЕРНАЯ ПОДГОТОВКА▪️

СНиП 2.02.01-83* Основания зданий и сооружений

СНиП 2.02.02-85* Основания гидротехнических сооружений

СНиП 2.02.04-88 Основания и фундаменты на вечномерзлых грунтах

СНиП 2.03.11-85 Защита строительных конструкций от коррозии

СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения

СНиП 2.04.03-85 Канализация. Наружные сети и сооружения

СНиП 2.06.03-85 Мелиоративные системы и сооружения

СНиП 2.06.14-85 Защита горных выработок от подземных и поверхностных вод

СНиП 2.06.15-85 Инженерная защита территории от затопления и подтопления

СНиП 3.02.01-87 Земляные сооружения, основания и фундаменты

СНиП 3.03.01-87 Несущие и ограждающие конструкции

СНиП 3.04.01-87 Изоляционные и отделочные покрытия

СНиП 3.05.05-84 Технологическое оборудование и технологические трубопроводы

СНиП 3.07.03-85* Мелиоративные системы и сооружения

СНиП 11-02-96 Инженерные изыскания для строительства. Основные положения

СНиП 12-01-2004 Организация строительства

СНиП 23-01-99* Строительная климатология

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 11-102-97 Инженерно-экологические изыскания для строительства

СП 11-104-97 Инженерно-геодезические изыскания для строительства

СП 11-105-97 Инженерно-геологические изыскания для строительства (ч.I-III)

ГОСТ 5180-84 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 12248-96 Грунты. Методы лабораторного определения характеристик прочности и деформируемости

ГОСТ 12536-79 Грунты. Методы лабораторного определения гранулометрического (зернового) состава

ГОСТ 19912-2001 Грунты. Методы полевых испытаний статическим и динамическим зондированием

ГОСТ 20276-99 Грунты. Методы полевого определения характеристик прочности и деформируемости

ГОСТ 20522-96 Грунты. Методы статистической обработки результатов испытаний

ГОСТ 22733-2002 Грунты. Метод лабораторного определения максимальной плотности

ГОСТ 23061-90 Грунты. Методы радиоизотопных измерений плотности и влажности

Читайте также:  Строительство домов расположение на участке границы

ГОСТ 23161-78 Грунты. Метод лабораторного определения характеристик просадочности

ГОСТ 24143-80 Грунты. Методы лабораторного определения характеристик набухания и усадки

ГОСТ 24846-81 Грунты. Методы измерения деформаций оснований зданий и сооружений

ГОСТ 25100-95 Грунты. Классификация

ГОСТ 25192-82 Бетоны. Классификация и общие технические требования

ГОСТ 27751-88 Надежность строительных конструкций и оснований. Основные положения по расчету

ГОСТ 30416-96 Грунты. Лабораторные испытания. Общие положения

ГОСТ 30672-99 Грунты. Полевые испытания. Общие положения

3 Определения

Определения основных терминов приведены в приложении А.

4 Общие положения

4.1 Основания и фундаменты должны проектироваться на основе и с учетом:

а) результатов инженерных изысканий для строительства;

б) сведений о сейсмичности района строительства;

в) данных, характеризующих назначение, конструктивные и технологические особенности сооружения и условия его эксплуатации;

г) нагрузок, действующих на фундаменты;

д) окружающей застройки и влияния на нее вновь строящихся сооружений;

е) экологических требований (раздел 15);

ж) технико-экономического сравнения возможных вариантов проектных решений для выбора наиболее экономичного и надежного проектного решения, обеспечивающего наиболее полное использование прочностных и деформационных характеристик грунтов и физико-механических свойств материалов фундаментов и других подземных конструкций.

4.2 При проектировании должны быть предусмотрены решения, обеспечивающие надежность, долговечность и экономичность сооружений на всех стадиях строительства и эксплуатации.

