Основания и фундаменты сооружений, возводимых на вечномерзлых грунтах, проектируют по результатам специальных инженерно-геокриологических изысканий и исследований с учетом конструктивных и технологических особенностей объектов строительства и их теплового и механического взаимодействия с основаниями. Отличительной особенностью проектирования сооружений в рассматриваемых условиях является необходимость выполнения теплотехнических расчетов по определению расчетных температур грунта в основании, глубины сезонного промерзания и оттаивания, размеров чаши протаивания грунтов в основании сооружений, температурного режима вентилируемого подполья и др.
При строительстве на вечномерзлых грунтах применяется один из следующих принципов использования вечномерзлых грунтов в качестве оснований сооружений:
• принцип I — вечномерзлые грунты основания используются в мерзлом состоянии, сохраняемом в процессе строительства и в течение всего периода эксплуатации сооружения;
• принцип II — вечномерзлые грунты основания используются в оттаянном или оттаивающем состоянии (с их предварительным оттаиванием на расчетную глубину до начала строительства или с допущением оттаивания в период эксплуатации сооружения).
ОСНОВАНИЯ В ХИМИИ — Химические свойства оснований. Реакции оснований с кислотами и солями
При выборе принципа анализируются данные инженерно-геокриологических изысканий и в необходимых случаях производится расчет глубины чаши протаивания и возможных при этом деформаций основания.
Принцип I применяется в тех случаях, когда расчетные деформации основания при его оттаивании превышают предельно допустимые, а улучшение строительных свойств оттаиваемых грунтов или использование конструктивных мероприятий невозможно или экономически неэффективно. Этот принцип рекомендуется, когда грунты находятся в твердомерзлом состоянии и его можно сохранять при экономически целесообразных затратах на мероприятия, обеспечивающие сохранение такого состояния. При пластично-мерзлых грунтах, как правило, в проектах необходимо предусматривать мероприятия по понижению температуры грунта до расчетных значений.
Принцип II применяется при наличии в основании скальных или других грунтов, деформации которых при оттаивании не превышают предельно допустимых значений для проектируемого сооружения. В зонах островного распространения вечномерзлых высокотемпературных грунтов применение принципа II может оказаться неизбежным. В пределах застраиваемой территории, как правило, необходимо предусматривать один принцип использования вечномерзлых грунтов в качестве оснований.
Применение двух принципов допускается как исключение на обособленных по рельефу и другим природным условиям участках или в других случаях, если проектом будут обоснованы специальные меры по обеспечению расчетного температурного режима грунтов в основании сооружений, возводимых по принципу I.
Для сохранения мерзлого состояния грунтов основания и обеспечения их расчетного температурного режима в проектах сооружений разрабатывают различные мероприятия:
1) устройство холодных (вентилируемых) подполий или холодных первых этажей зданий;
Щебень: устройство основания | Виды щебня | Применения щебня при строительстве дорог
2) укладка в основании сооружения охлаждающих труб, каналов или применение вентилируемых фундаментов;
3) установка сезонно действующих охлаждающих устройств жидкостного или парожидкостного типов;
4) устройство подсыпок (в качестве оснований) из дренирующих материалов;
5) укладка теплоизоляционных материалов под полом здания.
![]() |
![]() |
![]() |
|
Рис. 5.. Схемы устройств для сохранения в основании сооружений вечномерз-лого состояния грунтов: 1 — вечномерзлый грунт; 2 — верхняя граница вечно-мерзлого грунта; 3 — уровень планировки; 4 — подсыпка из дренирующего материала; 5-теплоизоляция; б-вентилируемоеподполье, 7-неотапливаемый этаж; 8 — вентиляционные охлаждающие трубы; 9 — система искусственного замораживания (охлаждения); 10 — перекрытие трубы; II — пол по грунту; 12 — сезонно действующее охлаждающее устройство |
Применяются и другие способы по устранению или уменьшению теплового воздействия сооружения на мерзлые грунты основания. Выбор одного или сочетания указанных выше мероприятий (рис. 5, з, и) должен производиться на основании теплотехнических расчетов с учетом конструктивных и технологических особенностей сооружения, опыта местного строительства и экономической целесообразности. Фундаменты всех типов, кроме свайных, заглубляются в вечномерзлый грунт не менее чем на 1 м, сваи — не менее чем на 2 м. Расчетная глубина сезонного оттаивания определяется расчетом.
