«СанПиН 2.1.2.729-99. 2.1.2. Проектирование, строительство и эксплуатация жилых зданий, предприятий коммунально-бытового обслуживания, учреждений образования, культуры, отдыха, спорта. Полимерные и полимерсодержащие строительные материалы, изделия и конструкции. Гигиенические требования безопасности.
Санитарные правила и нормы» (утв. Постановлением Главного государственного санитарного врача РФ от 27.01.1999 N 3)
Официальная терминология . Академик.ру . 2012 .
Смотреть что такое «Полимерные строительные материалы» в других словарях:
Полимерные строительные материалы — (далее ПСМ) – строительные материалы, полученные с использованием в качестве связующего синтетических высокомолекулярных соединений. [СанПиН 2.1.2.729 99] Рубрика термина: Полимеры Рубрики энциклопедии: Абразивное оборудование, Абразивы,… … Энциклопедия терминов, определений и пояснений строительных материалов
Герметизирующие и уплотняющие полимерные строительные материалы и изделия — – применяются в стыках сборных элементов ограждающих конструкций жилых, общественных и производственных зданий и сооружений для защиты от водо – и воздухопроницания, и устанавливает классификацию и общие технические требования к ним.… … Энциклопедия терминов, определений и пояснений строительных материалов
Полимеры | Discovery
Строительные материалы — Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей … Википедия
Строительные материалы — I Строительные материалы природные и искусственные материалы и изделия, используемые при строительстве и ремонте зданий и сооружений. Различия в назначении и условиях эксплуатации зданий (сооружений) определяют разнообразные требования к… … Большая советская энциклопедия
Строительные материалы — I Строительные материалы природные и искусственные материалы и изделия, используемые при строительстве и ремонте зданий и сооружений. Различия в назначении и условиях эксплуатации зданий (сооружений) определяют разнообразные требования к… … Большая советская энциклопедия
Дорожно-строительные материалы — – применяются при сооружении автомобильных дорог и площадей. К дорожно –строительным материалам относятся грунтовые, каменные и керамические материалы, органические и минеральные вяжущие вещества, бетоны и изделия из них. Полимерные… … Энциклопедия терминов, определений и пояснений строительных материалов
ГОСТ 25621-83: Материалы и изделия полимерные строительные герметизирующие и уплотняющие. Классификация и общие технические требования — Терминология ГОСТ 25621 83: Материалы и изделия полимерные строительные герметизирующие и уплотняющие. Классификация и общие технические требования оригинал документа: 3. Водо и воздухозащитные материалы и изделия 3.1. Мастики. 3.1.1.… … Словарь-справочник терминов нормативно-технической документации
ДОРОЖНО-СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ — применяются при сооружении автомоб. дорог и площадей. К Д. с. м. относятся грунтовые, кам. и кера мич. материалы, органич. и минер. вяжущие вещества, бетоны и изделия из них. Полимерные материалы в дорожном стр ве используются гл. обр. в качестве … Большой энциклопедический политехнический словарь
Полимерные трубы — Полимерные трубы цилиндрическое изделие, изготовленное из полимерного материала, полое внутри, имеющее длину, значительно превосходящую диаметр. Область применения полимерных труб крайне широка. Полимерные трубы применяются для… … Википедия
Материалы кровельные и гидроизоляционные рулонные — – классифицируются по следующим основным признакам: назначению: – кровельные, предназначенные для устройства однослойного, верхнего и нижнего слоев многослойного кровельного ковра; – гидроизоляционные, предназначенные для… … Энциклопедия терминов, определений и пояснений строительных материалов
Источник: official.academic.ru
Полимерные материалы: технология, виды, производство и применение
Полимерные материалы — это химические высокомолекулярные соединения, которые состоят из многочисленных маломолекулярных мономеров (звеньев) одинакового строения. Зачастую для изготовления полимеров используют следующие мономерные компоненты: этилен, винилхлорид, винилденхлорид, винилацетат, пропилен, метилметакрилат, тетрафторэтилен, стирол, мочевину, меламин, формальдегид, фенол. В данной статье мы подробно рассмотрим, что такое полимерные материалы, каковы их химические и физические свойства, классификация и виды.
Виды полимеров
Особенностью молекул данного материала является большая молекулярная масса, которая соответствует следующему значению: М>5*103. Соединения с меньшим уровнем этого параметра (М=500-5000) принято называть олигомерами. У низкомолекулярных соединений масса меньше 500. Различают следующие виды полимерных материалов: синтетические и природные.
К последним принято относить натуральный каучук, слюду, шерсть, асбест, целлюлозу и т. д. Однако основное место занимают полимеры синтетического характера, которые получают в результате процесса химического синтеза из соединений низкомолекулярного уровня. В зависимости от метода изготовления высокомолекулярных материалов, различают полимеры, которые созданы или путем поликонденсации, или с помощью реакции присоединения.
Полимеризация
Этот процесс представляет собой объединение низкомолекулярных компонентов в высокомолекулярные с получением длинных цепей. Величина уровня полимеризации – это количество «меров» в молекулах данного состава. Чаще всего полимерные материалы содержат от тысячи до десяти тысяч их единиц. Путем полимеризации получают следующие часто применяемые соединения: полиэтилен, полипропилен, поливинилхлорид, политетрафторэтилен, полистирол, полибутадиен и др.
Поликонденсация
Данный процесс представляет собой ступенчатую реакцию, которая заключается в соединении или большого количества однотипных мономеров, или пары различных групп (А и Б) в поликонденсаторы (макромолекулы) с одновременным образованием следующих побочных продуктов: метилового спирта, диоксида углерода, хлороводорода, аммиака, воды и др. При помощи поликонденсации получают силиконы, полисульфоны, поликарбонаты, аминопласты, фенопласты, полиэстеры, полиамиды и другие полимерные материалы.
Полиприсоединение
Под данным процессом понимают образование полимеров в результате реакций множественного присоединения мономерных компонентов, которые содержат предельные реакционные объединения, к мономерам непредельных групп (активные циклы или двойные связи). В отличие от поликонденсации, реакция полиприсоединения протекает без выделений побочных продуктов. Важнейшим процессом данной технологии считают отверждение эпоксидных смол и получение полиуретанов.
Классификация полимеров
По составу все полимерные материалы делятся на неорганические, органические и элементоорганические. Первые из них (силикатное стекло, слюда, асбест, керамика и др.) не содержат атомарный углерод.
Их основой являются оксиды алюминия, магния, кремния и т. д. Органические полимеры составляют наиболее обширный класс, они содержат атомы углерода, водорода, азота, серы, галогена и кислорода. Элементоорганические полимерные материалы – это соединения, которые в составе основных цепей имеют, кроме перечисленных, и атомы кремния, алюминия, титана и других элементов, способных сочетаться с органическими радикалами. В природе такие комбинации не возникают. Это исключительно синтетические полимеры. Характерными представителями этой группы являются соединения на кремнийорганической основе, главная цепь которых строится из атомов кислорода и кремния.