При разработке проектов производства работ и организации строительства должны выполняться требования по обеспечению надежности конструкций на всех стадиях их возведения.

4.3 Работы по проектированию следует вести в соответствии с техническим заданием на проектирование и необходимыми исходными данными (4.1). Порядок разработки проектной документации изложен в приложении Б.

4.4 При проектировании следует учитывать уровень ответственности сооружения в соответствии с ГОСТ 27751: I — повышенный, II — нормальный, III — пониженный.

4.5 Инженерные изыскания для строительства, проектирование оснований и фундаментов и их устройство должны выполняться организациями, имеющими лицензии на эти виды работ.

4.6 Инженерные изыскания для строительства должны проводиться в соответствии с требованиями СНиП 11-02, СП 11-102, СП 11-104, СП 11-105, государственных стандартов и других нормативных документов по инженерным изысканиям и исследованиям грунтов для строительства.

Наименование грунтов оснований в описаниях результатов изысканий и в проектной документации следует принимать по ГОСТ 25100.

4.7 Результаты инженерных изысканий должны содержать данные, необходимые для выбора типа основания, фундаментов и подземных сооружений и проведения их расчетов по предельным состояниям с учетом прогноза возможных изменений (в процессе строительства и эксплуатации) инженерно-геологических условий площадки строительства и свойств грунтов, а также вида и объема инженерных мероприятий по ее освоению.

Проектирование без соответствующего инженерно-геологического, а также инженерно-экологического обоснований или при их недостаточности не допускается.

Примечание — При строительстве в условиях существующей застройки инженерные изыскания следует предусматривать не только для вновь строящихся сооружений, но и для окружающей застройки, попадающей в зону их влияния.

4.8 Конструктивное решение проектируемого сооружения и условия последующей его эксплуатации необходимы для выбора типа фундамента, учета влияния конструкций на работу основания, а также на окружающую застройку, для уточнения требований к допускаемым деформациям и т.д.

Источник: docs.cntd.ru

Основания и фундаменты

Прочность и устойчивость любого сооружения обеспечивается, прежде всего, прочностью и устойчивостью фундамента, который должен быть заложен на надежном основании.

Основанием называется толща естественных напластований грунтов, непосредственно воспринимающая нагрузку и взаимодействующая с фундаментом возводимого сооружения.

Основания называют естественными, если грунты под подошвой фундамента остаются в естественном состоянии. В случае недостаточной прочности грунтов принимают меры по искусственному их упрочнению. Такие основания называют искусственными. Естественным основанием

могут служить самые разнообразные грунты, слагающие верхнюю часть земной коры. Естественные грунты, используемые в качестве естественных оснований, подразделяют на четыре вида: скальные, крупнообломочные, песчаные и глинистые.

Несущая способность глинистого грунта в большой степени зависит от влажности. Несущая способность сухих глин довольно высокая и такие грунты могут служить хорошим основанием, при увеличении влажности их несущая способность значительно падает.

Читайте также:  Что такое ласточка в строительстве

Супеси и мелкозернистые пески при разжижении водой становятся я настолько подвижными, что текут, как жидкость, и называются плывунами.

Возведение зданий на таких грунтах связано со значительными трудностями.

К глинистым грунтам относятся также лёссы, которые при замачивании водой обладают просадочными свойствами или набухают. Использование так их грунтов в качестве оснований требует применения специальных мер.

Помимо перечисленных видов встречаются также грунты с органическими примесями (растительный грунт, торф, болотистый грунт и др.), многолетнемерзлые и насыпные грунты. Грунты с органическими примесями в качестве естественных оснований не применяют, так как они неоднородны по своему составу, рыхлы, обладают значительной и неравномерной сжимаемостью. Насыпные грунты также неоднородны по составу и сжимаемости и их использование в качестве оснований требует особых обоснований.