При использовании грунтов основания по принципу II применяются два метода устройства оснований и фундаментов: постепенного оттаивания грунтов в процессе эксплуатации сооружений и предварительного искусственного оттаивания вечномерзлых грунтов (при необходимости с уплотнением, закреплением или заменой оттаявших грунтов) до возведения сооружений. Возможно и сочетание указанных методов.
При этом могут допускаться мероприятия:
а) по уменьшению деформаций оснований;
б) по приспособлению конструкций сооружений к восприятию неравномерных деформаций оснований.
При любом принципе использования вечномерзлых грунтов в качестве оснований сооружений в проекте должны быть предусмотрены мероприятия по инженерной подготовке территории строительства с целью обеспечения расчетного температурного режима грунтов, предотвращения эрозии, развития термокарста, сохранения природных условий окружающей среды.
Принципы использования вечномерзлых грунтов в качестве оснований сооружении. В настоящее время при проектировании и строительстве зданий и сооружений на основаниях, состоящих из вечномерзлых грунтов, существует два принципа использования вечномерзлых грунтов в качестве оснований:
I принцип — вечно мерзлое состояние грунта основания сохраняют в течение всего периода строительства и эксплуатации здания или сооружения;
II принцип — вечномерзлые грунты оснований используют в оттаявшем состоянии с оттаиванием на расчетную глубину до начала возведения или в процессе эксплуатации здания.
Принцип I применяют в случае, когда грунты застраиваемой территории можно сохранить в мерзлом состоянии при экономически целесообразных затратах на мероприятия, обеспечивающие такое состояние. Это возможно при следующих конструктивных решениях:
а) возведение зданий и сооружений на подсыпках и теплоизоляцию поверхности; используют при относительно нешироких зданиях (до 10 м), так как в этих случаях грунт охлаждается за счет поступления холода с боков и обеспечивается снижение поступления тепла в грунт от существующего здания;
б) устройство вентилируемых подполий особенно целесообразно при возведении жилых, общественных и гражданских зданий; чаще всего предусматривают свободно проветриваемое подполье с поднятием полов первого этажа на перекрытия, располагаемые над поверхностью земли; по боковым граням в стене устраивают продухи для свободной циркуляции воздуха, а в подполье — разводку трубопроводов;
в) устройство холодных первых этажей, предусматриваемых вместо холодных подполий, если это целесообразно по технологическим требованиям и обусловлено теплотехническим расчетом, причем их высота должна быть не менее 1 м;
г) использование охлаждающих каналов и труб для тяжелых зданий и сооружений со значительными нагрузками наполы или при нецелесообразности устройства подполий; иногда используют комплексное решение: охлаждающие трубы и каналы в сочетании с вентилируемым подпольем;
д) использование саморегулирующих охлаждающих устройств, которые с помощью искусственного охлаждения, получаемого в результате циркуляции специального газа (фреона) или жидкости (керосина), понижают температуру окружающего грунта. Чаще всего данный метод исцользуют как вспомогательное средство для обеспечения заданного температурного режима вечномерзлых грунтов или создания заслонов промерзшего грунта для зашиты от теплового влияния соседних здании и подземных вод.
При строительстве оснований и фундаментов по принципу необходимо использовать мероприятия, исключающие проникновение тепла в грунт, и обеспечивать охлаждение поверхности грунта под зданием или около него.
Как правило, при возведении фундамента по принципу применяют свайные фундаменты, допускается также использование железобетонных столбчатых фундаментов и монолитных бетонных.