Для получения полимеров с необходимыми свойствами в технике зачастую используют не «чистые» вещества, а их сочетания с органическими или неорганическими компонентами. Хорошим примером служат полимерные строительные материалы: металлопласты, пластмассы, стеклопластики, полимербетоны.
Структура полимеров
Своеобразие свойств этих материалов обусловлено их структурой, которая, в свою очередь, делится на следующие виды: линейно-разветвленная, линейная, пространственная с большими молекулярными группами и весьма специфическими геометрическими строениями, а также лестничная. Рассмотрим вкратце каждую из них.
Полимерные материалы с линейно-разветвленной структурой, кроме основной цепи молекул, имеют боковые ответвления. К таким полимерам относятся полипропилен и полиизобутилен.
Материалы с линейной структурой имеют длинные зигзагообразные либо закрученные в спирали цепочки. Их макромолекулы прежде всего характеризуются повторениями участков в одной структурной группе звена либо химической единицы цепи.
Полимеры с линейной структурой отличаются наличием весьма длинных макромолекул со значительным различием характера связей вдоль цепи и между ними. Имеются ввиду межмолекулярные и химические связи. Макромолекулы таких материалов весьма гибкие. И это свойство является основой полимерных цепей, которая приводит к качественно новым характеристикам: высокой эластичности, а также отсутствию хрупкости в затвердевшем состоянии.
А теперь узнаем, что такое полимерные материалы с пространственной структурой. Эти вещества образуют при объединении между собой макромолекул прочные химические связи в поперечном направлении. В результате получается сетчатая структура, у которой неоднородная либо пространственная основа сетки. Полимеры этого типа обладают большей теплостойкостью и жесткостью, чем линейные. Эти материалы являются основой многих конструкционных неметаллических веществ.
Молекулы полимерных материалов с лестничной структурой состоят из пары цепей, которые соединены химической связью. К ним относятся кремнийорганические полимеры, которые характеризуются повышенной жесткостью, термостойкостью, кроме того, они не взаимодействуют с органическими растворителями.
Фазовый состав полимеров
Данные материалы представляют собой системы, которые состоят из аморфных и кристаллических областей. Первая из них способствует снижению жесткости, делает полимер эластичным, то есть способным к большим деформациям обратимого характера. Кристаллическая фаза способствует увеличению их прочности, твердости, модуля упругости, а также других параметров, одновременно снижая молекулярную гибкость вещества. Отношение объема всех таких областей к общему объему называется степенью кристаллизации, где максимальный уровень (до 80%) имеют полипропилены, фторопласты, полиэтилены высокой плотности. Меньшим уровнем степени кристаллизации обладают поливинилхлориды, полиэтилены низкой плотности.
В зависимости от того, как ведут себя полимерные материалы при нагреве, их принято делить на термореактивные и термопластичные.
Термореактивные полимеры
Данные материалы первично имеют линейную структуру. При нагреве они размягчаются, однако в результате протекания в них химических реакций строение меняется на пространственное, и вещество превращается в твердое. В дальнейшем это качество сохраняется. На этом принципе построены полимерные композиционные материалы.
Последующий их нагрев не размягчает вещество, а приводит только к его разложению. Готовая термореактивная смесь не растворяется и не плавится, поэтому недопустима ее повторная переработка. К этому виду материалов относятся эпоксидные кремнийорганические, феноло-формальдегидные и другие смолы.
Термопластичные полимеры
Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым.
Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.
Химические свойства
Полимеры могут перебывать в следующих состояниях: твердое, жидкое, аморфное, кристаллическое фазовое, а также высокоэластическое, вязкотекучее и стеклообразное деформационное. Широкое применение полимерных материалов обусловлено их высокой стойкостью к различным агрессивным средам, таким как концентрированные кислоты и щелочи. Они не подвержены воздействию электрохимической коррозии. Кроме того, с увеличением их молекулярной массы происходит снижение растворимости материала в органических растворителях. А полимеры, обладающие пространственной структурой, вообще не подвержены воздействию упомянутых жидкостей.
Физические свойства
Большинство полимеров являются диэлектриками, кроме того, они относятся к немагнитным материалам. Из всех используемых конструкционных веществ только они обладают наименьшей теплопроводностью и наибольшей теплоемкостью, а также тепловой усадкой (примерно в двадцать раз больше, чем у металла). Причиной потерь герметичности различными уплотнительными узлами при условиях низкой температуры является так называемое стеклование резины, а также резкое различие между коэффициентами расширения металлов и резин в застеклованном состоянии.
Механические свойства
Полимерные материалы отличаются широким диапазоном механических характеристик, которые сильно зависят от их структуры. Кроме этого параметра, большое влияние на механические свойства вещества могут оказать различные внешние факторы. К ним относятся: температура, частота, длительность или скорость нагружения, вид напряженного состояния, давление, характер окружающей среды, термообработка и др. Особенностью механических свойств полимерных материалов является их относительно высокая прочность при весьма малой жесткости (по сравнению с металлами).
Полимеры принято делить на твердые, модуль упругости которых соответствует Е=1–10 ГПа (волокна, пленки, пластмассы), и мягкие высокоэластичные вещества, модуль упругости которых составляет Е=1–10 МПа (резины). Закономерности и механизм разрушения тех и других различны.
Для полимерных материалов характерны ярко выраженная анизотропия свойств, а также снижение прочности, развитие ползучести при условии длительного нагружения. Вмести с этим они обладают довольно высоким сопротивлением усталости. По сравнению с металлами, они отличаются более резкой зависимостью механических свойств от температуры. Одной из главных характеристик полимерных материалов является деформируемость (податливость). По этому параметру в широком температурном интервале принято оценивать их основные эксплуатационные и технологические свойства.
Полимерные материалы для пола
Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.
Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.
Плиточные материалы, изготовленные на основе полимерных компонентов, обладают весьма малой истираемостью, химической стойкостью и долговечностью. В зависимости от типа сырья, этот вид полимерной продукции делят на кумаронополивинилхлоридные, кумароновые, поливинилхлоридные, резиновые, фенолитовые, битумные плитки, а также древесностружечные и древесноволокнистые плиты.
Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.
Источник: fb.ru
Что такое Полимер
Полимер (от греч. «πολυ» — много и «μερές» — часть) — это вещество, которое состоит из большого числа молекул. Эти молекулы связаны между собой в звенья и повторяются.
Немецкий химик Герман Штаудингер совместно с группой учёных на опытах доказал, что полимеры состоят из повторяющихся звеньев молекул, которые соединены между собой ковалентными связями. Это такая химическая связь, при которой два атома имеют общую электронную пару. То есть один электрон находится в одном атоме, другой — в другом и при этом они соединены. Учёные назвали такие молекулы «макромолекулами».
Химик также доказал, что пластмасса — это полимер (о пластмассе читайте ниже). За что получил Нобелевскую премию по химии в 1953 году.
ДНК — макромолекула, которая несёт в себе информацию о генах, т. е. наследственности человека
Типы полимеров
По химическому составу различают:
- органические;
- элементоорганические;
- неорганические.