Упрочнение грунтов путем поверхностного ил и глубинного их уплот- нения осуществляется трамбованием пневматическими трамбовками с втрамбовыванием щебня ил и гравия. Уплотнение трамбовочными плитам и массой 1 т и более, которые сбрасывают с высоты 3–4 м, доходит до глубины 2–2,5 м. Для уплотнения больших площадей применяют укатку грунта тяжелыми катками.

Песчаные и пылеватые грунты хорошо уплотняют вибрированием специальным и поверхностными вибраторам и, такое уплотнение осуществляется значительно быстрее, чем при трамбовании.

Глубинное уплотнение грунта осуществляют применением песчаных или грунтовых свай. Предварительно вибропогружателем вводят в грунт инвентарные стальные трубы диаметром 400–500 мм с остроконечным раскрывающимся стальным башмаком на конце. Погруженные на необходимую глубину трубы заполняют песком и затем извлекают с вибрированием. При таком извлечении песок уплотняется и хорошо заполняет скважину.

Закрепление слабого грунта основания (его упрочнение) достигается также применением тампонажа (цементации, силикатизации и битумизации).

Фундаментом (рис. 1.1) называется подземная часть сооружения, возводимая на естественных ил и искусственных основаниях и служащая для передач и нагрузок от сооружений на основания. Конструктивная форма фундамента позволяет обеспечить бол ее равномерное распределение давления от сооружения на грунт.

Верхняя граница между фундаментом и наземной частью сооружения так же, как и границы между отдельным и уступами фундамента, называется обрезом фундамента. Нижняя плоскость фундамента, опирающаяся на грунт, называется подошвой фундамента. Расстояние от уровня земли около законченного здания (отметка планировки) до подошвы называется глубиной заложения фундамента.

Рис. 1.1. Схема фундамента на естественном основании:

1 — фу ндамент ; 2 — наземная часть

соору жения; 3 — отметка подошвы фу ндамент а; 4 — от метка повер хно сти гру нта; 5 — отметка пл анир овки;

6 — вер хний обр ез фу ндамента;

Н — глу бина заложения фу ндамента;

В — шир ина фу ндамент а

К фундаментам предъявляются следующие основные требования : прочность; устойчивость на опрокидывание; сопротивляемость влиянию грунтовых и агрессивных вод и влиянию атмосферных воздействий (морозостойкость); долговечность, отвечающая сроку службы зданий, технологичность изготовления конструкций фундамента и его экономичность (минимальная стоимость).

Основными материалами дл я фундаментов являются: бутовый камень, кирпич, бутобетон, бетон, железобетон.

По конструктивному решению различают следующие виды фунд аментов : ленточные, столбчатые(отдельные), сплошные (плитные) и свайные.

Рис. 1.2. Ленточные фундаменты:

а— под стены; б— под колонны; 1— стена здания; 2— фундамент; 3— колонны

Столбчатые фундаменты устраивают обычно в каркасных зданиях под каждой опорой ил и колонной. Наибольшее распространение в промышленном строительстве имеют сборные железобетонные фундаменты в виде башмака стаканного типа под сборную железобетонную колонну (рис. 2.16). При больших нагрузках размеры башмаков могут быть на- столько большим и, что их транспортирование и монтаж становятся затруднительными.

Размеры подошвы фундамента определяются расчетом. Эти размер ы зависят от величины давления на подошву фундамента и расчетного со- противления основания.

Рис. 1.3 Сборный фундамент под колонну промышленного здания:

2– ступенчатый сборный фундамент;

Расчетная формула получается из условия, чтобы действующее на подошву фундамента давление не превышало (было равно) расчетного сопротивления грунта. Для жесткого ленточного фундамента (см. рис. 1.3) ширину подошвы определяют по формуле

Читайте также:  Преимущества 3д принтера в строительстве

R − γH

где р — нагрузка на 1 м фундамента, к Н; R — расчетное сопротивление грунта, кН/м2; γ — объемный вес материал а фундамента и грунта на его обрезах (примерно 20 кН/м3).