Принцип II применяют при наличии вечномерзлых грунтов, деформации которых при оттаивании не превышают предельно допустимых для проектируемых зданий, а также при несплошном залегании вечномерзлых грунтов и неодинаковой глубине их залегания от поверхности и в тех случаях, когда принцип II оказывается экономически более целесообразным.
Возведение фундаментов по принципу II допускает оттаивание грунта, поэтому при эксплуатации зданий и сооружений следует Учитывать возможность возникновения неравномерных осадок, что требует выполнения мероприятий по уменьшению деформаций основания или приспособления конструкций зданий к воспринятию дополнительных осадок.
Мероприятия по уменьшению деформации основания:
а) предварительное искусственное оттаивание вечномерзлого грунта на заданную глубину до возведения здания с последующим уплотнением или закреплением оттаявшего грунта (если в этом есть необходимость);
б) полная замена льдонасыщенного грунта песчаным или крупнообломочным грунтом;
в) увеличение глубины заложения фундаментов;
г) регулирование глубины оттаивания грунта основания в процессе эксплуатации сооружения. Оно осуществляется с помощью теплоизоляции по грунту и устройства электронагревателей или обогревающих трубопроводов у фундаментов, а также устройства наружных стен на консолях, с отнесением фундаментов наружных стен внутрь здания.
Последнее решение используют для уравновешивания неравномерности осадок между наружными и внутренними фундаментами, так как осадки последних всегда больше.
Мероприятия по приспособлению конструкций зданий к восприятию дополнительных осадок разделяют на два основных типа:
а) повышение общей пространственной жесткости и прочности здания и сооружения, обеспечиваемое с помощью устройства армокирпичных и железобетонных поясов, усиления армирования конструкций, фундаментов и несущих конструкций подвалов, замоноличивания сборных элементов перекрытий; применения монолитных и сборно-монолитных плитных и ленточных фундаментов из перекрестных лент, дополнительной разрезки зданий и сооружений на отдельные отсеки с помощью деформационных швов; применения свайных фундаментов, фундаментов глубокого заложения и т. п.;
б) увеличение гибкости и податливости сооружений с помощью гибких и разрезных конструкций.
Для оттаивания вечномерзлых грунтов используют электропрогрев, гидрооттаивание и паровые иглы. Применение последних хотя и обеспечивает максимальную скорость оттаивания, однако вызывает в некоторых случаях дополнительное увлажнение грунтов, что иногда оказывает неблагоприятное влияние на их свойства. Оттаявшую толщу грунта, как правило, уплотняют.
При проектировании и строительстве фундаментов по принципу I целесообразно максимально возможное их заглубление, это объясняется возможностью оттаивания верхнего слоя грунта в силу каких-либо случайных факторов. Выбор рациональной конструкции фундамента зависит от внешних нагрузок, а также температурных условий грунтов основания, которыми во многом определяется несущая способность мерзлого грунта.
Основным типом фундаментов, применяемых при строительстве по принципу I, являются свайные фундаменты. По способу погружения в вечномерзлый грунт сваи подразделяют на:
буроопускные сваи, для устройства которых пробуривают скважины, имеющие диаметр, превышающий на 5 см и более наибольший размер поперечного сечения сваи. Перед погружением сваи полость скважины примерно на одну треть заполняют грунтовым раствором из мелкого или пылеватbr /Принцип I применяется в тех случаях, когда расчетные деформации основания при его оттаивании превышают предельно допустимые, а улучшение строительных свойств оттаиваемых грунтов или использование конструктивных мероприятий невозможно или экономически неэффективно. Этот принцип рекомендуется, когда грунты находятся в твердомерзлом состоянии и его можно сохранять при экономически целесообразных затратах на мероприятия, обеспечивающие сохранение такого состояния. При пластично-мерзлых грунтах, как правило, в проектах необходимо предусматривать мероприятия по понижению температуры грунта до расчетных значений.ого песка, который после погружения сваи заполняет всю полость между сваей и мерзлым грунтом с последующим относительно быстрым замерзанием;
бурозабивные сваи погружаются с помощью забивки в предварительно пробуренные скважины (лидеры), имеющие диаметр на 1..2 см меньше, чем размер поперечного сечения сваи. Этот тип свай применяют в пластично-мерзлых грунтах;
опускpные сваи, погружаемые в предварительно оттаиваемый грунт с помощью забивки. Оттаивание осуществляется с помощью паровых игл, причем объем оттаявшего грунта должен бьпъ минимальным, чтобы обеспечивалось его быстрое замерзание.