Органические полимеры:
- природные;
- искусственные (модифицированные);
- синтетические.
Природные полимеры
Такие полимеры можно найти в природе. Человек не участвует в производстве таких полимеров. В качестве примера можно привести белки, крахмал, натуральный каучук, хлопок, шерсть и др.
Искусственные полимеры
Чтобы получить такие полимеры, человек проводит химические опыты. Например, чтобы получить модифицированный полимер, который затем будет применён при производстве красок, химики добавляют в раствор стирола в толуоле или ксилоле льняное или касторовое масло и нагревают его.
Пример такого полимера — целлюлоза.
Синтетические полимеры
Произвести такие полимеры можно с помощью химического синтеза (т. е. химическим путём). В синтезе участвуют высокомолекулярные органические продукты. Например, чтобы получить синтетический полимер лавсан нужно поликонденсировать (т. е. провести химический опыт) терефталевую кислоту и этиленгликоль.
Пример — капрон, нейлон, полиэтилен, полипропилен, полистирол, фенолформальдегидные смолы.
Элементоорганические полимеры
Содержат атомы других химических элементов, например кремния, алюминия, титана и др. Выделяют:
- термостойкие полимеры;
- полимеры с высокой электропроводностью и полупроводниковыми свойствами;
- вещества с высокой твёрдостью и эластичностью;
- биологические активные полимеры и др.
Химики получают такие полимеры при взаимодействии определённых органических веществ с солями или заменяя некоторые атомы углерода в молекулах на другие составляющие. Пример — полисилоксаны, полититаноксаны и др.
Неорганические полимеры
Полимеры, молекулы которых построены из неорганических боковых цепей (или неорганических радикалов). Неорганические полимеры можно обнаружить в составе земной коры.
Полимеры могут отличаться составом мономерных звеньев. Мономерное звено — это составная часть макромолекулы полимера. Различают:
- гомополимеры;
- гетерополимеры (или сополимеры).
Гомополимеры
Это такие полимеры, у которых одинаковые мономерные звенья. Например: полихлорвинил, поливинилацетат и полистирол.
Гетерополимеры
Это полимеры, которые имеют различные мономерные звенья. Например: сополимер хлористого винила с винилацетатом, сополимер стирола с бутадиеном.
Полимеры могут также подразделяются также на карбоцепные (или гомоцепные) и гетероцепные полимеры.
Карбоцепные полимеры
Главные цепи макромолекул таких полимеров включают только атомы углерода. Например: каучук.
Гетероцепные полимеры
Главные цепи макромолекул таких полимеров включают не только атомы углерода, но ещё и атомы кислорода, азота и серы. Например: простые эфиры (например, полиэтиленгликоль), сложные эфиры (глифталевые смолы, полипептиды (белки) и др.).
Полимеры также могут подразделяться в зависимости от расположения мономерных цепей в пространстве. Различают:
- стереорегулярные (полимеры с линейной структурой);
- нестереорегулярные (или атактические).
Строение макромолекул полимеров может быть различным. Таким образом, есть полимеры:
- линейные;
- разветвлённые;
- лестничные;
- трёхмерные сшитые (сетчатые, пространственные).
Полимеры можно получить разными способами:
- если полимер получают с помощью поликонденсации, то такой полимер называют поликонденсационным (или реактопластами);
- если с помощью полимеризации — речь идёт о полимеризационном полимере.
В зависимости от реакции полимера на нагревание выделяют:
- термопластичные (полиэтилен, поливинилхлорид, полистирол);
- термореактивные полимеры (полиэфиры, эпоксидные, меламиновые и фенольные смолы).
Свойства полимеров
- предотвращают передачу тепла (являются теплоизоляторами);
- обладают большой эластичностью;
- обладают высокой стойкостью в агрессивной химической среде;
- являются диэлектриками (субстанциями, которые плохо проводят электрический ток, т. е. не пропускают его через себя).
Где используются полимеры?
Благодаря своим свойствам, полимеры используются сейчас во многих отраслях. Их используют для производства множества материалов.
Например, в строительстве — как материал для электротехнических конструкций, кабелей, проводов, труб, изоляционных эмалей и лаков. Полимеры химическим путём добавляют в состав бетона и железобетона, чтобы улучшить их качества. Полимеры используют при производстве плёнок и защитных покрытий, сеток и ограждений.
Полимеры также используют в автомобилестроении. Из них делают детали для машин: резину, решётки радиаторов, колпаки для колёс, чехлы для сидений, вентиляционные решётки, коврики; их добавляют в лаки и краски. Они используются также при производстве клея.
В нефтегазовой промышленности также используются полимеры: при производстве оборудования, например насосов, камер и т. д.
В медицине полимеры применяют для изготовления капсул для лекарств. Полимер поликарбонат используют даже при разработке искусственного сердца. А гиалуроновая кислота, которая также является полимером, используется в процессе наращивания тканей.
Молекулы и атомы
Любое вещество состоит из очень маленьких частиц, которые можно увидеть только через микроскоп. Эти частицы называются атомами. Когда атомы объединяются, получаются молекулы.
Количество молекул бесконечно, потому что различные атомы могут объединяться. Но если убрать одни атомы и заменить их другими, это будет уже другая молекула, а соответственно, другое вещество.
Пластмасса
Пластмассовые игрушки
Пластмасса — это полимер, который не существует в природе. Его производит человек.
Это сокращение слов «пластическая» и «масса». Такое название было дано, потому что, когда пластмассу производят, она может принимать любую форму и потом держать эту форму. Чтобы изготовить пластмассу, нужны кристаллические и аморфные полимеры и органические соединения, которые можно найти в нефти.
В пластмассу в процессе производства могут добавляться красители для изменения её цвета.
Источник: www.uznaychtotakoe.ru
Полимеры: что из них производят и какие возможности они дают
В этой статье поговорим о том, какие бывают полимеры, какими свойствами они обладают и какие возможности для развития есть в полимерной отрасли, благодаря свойствам сырья.
Приблизительное время чтения 10 минут.
Сегодня полимерные изделия формируют нашу жизнь и даже комфорт. Ежедневный быт без них уже сложно представить. Рынок полимеров развивается пропорционально спросу, и его развитие только подстегивают новые технологии, новые формулы и разработки. А это, в свою очередь, наделяет конечные изделия особыми свойствами: повышенная ударопрочность, гибкость, устойчивость к солнечному свету, растрескиванию и т.д. Благодаря этому, как и в любой сфере товаров или услуг, качественное и функциональное изделие или хороший, профессиональный и вежливый мастер всегда будет в цене.
В этой статье поговорим о том, какие бывают полимеры, какими свойствами они обладают и какие возможности для развития есть в полимерной отрасли, благодаря свойствам сырья.
Основная классификация
Классификаций полимеров десятки, но одной из важных для производственников — это классификация в соответствии с характером процессов, происходящих при формировании изделий и обратимостью затвердевания. Это напрямую определяет их сферу применения и возможность вторичной переработки.