Таким образом, основной размер фундамента — размер его подошвы, определяется, прежде всего, из условия несущей способности грунта. Полученный фундамент проверяется затем на жесткость, чтобы размер его подошвы не выходил за пределы, ограничиваемые углом α (см. рис. 2.14).

Сплошные (плитные) фундаменты устраивают при больших нагрузках и слабых грунтах под всей площадью здания или же под отдельной частью здания с повышенными нагрузками. Такие фундаменты представляю т собой сплошную монолитную ребристую железобетонную плиту ил и железобетонную безбалочную плиту (рис. 1.4). Свайные фун даменты обычно применяют при возведении зданий на слабых грунтах или при залегании плотных грунтов на значительной глубине от подошвы фундаментов. В последнее время свайные фундаменты на коротких сваях получили распространение при строительстве промышленных и гражданских зданий и на обычных грунтах.

Рис.1.4. Сплошные

фундаменты:

а– ребристая плита;

б– безбалочная плита

При современной технологии изготовления свай и устройства свайных фундаментов замена ленточных, столбчатых и сплошных фундаментов свайными позволяет уменьшить объем земляных работ, материала и сборных конструкций дл я устройства фундамента. Кроме того, свайные фундаменты обладаю т меньшим и осадками и имеют другие преимущества. В настоящее врем я замена обычных ленточных фундаментов из сборных блоков свайными целесообразна при глубине заложения подушки ленточного фундамента более 1,7 м от поверхности планировки.

По характеру работы различают сваи двух типов : сваи-стойки и висячие сваи. Сваи-стойки пронизывают толщу слабого грунта и передаю т нагрузку своими нижними концам и слою более прочного и плотного грунта (рис. 1.5, а). Такие сваи работают как колонны. Фундаменты из свай стоек применяют тогда, когда на глубине от подошвы фундамента, не превышающей длины свай, залегает слой грунта, достаточно мощный и прочный, чтобы передать на него всю нагрузку от веса здания.

Согласно нормам, таким слоем (пластом) может служить скальная

порода, плотный крупнообломочный гру нт или твердая глина. Сваи- стойки, опирающиеся нижним концом на такие грунты, практически не получают осадок.

Висячие сваи (рис. 1.5 , б), находясь полностью в уплотненном при забивке свай слабом грунте, передают нагрузку на грунт за счет сил трения по боковой поверхности свай и сопротивления внедрению свай в грунт (лобового сопротивления).

Рис. 1.5. Свайные ундаменты:

а– со сваями- стойками; б– с висячими сваями; 1– железобетонные сваи-стойки;

2– деревянные висячие сваи; 3– железобетонный ростверк*

*Ростверк– плита, воспринимающая нагрузку от веса здания и равномерно распределяющая ее на все сваи фундамента

Фундаменты из висячих свай применяют в тех случаях, когда слой прочного грунта, способного воспринять нагрузку от веса здания, залегает на глубине, при ко торой применение свай-стоек технически неосуществимо или экономически нецелесообразно.

Висячие сваи находятся в грунтовых условиях, при которых неизбежны осадки свайного фундамента. Величина осадки зависит от вида и плотности грунтов, залегающих ниже плоскости острия свай.

Сваи в плане располагают в шахматном порядке ил и рядами на рас- стояниях от 3 до 5 диаметров сваи. При забивке свай с такой густо той грунт между сваями уплотняется. Сваи изготовляются из дерева, бетона и железобетона. Деревянные сваи готовят из сосновых, еловых, реже дубовых бревен диаметром 20—30 см.

Их можно применять в грунтах ниже самого низкого уровня грунтовых вод на участке строительства. В противном случае под влиянием периодического смачивания и высыхания сваи загнивают. В настоящее время деревянные сваи применяют все реже, их вытеснили более прочные и долговечные бетонные и железобетонные сваи.

Источник: studopedia.ru

Рейтинг
Загрузка ...