Другие типы фундаментов, передающие нагрузки на сохраняемый слой вечномерзлого грунта, используют реже, так как их Устройство требует значительных средств и затрат ручного труда для сохранения вечномерзлого состояния грунтов при разработке котлованов и устройстве фундаментов.
При необходимости передачи значительных нагрузок на грунты оснований, сложенных вечномерзлыми грунтами, применяют столбчатые фундаменты. Их устраивают в предварительно пробуренных скважинах диаметром 0,8…1,2 м и более, в которые нагнетается бетонная смесь с прогреванием для обеспечения твердения до требуемой прочности. Режим прогревания требуется назначать таким, чтобы обеспечить минимальное оттаивание грунтов вокруг фундамента.
В настоящее время фундаменты зданий и сооружений на вечномерзлых грунтах очень часто устраивают по принципу II (без сохранения вечномерзлого состояния грунтов). Применение свайных фундаментов может оказаться целесообразным,- если сваи прорезают толщу оттаявшего грунта и погружаются в слой грунта, не проявляющего просадочных свойств при оттаивании, ниш доводятся до слоя скального грунта. Иногда длинные сваи применяют для передачи давления на вечномерзлые грунты, которые располагаются ниже зоны оттаивания, образующейся в результате выделения тепла от здания. В обоих упомянутых случаях при расчете свай следует учитывать влияние отрицательного трения, увеличивающего нагрузку на сваи.
Рис. 6. Методы погружения в слой вечномерзлого грунта: 1 — скважина; 2 — свая; 3 — граница слоя вечномерзлого грунта; 4 — грунтовый раствор; 5 — оттаявший грунт | Рис. 7. Свайные фундаменты при устройстве фундаментов но принципу II: 1 — свая; 2 — граница вечномерзлого грунта; 3 — не осадочный слой плотного грунта |
При использовании других типов фундаментов, в том числе и фундаментов в открытых котлованах, следует учитывать малую прочность и большую деформативность оттаявших грунтов, а при возможности развития значительных неравномерных осадок использовать мероприятия, направленные на уменьшение вредного влияния последних (устройство перекрестных ленточных фундаментов, сплошных фундаментов, искусственное улучшение свойств оснований и т. п.). Проектирование и устройство фундаментов в данном случае осуществляются как для фундаментов в условиях обычного сезонного промерзания.
На фундаменты, возводимые по принципу II, при промерзании грунтов действуют значительные силы пучения, влияние которых снижают с помощью применения фундаментов анкерного типа или уменьшения площади контакта с промерзающим грунтом, располагая в верхней части фундамента наименьшее поперечное сечение.
В некоторых случаях для уменьшения сил морозного пучения в пределах зоны промерзания фундаменты покрывают незамерзающими обмазками на основе битумных материалов. Реже применяют эпоксидные смолы, которые делают гладкой поверхность смерзания и уменьшают силы пучения.
Значительного снижения сил морозного пучения можно добиться за счет обсыпки фундаментов непучинистыми материалами (гравием или песком), однако в этом случае обсыпки следует дренировать и защищать от заиления, так как оно существенно увеличивает пучинистость грунтов.