Свойства и качество полимерного сырья напрямую влияют на конечное изделие, на долговечность работы оборудования, а возможность переработки на экономическую выгоду и возможность сделать производство безотходным.
Основные группы полимеров:
Термопласты (термопластичные полимеры)
Полимерные материалы, способные обратимо переходить при нагревании в высокоэластичное либо вязкотекучее состояние. Изделия со сложными формами чаще всего изготовлены из термопластов, они легко формуются и надежно свариваются. Самые известные и распространенные представители термопластов — полиэтилен, полистирол, поливинилхлорид, АБС. Термопласты отлично подходят для вторичной переработки, так как могут переплавляться в новые изделия.
Реактопласты (термореактивные полимеры)
Реактопласты при нагревании отвердевают необратимо. Их первоначальные свойства и способность плавиться не восстанавливаются. Если температура повышается до определенного предела, реактопласты сперва несколько изменяют свои свойства, а затем разлагаются, этот процесс называет термодеструкция. Прочность и твердость термореактивных полимеров выше, чем у термопластов. Примеры реактопластов: эпоксидная смола, полиуретаны, полиамиды.
Эластомеры (подгруппа реактопластов, чаще резина)
Эластомеры обладают высокой эластичностью и вязкостью. Каждый материал из этой группы может растягиваться существенно больше, чем его изначальная длина. При этом эластомеры возвращаются до исходного положения после снятия нагрузки. Примеры: каучук, бутилкаучук. При этом эластомеры поддаются вторичной переработке.
Полимеры с повышенной термостойкостью
Многие полимеры склонны к воспламенению, что недопустимо в некоторых случаях. Поэтому используются различные добавки или галогенированные полимеры. Галогенированные ненасыщенные полимеры синтезируют путем включения в конденсацию хлорированных или бромированных мономеров. Огнеупорные полимеры выглядят как твердый легкий пластик. Материал не теряет форму при нагреве.
За это качество он получил достаточно широкую сферу использования. Но стойкость к горению и плавке делает его сложным материалом для вторичной переработки.
Где применяются полимеры
Полимеры, благодаря легкости, коррозийной стойкости и прочности используются даже чаще чем металлы и любые другие материалы. Особенно хорошо они применяются в следующих направлениях:
- Строительстве
Трубы для отопления, газо- и водоснабжения и водоотведения, прокладки коммуникационных сетей, оконный профиль, плинтус, кровля, черепица, сайдинг, листы ДПК, гидроизоляция, уплотнители и прокладки, элементы внутренней отделки и т.д. - Мебели и бытовой технике
Корпуса бытовой техники и электроники, кнопки, панели управления, оргтехника; мебель, столы, стулья и т.д. - Пищевой промышленности
Упаковка в виде пленок, различных контейнеров, емкостей и бутылок. - Повседневных предметах
Игрушки, изделия хозяйственного назначения: ведра, совки, лопаты, швабры и др; защитные очки, подарочная упаковка - Автомобилестроении
Резину для колес, пластиковые детали и корпуса для внутренней отделки, зеркала, коврики, уплотнители и т.д. - Авиастроении
Стекла, колеса, корпуса панелей, внутренняя отделка и т.д. - Судостроении
Пластиковые панели, корпуса панелей, лодки, весла, уплотнители. - Медицине
Лабораторное оборудование, емкости, упаковка, инструменты, маски, халаты и др. - Волокнах и тканях
С алфетки, медицинские маски, защитная одежда.
И это далеко не весь список сфер применения. Наиболее распространенные полимеры, используемые в литье под давлением и экструзии, — это полиэтилен (ПЭ), полипропилен (ПП) и поливинилхлорид (ПВХ), полистирол (ПС) и полиэтилентерефталат (ПЭТ). Большая часть вышеперечисленных изделий изготавливаются именно из них.
Как добавить полимерам новые свойства
Открыть принципиально новый вид полимера на сегодня уже сложно. Но продолжать работать над усовершенствованием свойств — один из основных векторов полимерных разработок.
Изменять свойства сырья возможно с помощью различных добавок. Более подробно о добавках и какие роли они могут выполнять, мы писали в этой статье.
Компаундирование — процесс, при котором вводятся различные ингредиенты, например, отвердители, стабилизаторы, пластификаторы, пламегасители, смазки, вулканизирующие агенты, красители и др. Для уменьшения трения и течения полимера внутри перерабатывающего оборудования в большинство полимеров добавляют смазочные материалы и вещества. Это улучшает физико-химические свойства сырья.
Компаундом называют конечный продукт различных добавок в полимерное сырье. Это необходимо для улучшения свойств сырья: пластичности, твердости, цвета, прочности и т.д. Эти смеси полимеров чаще всего разрабатывают под конкретные специфические задачи, например:
- изготовление деталей коробки передач, где необходимо снизить массу изделия и сохранить прочность.
- изготовление невоспламеняемой оболочки ПВХ для кабеля.
Компаунды на основе термопластичных полимеров готовят путем холодного и горячего смешения, периодическим или непрерывным способом. Первый, так называемый «метод сухих смесей», заключается в смешении жидких и твердых добавок и наполнителей с полимерной матрицей до получения сыпучей порошкообразной массы с равномерно распределенными ингредиентами для последующей переработки обычными методами. Для этого используются барабанные смесители, Z-образные смесители, лопастные смесители и смесители с механическим псевдоожижением. Для приготовления жидких и пастообразных полимерных масс, например ПВХ-паст, используются аппараты с мешалкой.
Непрерывный процесс смешения наиболее прогрессивен и заключается в смешении исходных компонентов в объеме аппарата под воздействием рабочих органов, получении готового материала заданного качества смешения и непрерывной его выгрузке или получении непрерывного изделия, например, профиля. Для непрерывного смешения чаще всего используются экструдеры различных типов: одно- и двухшнековые, осциллирующие и дисковые, с различными типами смесительных элементов. Получение компаундов на экструзионном оборудовании, как правило, протекает при высоких скоростях. Процесс высокоскоростной экструзии для компаундирования материалов в течение многих лет осуществлялся на двухшнековых экструдерах.
Вторичная переработка
Использование вторичного сырья в качестве новой ресурсной базы сегодня уже скорее правило, чем исключение. Многие производства используют в работе вторичные полимеры – ПЭ, ПП, ПВХ, ПС, ПК, АБС.
Основной путь использования отходов пластмасс – это их утилизация, т.е. повторное использование. При этом затраты при утилизации отходов не превышают, а чаще даже ниже затрат на их уничтожение.
Вторичная переработка дает ряд очевидных выгод в виде увеличения цикла использования полимера, что положительно для экологической обстановки.
А для производителя вторичная переработка позволяют наладить безотходное производство. В случае с литьем — использовать литник и пускать его в работу, в случае с экструзией — дробить отходы производства и также пускать их в качестве сырья.
По этим причинам вторичная переработка и утилизация не только экономически целесообразна, но и является экологически правильным решением.