В проекте оснований и фундаментов на многолетнемерзлых грунтах должны быть предусмотрены мероприятия по инженерной подготовке территории, обеспечивающие соблюдение расчетного гидрогеологического и теплового режима грунтов основания и предотвращение эрозии, развития термокарста и других физико-геологических процессов, приводящих к изменению проектного состояния грунтов в основании сооружений при их строительстве и эксплуатации, а также к недопустимым нарушениям природных условий окружающей среды.
Инженерная подготовка отдельных строительных площадок должна быть увязана с общей инженерной подготовкой и вертикальной планировкой территории застройки в соответствии с генпланом и обеспечивать организованный отвод поверхностных, надмерзлотных и межмерзлотных вод и вод сезоннооттаивающего слоя с начала строительства и в течение эксплуатационного периода.
Подъездные пути и насыпи для прохождения транспортных средств и работы строительной техники следует устраивать до начала работ по возведению фундаментов.
На территории с многолетнемерзлыми грунтами вертикальную планировку местности следует производить, как правило, подсыпкой. При применении в необходимых случаях срезок и выемок грунта должны быть приняты меры по защите вскрытых льдистых грунтов от протаивания, размыва и оползания склонов. Подсыпку можно выполнять сплошной по всей застраиваемой территории или под отдельные сооружения или их группы при условии обеспечения свободного стока поверхностных вод.
При использовании многолетнемерзлых грунтов по принципу I подсыпку следует выполнять, как правило, в зимний период после промерзания сезоннооттаявшего слоя грунта (не менее чем на 0,2 м). Толщина и способ устройства подсыпок принимаются в зависимости от их назначения мерзлотно-грунтовых и гидрогеологических условий.
На участках с сильнольдистыми грунтами и подземными льдами следует устраивать сплошные по площади теплоизолирующие подсыпки или экраны, толщину которых необходимо устанавливать расчетом по условию предотвращения протаивания подстилающего льдистого грунта и исключения повышения природных температур многолетнемерзлых грунтов.
При необходимости понижения природных температур сильнольдистых грунтов и подземных льдов в целях исключения процессов ползучести во время эксплуатационного периода, следует предусматривать активную термостабилизацию грунтов основания.
При использовании многолетнемерзлых грунтов в качестве оснований по принципу II вертикальную планировку допускается осуществлять подсыпками и выемками грунта. Подсыпки надлежит устраивать, как правило, по оттаянному грунту слоя сезонного промерзания-оттаивания. Выемки грунтов допускается выполнять на непросадочных при оттаивании грунтах или если предусмотрено предпостроечное оттаивание и уплотнение грунтов под сооружениями.
Уровень планировочных отметок, высоту подсыпок, глубины выемок грунтов, уклоны водоотводящей сети следует принимать с учетом расчетных осадок грунтов при оттаивании. В необходимых случаях (сильнольдистые, заторфованные или имеющие неравномерную льдистость грунты) следует осуществлять частичное оттаивание или замену грунтов верхнего льдистого слоя или устройство теплозащитных экранов.
При высоком уровне подземных вод необходимо предусматривать меры по предотвращению обводнения заглубленных подвалов или технических этажей здания: поднятие уровня планировочных отметок, устройство дренажа, противофильтрационные завесы, в том числе льдогрунтовые и т. п. При проектировании противофильтрационных завес водный баланс подземных вод на застраиваемой территории должен быть сохранен.
В составе мероприятий по инженерной подготовке территории должны быть предусмотрены природоохранные мероприятия, направленные на восстановление нарушенных в процессе строительства природных условий. Для обеспечения устойчивости и эксплуатационной пригодности зданий и сооружений при прокладке наружных сетей систем водоснабжения, канализации, теплоснабжения следует предусматривать, как правило, тот же принцип использования многолетнемерзлых грунтов в качестве оснований, который принят для зданий и сооружений, размещаемых на данной территории застройки. Применение различных принципов допускается при условии прокладки сетей, как правило, в каналах на таком расстоянии от зданий и сооружений, при котором не произойдет изменения расчетных температур оснований зданий и сооружений, или при применении других мер.