Вывод
Полимерная отрасль снабжает многие отрасли промышленности и сферы жизни. Полимеры, благодаря своим свойствам, могут решать самые разные задачи, и спрос на них будет только расти. Отрасль настолько разнообразна, что и новичку и опытному производителю всегда есть куда развиваться. Все отрасли применения полимерных изделий пересекаются между собой и взаимосвязаны, поэтому одно производство может тянуть за собой другое. Например, рециклинг дает возможность расширять ассортимент, а компаундирование улучшать качество изделия и в некоторых случаях снижать его себестоимость.
Но постоянное развитие требует времени и вовлеченности. При этом руководителю предприятия важно сосредотачивать свое внимание не только на качестве производственных процессов и технических нюансах, но и на коммерческих возможностях, искать и видеть перспективы развития компании.
И не всегда целесообразно разбираться во всем самостоятельно. Если у вас назрела задача открыть или модернизировать производство, обращайтесь за помощью к техническим специалистам компании «Интерпласт». Мы имеем опыт работы на полимерном производстве и реальные кейсы запусков полимерных предприятий с нуля и эффективной модернизации.
Наш опыт поможет производителям сэкономить время и ресурсы, потому что своим клиентам мы:
Источник: plasticmachinery.ru
Полимерные материалы
Полимер. Что это такое? Ответить можно с разных точек зрения. С одной стороны, это современный материал, используемый для изготовления множества бытовых и технических предметов.
С другой стороны, можно сказать, это специально синтезированное синтетическое вещество, получаемое с заранее заданными свойствами для использования в широкой специализации.
Каждое из этих определений верное, только первое с точки зрения бытовой, а второе – с точки зрения химической. Еще одним химическим определением является следующее. Полимеры – это макромолекулярные соединения, в основе которых лежат короткие участки цепи молекулы – мономеры. Они многократно повторяются, формируя макроцепь полимера. Мономерами могут быть как органические, так и неорганические соединения.
Поэтому вопрос: “полимер – что это такое?” – требует развернутого ответа и рассмотрения по всем свойствам и областям применения этих веществ.
Полимерные материалы пластмассы и их свойства
Один из основных типов полимерных материалов – это пластмассы. Они представляют собой группу органических материалов, основу которых составляют синтетические или природные смолообразные высокомолекулярные вещества, способные при нагревании и давлении формоваться, устойчиво сохраняя приданную им форму.
Полимерные материалы пластмассы обладают хорошими теплоизоляционными и электроизоляционными качествами, коррозийной стойкостью и долговечностью. Средняя плотность пластмасс — 15-2200 кг/м3; предел прочности при сжатии — 120-160 МПа. Пластмассы наделены хорошими электро-теплоизоляционными свойствами, коррозийной стойкостью и долговечностью. Некоторые из них обладают прозрачностью и высокой клеящей способностью, а также имеют свойство образовывать тонкие пленки и защитные покрытия. Благодаря своим свойствам широкое применение эти полимерные материалы нашли в строительстве, главным образом в комбинации с вяжущими веществами, металлами и каменными материалами.
В качестве наполнителей при изготовлении этого типа полимерных материалов используются органические и минеральные порошки, асбестовые, древесные и стеклянные волокна, бумага, стеклянные и хлопчатобумажные ткани, древесный шпон, асбестовый картон и др. Наполнители не только снижают стоимость материала, но и улучшают отдельные свойства пластмасс: повышают твердость, прочность, стойкость к кислотам и теплостойкость.
Они должны быть химически инертными, малолетучими и нетоксичными. Пластификаторами при изготовлении пластмасс служат цинковая кислота, стеарат алюминия и иные, которые придают материалу большую пластичность. Катализаторы (ускорители) применяются в пластмассах для ускорения отверждения. Примером катализатора могут служить известь или уротропин, которые применяются для отверждения фенолоформальдегидного полимера.
Термопластичные полимеры
Данные материалы при нагреве сначала размягчаются и потом плавятся, а при последующем охлаждении затвердевают. Термопластичные полимеры при такой обработке не претерпевают химических изменений. Это делает данный процесс полностью обратимым.
Вещества этого типа имеют линейно-разветвленную или линейную структуру макромолекул, между которыми действуют малые силы и совершенно нет химических связей. К ним относятся полиэтилены, полиамиды, полистиролы и др. Технология полимерных материалов термопластичного типа предусматривает их изготовление методом литья под давлением в водоохлажденных формах, прессования, экструзии, выдувания и другими способами.
Описание полимеров и их характеристики
Активное производство сырья началось в первой половине XX века. В первые годы существования полимеров технология представляла собой переработку некачественного сырья и целлюлозы. Так появились первые лакокрасочные вещества. На стадии появления кинематографа изготовление прозрачной пленки привело к появлению первых художественных картин.
Полимерные материалы имеют в своем составе высокомолекулярные цепочки, которые повторяются с определенным промежутком. Благодаря этому полимеры обладают такими свойствами, как:
- Малая теплопроводность. Наглядный пример: во время нагревания чайника на огне пластмассовая ручка остается холодной;
- Высокий уровень температурного расширения. Молекулярная структура позволяет добиться увеличения размера в несколько раз больше, чем металл при равной температуре;
- Гибкость, благодаря чему полимерами покрывают элементы изделий из металла, чтобы защитить их от ржавчины;
- Низкий показатель коэффициента трения, вследствие чего на предметах не видны механические повреждения;
- Электроизоляция. Предметы из полимеров не проводят электричество;
- Неподверженность изменению формы при долгих нагрузках. После остановки действия полимер возвращается в свой первоначальный вид.
- Повышенная горючесть. Это свойство определяет тот факт, что во многих отраслях полимеры не используют. При горении они выбрасывают токсины или горючий дым.
В современное время полимерные материалы существуют в нескольких физических состояниях. В качестве примера можно назвать клеящие вещества, лакокрасочные покрытия. При производстве технологического оборудования используют твердые пластмассы. За счет такого свойства, как эластичность, были получены резиновые и силиконовые напольные покрытия.
Химический состав полимеров может значительно отличаться. В ГОСТ описана процедура оценки качества, основанная на применении балльной шкалы.
Самым знакомым населению полимером является полиэтилен, из которого производят пищевую пленку, упаковочный материал для различных целей. Его используют во многих отраслях хозяйства.
Пропилен обладает эластичностью, гибкостью, водонепроницаемостью и прочностью, поэтому его используют при возведении многоэтажных домов и торгово-развлекательных комплексов. Из пропилена производят водопроводные трубы. Такие изделия не меняют свою форму при высокой нагрузке, не подвержены появлению ржавчины и обладают хорошей звукоизоляцией.
Полиолефин – материал, основой которого является полиэтилен и полипропилен. Большая часть пластиковой продукции по всему миру производится из него. Он имеет достоинства перед другим материалом: устойчив к разрывам, не проводит тепло, при утилизации и в процессе изготовления не загрязняет атмосферу ядом.
Примеры изделий из полимерных материалов
Прежде чем называть конкретные изделия из полимеров (их невозможно перечислить все, слишком большое их многообразие), для начала нужно разобраться, что дает полимер. Материал, который получают из ВМС, и будет основой для будущих изделий.
Основными материалами, изготовленными из полимеров, являются:
- пластмассы;
- полипропилены;
- полиуретаны;
- полистиролы;
- полиакрилаты;
- фенолформальдегидные смолы;
- эпоксидные смолы;
- капроны;
- вискозы;
- нейлоны;
- полиэфирные волокна;
- клеи;
- пленки;
- дубильные вещества и прочие.
Это только небольшой список из того многообразия, что предлагает современная химия. Ну а здесь уже становится понятным, какие предметы и изделия изготавливаются из полимеров – практически любые предметы быта, медицины и прочих областей (пластиковые окна, трубы, посуда, инструменты, мебель, игрушки, пленки и прочее).
Полистирол
Полистирол – пример самого распространенного термопластичного полимера. На вид он бесцветный, прозрачный и твердый. Полистирол является более прочным и жестким материалом, имеет большую рабочую температуру использования и меньшую склонность к старению по сравнению с полиэтиленом. Считается хорошим электрическим изолятором и обладает высокой водоотталкивающей способностью. Очень стоек к щелочным и кислотным средам, не подвержен плесени и грибкам.
Полистирол хорошо растворяется в углеводородах, сложных эфирах. Он очень хрупкий и хорошо горит.
Для увеличения прочности полистирол соединяют с другими полимерами или каучуком. Готовые изделия и заготовки из полистирола легко поддаются обработке. Детали изготавливаются при помощи литья жидкого компонента либо способом выдавливания под давлением.
Из полистирола изготавливают лабораторную химическую посуду, трубки, нити, пленки и ленты. Широко используется материал в электротехнике при производстве изоляторов и, в первую очередь, защитной оболочки на электрические провода. Для промышленной дальнейшей обработки материал первоначально выпускается в листах и в виде крошки, которые в дальнейшем могут служить сырьем для конечных деталей и механизмов.
Полистирол популярен в процессе сополимеризации, когда смешивают два и более полимера. Получаются материалы, которым придаются дополнительные полезные свойства своих компонентов. Как правило, это прочность, огнестойкость, стойкость к растрескиванию. Жидкий полистирол с растворителем применяется при производстве клеев и клеевых основ.
Широко используется в строительстве при производстве пенополистирола. Из данного материала выпускаются теплоизоляционные блоки.
Пенополистирол используется для теплоизоляции холодильных установок, продуктовых витрин и другого торгового оборудования. Данный материал внешне напоминает застывшую пену. Хорошо выдерживает повышенную влажность, не подвержен гниению, стоек к образованию бактерий и грибков. Может использоваться при температуре до + 70С градусов. Главный недостаток пенополистирола – повышенная горючесть.
Применяется как термо- и звукоизоляционный материал при производстве бытовок, а также различной бытовой и промышленной техники, в пищевой промышленности – для изоляции камер хранилищ, трюмов плавучих средств и помещений для хранения продуктов питания при отрицательных температурах до -35С градусов. Используется также в производстве упаковочного материала.
Классификация и свойства полимерных материалов
Полимерные материалы в зависимости от состава или количества компонентов подразделяются на ненаполненные, представленные только одним связующим (полимером) – органическое стекло, в большинстве случаев полиэтиленовая пленка; наполненные, в состав которых для получения требуемого комплекса свойств могут входить наполнители, пластификаторы, стабилизаторы, отвердители, пигменты – стеклопластики, текстолит, линолеум и газонаполненные (пено- и поропласты) – пенополистирол, пенополиуретан и др.
В зависимости от физического состояния при нормальной температуре и вязкоупругих свойств полимерные материалы бывают жесткие, полужесткие, мягкие и эластичные.
Жесткие – это твердые, упругие материалы аморфной структуры, имеющие модуль упругости более 1000 МПа. Они хрупко разрушаются с незначительным удлинением при разрыве. К ним относят фенопласты, аминопласты, пластмассы на основе глифталевых и других полимеров.
Плотность полимерных материалов чаще всего находится в пределах 900.1800 кг/м3, т.е. они в 2 раза легче алюминия и в 5.6 раз легче стали. Вместе с тем плотность пористых полимерных материалов (пенопластов) может составлять 30..15 кг/м3, а плотных – превышать 2 000 кг/м3.
Прочность при сжатии полимерных материалов в большинстве случаев превосходит многие традиционные строительные материалы (бетон, кирпич, древесину) и составляет для ненаполненных полимеров около 70 МПа, армированных пластиков – более 200 МПа, при растяжении – для материалов с порошкообразным наполнителем 100.150 МПа, у стекловолокнистых – 276.414 МПа и более.
Теплопроводность таких материалов зависит от их пористости и технологии производства. У пено- и поропластов она составляет 0,03.0,04 Вт/м-К, у остальных – 0,2.0,7 Вт/мК или в 500.600 раз ниже, чем у металлов.
Недостатком многих полимерных материалов является низкая теплостойкость. Например, у большинства из них (на основе полистирола, поливинилхлорида, полиэтилена и других полимеров) теплостойкость составляет 60.80 °С. На основе фенолоформальдегидных смол теплостойкость может достигать 200 °С и лишь на кремнийорганических полимерах – 350 °С.
Многие полимерные материалы при переработке, горении и даже нагревании выделяют опасные для здоровья вещества, такие как угарный газ, фенол, формальдегид, фосген, соляную кислоту и др. Значительным недостаткам их является также высокий коэффициент термического расширения – от 2 до 10 раз выше, чем у стали.
Полимерным материалам свойственна усадка при затвердевании, достигающая 5.8 %. У большей части из них низкий модуль упругости, значительно ниже, чем у металлов. При длительных нагрузках они обладают большой ползучестью. С повышением температуры ползучесть еще больше возрастает, что приводит к нежелательным деформациям.
Эластомеры
Основная характеристика пластмасс данной категории – это эластичность. На практике это проявляется тем, что в случае силового воздействия такой материал проявляет невероятную гибкость, а после его прекращения за короткое время принимает свою прежнюю форму. Причем это свойство сохраняется за эластомерами в крайне широком диапазоне температур.
Специалисты называют его пределами -60 и +250 градусов. Макромолекулы эластомеров похожи на оные у реактопластов – пространственно сетчатые. Однако расстояние между ними существенно больше, благодаря чему эти пластмассы и способны проявлять такого рода свойства.
Помимо прочего, такое сетчатое строение делает пластмассы рассматриваемой группы растворимыми и совершенно неплавкими, однако они имеют склонность к набуханию.
Материалы, которые относят к рассматриваемой категории:
Практическое применение эти материалы нашли в автомобилестроении, где с успехом применяются все три их типа. Используется такая пластмасса для изготовления уплотнителей, шин, спойлеров и так далее. Также формируют смеси из перечисленных трех видов материалов. Их называют блендами. Их свойства разнятся в зависимости от того, какое соотношение компонентов используется в данном случае.
Полистирол – это материал, который, как правило, чаще всего используется для изготовления одноразовой посуды и, как ни парадоксально, хуже всего подходит для этих целей. Почему? Это связано с тем, что полистирол под воздействием высоких температур активно выделяет ядовитые химические соединения. Несмотря на то что он дешевый, очень легкий (изделия из него комфортно держать в руке и легко транспортировать) и достаточно прочный для того, чтобы выдержать определенный объем жидкости и других веществ, его ни в коем случае нельзя использовать в качестве контейнера для хранения горячих продуктов. Если избежать использования одноразовой посуды нельзя, предпочтительнее выбирать все же бумажные изделия.
Преимущества и недостатки полимерного металла
- Высокий уровень адгезии. Если правильно подготовить металлические поверхности, между ними и полимером образуется связь на молекулярном уровне.
- Стойкость к воздействию влаги. Полимерные покрытия наносятся на металлоконструкции, расположенные в воде, ими покрывают днища лодок. Даже при активной эксплуатации защитный слой сохраняет целостность, не пропускает влагу.
- Высокая износоустойчивость, механическая прочность. Поврежденный слой легко восстановить.
- Стойкость к воздействию ультрафиолета. Многие краски по металлу быстро выцветают на солнце. Полимерный слой не подвержен данной проблеме. Он может постоянно находиться под солнечными лучами без потери свойств.
- Стойкость к перепадам температуры.
- Долговечность. При нормальных условиях покрытие прослужит около 50 лет
- Стойкость к воздействию химических веществ. Для проверки этого свойства можно покрыть металлическую деталь полимером и погрузить ее в растворитель. Защитный слой сохранит целостность, свойства.
- Из-за высокой адгезии покрытие сложно удалить.
- Защитные составы подходят только для работы с металлом.
- Для нанесения полимеров нужно использовать специальное оборудование.
Автомобиль из полимерного металла (Instagram / pokraska_diskov_astana)
Пурал
Пурал изготавливается на основе полиуретана и модифицированного полиамида. Покрытие из пурала отличается шелковисто-матовой поверхностью, высокой термостойкостью и устойчивостью к резким перепадам температур.
Данный материал не выцветает и не разрушается под действием химически агрессивных сред. Пурал не так устойчив к пластическому деформированию, как пластизол, и стоит дороже, чем полиэстер, однако по соотношению цены и качества является оптимальным вариантом из всех представленных выше.
Наибольшее распространение пураловые покрытия получили при производстве кровельных элементов из оцинкованного металла. Сталь, обработанная пуралом, приобретает красивый внешний вид, высокие антикоррозионные характеристики и устойчивость к УФ-излучению.
Сфера применения
Полимеры отличаются огромным разнообразием. С каждым годом ученые разрабатывают новые технологии, которые позволяют производить материалы с различными качественными показателями. И сейчас полимеры встречаются как в промышленности, так и в быту. Ни одно строительство не обходится без асбеста. Он присутствует в составе шифера, специальных труб и т.д.
В качестве вяжущего элемента применяется цемент.
Силикон – отличный герметик, используемый строителями. Автостроение, производство промышленного оборудования, товаров народного потребления основано на полимерах, которые позволяют добиться высокой прочности, долговечности, герметичности.
А возвращаясь к асбесту, нельзя не упомянуть, что способность удерживать тепло позволило создать костюмы для пожарных.
Говоря об алмазах, принято отождествлять их с бриллиантами (обработанными алмазами). Некоторые неорганические полимеры не уступают этому природному кристаллу, что необходимо в различных промышленных сферах, и при производстве бриллиантов, в том числе. В виде крошки этот материал наносится на режущие кромки. В итоге получаются резцы, способные разрезать что угодно.
Это отличный абразив, применяемый при шлифовании. Эльбор, боразон, киборит, кингсонгит, кубонит относятся к сверхпрочным соединениям.
Если требуется обработать металл или камень, применяются неорганические полимеры, изготовленные методом синтеза бора. Любой шлифовальный круг, продаваемый в строительных супермаркетах, имеет в своем составе этот материал. Для производства декоративных элементов используется, например, карбид селена. Из него получается аналог горного хрусталя. Но и этим перечень достоинств и список сфер применения не ограничен.
Фосфорнитридхлориды образуются при соединении фосфора, азота и хлора. Свойства могут меняться, и зависят от массы. Когда она велика, образуется аналог природного каучука. Только теперь он выдерживает температуру до 350 градусов. Под действием органических соединений реакций не наблюдается.
А в допустимом температурном диапазоне свойства изделий не меняются.
Чем искусственные полимеры отличаются от синтетических?
Теперь разберемся, в чем состоит особенность синтетических полимеров. Как мы знаем, их синтезируют в искусственно созданных условиях, на базе мономеров. К примеру, этилен в естественном виде – это бесцветный газ, однако после реакции полимеризации на выходе получаются твёрдые гранулы полиэтилена. Главная особенность как раз и заключается в наличии возможности влиять на процесс полимеризации, а в итоге – и на свойства получаемого полимера:
- Возможно введение дополнительных мономеров с целью получения сополимеров с улучшенными свойствами.
- Имеется возможность модифицировать свойства вещества: к примеру, изменить его устойчивость к ударам или низким температурам.
- Также осуществляется модификация технологических свойств: вязкости и текучести расплава, температуры размягчения и плавления и т.п.
- Наконец, есть возможность модифицировать визуальные свойства: изменить цвет, сделать материал прозрачным, модифицировать его светопропускающие свойства.
То есть, обобщая, можно говорить о том, что естественные полимерные материалы даются в том виде, в котором их создала природа. Синтетические же человек научился полностью адаптировать под свои нужды и задачи. Поэтому в современных условиях синтетика часто замещает натуральные вещества. К примеру, искусственная полимерная кожа и синтетические волокна активно вытесняют натуральные аналоги, так как отличаются более выгодной ценой и более широким спектром возможных модификаций.
Рассматривая же негативные свойства синтетических полимеров, следует сказать об экологических рисках
Важное преимущество полимеров, их долговечность, оборачивается негативом, если к утилизации отработанных изделий подходят безответственно. Потому ключевым риском популярности синтетических полимеров на планете можно считать существенное загрязнение окружающей среды этими веществами
Химические свойства полимеров
Химические свойства полимеров отличаются от таковых у низкомолекулярных веществ. Это объясняется размером молекулы, наличием различных функциональных группировок в ее составе, общим запасом энергии активации.
В целом можно выделить несколько основных типов реакций, характерных для полимеров:
Все перечисленные реакции имеют в практике большое значение для получения полимеров с заранее заданными и удобными человеку свойствами. Химия полимеров позволяет создавать термоустойчивые, кислотно и щелочеупорные материалы, обладающие при этом достаточной эластичностью и стабильностью.
Термопласты
Классификация пластмасс выделяет еще один их вид – термопласты. Их особенность состоит в том, что эти материалы плавятся под воздействием высоких температур, но при охлаждении быстро возвращаются в свое изначальное состояние. Молекулярные цепи данного вида пластмасс либо слегка разветвлены, либо линейны.
Когда изделие находится в условиях воздействия невысоких температур, оно хрупкое и твердое. Это связано с тем, что молекулы размещаются крайне плотно друг к другу, что практически полностью ограничивает их движение. Как только температура немного повышается, молекулы получают возможность двигаться, что существенно ослабевает связь между ними.
В ходе описанного процесса материал становится более пластичным. Если температуру продолжают повышать, то межмолекулярные связи окончательно ослабевают, и теперь они скользят друг относительно друга. В это время пластмасса становится вязкотекучей и невероятно эластичной. Если температуру снизить, то все эти процессы повернутся вспять.
Если контролировать температуру таким образом, чтобы не допускать перегрева, который провоцирует распад молекулярной цепи, то описанные выше процессы можно повторять бесконечное количество раз. Используя эти свойства пластмасс данной категории, их многократно перерабатывают в разнообразные изделия. Это позволяет меньше загрязнять окружающую среду, ведь отходы пластмасс в почве разлагаются от одной до четырех сотен лет.
Более того, благодаря описанным выше особенностям, термопласты с легкостью могут быть спаяны или сварены. Любые механические повреждения можно исправить путем правильного температурного воздействия.
Применение пластмасс такого типа широко распространено в сфере автомобилестроения (изготовление колпаков колес, бамперов, панелей, корпусов фонарей, каркасов, наружных зеркал, решеток бампера и так далее).
- поливинилхлорид;
- поливинилацетат;
- полиоксиметилен;
- полипропилен;
- полиамид;
- сополимеры бутадиена, стирола и акрилонитрила;
- поликарбонат;
- полистирол;
- полиэтилен;
- поливинилацетат.
Применение
Благодаря преимуществам полимерных материалов перед другими видами сырья, их использование с каждым годом становится более популярным. Применение полимеров встречается повсюду: в легкой и тяжелой индустрии, сельскохозяйственной и медицинской отрасли. Каждый день приходится сталкиваться с продукцией из полимерных материалов.
При строительстве зданий стали заменять металлические конструкции – пластиковыми. Это окна, армирующие сетки, а также приспособления и инструмент. Геосинтетические материалы широко используются при возведении дорог.
С помощью сеток из синтетических материалов изготавливают поддерживающую оснастку вьющимся растениям для сельского хозяйства. Устройство декоративных заборов с применением пластика также стало популярным благодаря устойчивости к коррозии, которой обладает полимерная сетка.
Геотекстиль и геомембрана используют при возведении бассейнов и искусственных водоемов. Такие полимеры защищают мембрану от грунта и обладают гидроизоляцией.
Упаковка различных товаров производится с помощью полимерных пленок и других видов упаковок, как в супермаркете, так и на рынке. Изготовление несущих конструкций авто- и мототехники позволяет облегчить вес транспортных средств и избежать пагубного воздействия коррозии.
Применение полимерных материалов в производстве и быту становится все популярнее с каждым годом. Низкая стоимость и желаемые технические параметры сырья постепенно вытесняют привычные изделия текстильной, строительной и даже металлургической промышленности. Удобство обработки и химические свойства полимерных изделий повышают качество и продлевают срок службы привычных предметов, создающих комфортные условия для активной жизнедеятельности человека.
Рейтинг: /5 –
голосов
Полимерные материалы для пола
Теперь рассмотрим один из вариантов практического применения полимеров, раскрывающего всю возможную гамму этих материалов. Эти вещества нашли широкое применение в строительстве и ремонтно-отделочных работах, в частности в покрытии полов. Огромная популярность объясняется характеристиками рассматриваемых веществ: они устойчивы к стиранию, малотеплопроводны, имеют незначительное водопоглощение, достаточно прочны и тверды, обладают высокими лакокрасочными качествами. Производство полимерных материалов можно разделить условно на три группы: линолеумы (рулонные), плиточные изделия и смеси для устройства бесшовных полов. Теперь вкратце рассмотрим каждый из них.
Линолеумы изготавливают на основе разных типов наполнителей и полимеров. В их состав также могут входить пластификаторы, технологические добавки и пигменты. В зависимости от типа полимерного материала, различают полиэфирные (глифталевые), поливинилхлоридные, резиновые, коллоксилиновые и другие покрытия. Кроме того, по структуре они делятся на безосновные и со звуко-, теплоизолирующей основой, однослойные и многослойные, с гладкой, ворсистой и рифленой поверхностью, а также одно- и многоцветные.
Плиточные материалы, изготовленные на основе полимерных компонентов, обладают весьма малой истираемостью, химической стойкостью и долговечностью. В зависимости от типа сырья, этот вид полимерной продукции делят на кумаронополивинилхлоридные, кумароновые, поливинилхлоридные, резиновые, фенолитовые, битумные плитки, а также древесностружечные и древесноволокнистые плиты.
Материалы для бесшовных полов являются наиболее удобными и гигиеничными в эксплуатации, они обладают высокой прочностью. Эти смеси принято делить на полимерцемент, полимербетон и поливинилацетат.
Особые свойства, применяемые человеком
Суть в том, что в результате синтеза образуются макромолекулы объемного (трехмерного) типа. Прочность обеспечивается сильными связями и структурой. Как химический элемент неорганические полимеры ведут себя аморфно, и не вступают в реакцию с другими элементами и соединениями. Это особенность позволяет использовать их в химической промышленности, медицине, при производстве продуктов питания.
Термическая стойкость превышает все показатели, которыми обладают природные материалы. Если волокна используются для формирования армированного каркаса, то такая конструкция выдерживает на воздухе температуру до 220 градусов. А ели речь идет о борном материале, то предел температурной прочности поднимается до 650 градусов. Именно поэтому полеты в космос без полимерсан были бы невозможными.
Но это если говорить о качествах, превосходящих природные. Те же изделия, которые изготовлены из этих соединений, которые похожи по качеству к натуральным, имеют особое значение для человека. Это дает возможность снизить стоимость одежды, заменив, например, кожу. При этом внешних отличий практически нет.
В медицине на неорганические полимеры возлагаются особые надежды. Их этих материалов планируется изготавливать искусственные ткани и органы, протезы и т.д. Химическая устойчивость позволяет обрабатывать изделия активными веществами, что обеспечивает стерильность. Инструмент становится долговечным, полезным и безопасным для человека.
Так, интерьер, созданный с применением полимерных материалов пожарно безопасен. Большинство макромолекул формируют предметы, которые не горят, не плавятся, а значит, при нагревании не выделяют угарный газ. А те, которые имеют малый вес незаменимы в авиастроении, тем более, что они прочнее и дешевле натуральных.
По сей день учеными ведутся работы по созданию новых полимерных материалов. А те, которые уже применяются, требуют изучения. Свойства некоторых из них до конца не раскрыты. Разработка самой методологии – очередной шаг прогресса. Цель создателей – улучшить качества изделий, и сделать жизнь человека более комфортной.
Источник: armatool.ru