Вводы и выпуски инженерных сетей в зданиях или сооружениях и прокладку этих сетей в подпольях и технических этажах следует осуществлять по принципу использования многолетнемерзлых грунтов, принятому для данного здания или сооружения. Конструкция вводов и выпусков должна быть такой, чтобы при использовании многолетнемерзлых грунтов в качестве основания по принципу I исключалась возможность местного оттаивания грунтов или повышения (против установленной в проекте) их расчетной температуры, а при использовании грунтов в качестве основания по принципу II — ускоренного местного оттаивания и, как следствие, увеличенной неравномерности деформации основания фундаментов.
Расчет оснований и фундаментов по устойчивости и прочности на воздействие сил морозного пучения грунтов следует производить как для условий эксплуатации сооружения, так и для условий периода строительства, если до передачи на фундаменты проектных нагрузок возможно промерзание грунтов слоя сезонного оттаивания (промерзания). При необходимости в проекте должны быть предусмотрены мероприятия по предотвращению выпучивания фундаментов в период строительства.
При проектировании оснований и фундаментов сооружений, возводимых на многолетнемерзлых грунтах, следует выполнять теплотехнические расчеты основания и расчеты основания и фундаментов на силовые воздействия. В расчетах основания и фундаментов надлежит учитывать принцип использования многолетнемерзлых грунтов в качестве основания, тепловое и механическое взаимодействие сооружения и основания.
Основания и фундаменты следует рассчитывать по двум группам предельных состояний: по первой — по несущей способности, по второй — по деформациям (осадкам, прогибам и пр.), затрудняющим нормальную эксплуатацию конструкций сооружения, а элементы железобетонных конструкций — и по трещиностойкости.
При расчете по предельным состояниям несущую способность основания и его ожидаемые деформации следует устанавливать с учетом температурного режима грунтов основания, а при принципе I — также с учетом продолжительности действия нагрузок и реологических свойств грунтов.
Фундаменты как элементы конструкций в зависимости от их материала следует рассчитывать в соответствии с требованиями СНиП 52-01, СП 52-101, СП 52-103, СП 52-105, СНиП II-23, СНиП II-25 и СНиП 2.05.03, СП 32-101.
Расчет оснований следует производить:
а) при использовании многолетнемерзлых грунтов по принципу I: по несущей способности — для твердомерзлых грунтов; по несущей способности и деформациям — для пластичномерзлых и сильнольдистых грунтов, а также подземных льдов;
б) при использовании многолетнемерзлых грунтов по принципу II: по несущей способности — в случаях, предусмотренных СП 22.13330.2011; по деформациям — во всех случаях, при этом для оснований, оттаивающих в процессе эксплуатации сооружения, расчет по деформациям надлежит производить из условия совместной работы основания и сооружения.
Расчет оснований по деформациям следует производить на основные сочетания нагрузок и воздействий; расчет по несущей способности — на основные и особые сочетания нагрузок и воздействий.
Нагрузки и воздействия, передаваемые на основания сооружением, следует устанавливать расчетом в соответствии с требованиями СНиП 2.01.07 с учетом указаний СП 22.13330.2011, СП 24.13330.2011, а для оснований опор мостов и труб под насыпями — согласно СНиП 2.05.03 и СП 32-101-95.
При использовании многолетнемерзлых грунтов по принципу I, если грунты основания находятся в твердомерзлом состоянии, а также в случаях, предусматриваемых СП 22.13330.2011, нагрузки и воздействия на основание допускается назначать без учета их перераспределения надфундаментными конструкциями сооружения.
При использовании многолетнемерзлых грунтов в качестве основания по принципу II нагрузки на основание следует определять, как правило, с учетом совместной работы основания и сооружения.
Нагрузки и воздействия, которые по СНиП 2.01.07 могут относиться как к длительным, так и к кратковременным, при расчете мерзлых оснований по несущей способности должны относиться к кратковременным, а при расчете оснований по деформациям — к длительным.
Воздействия, вызванные осадками грунтов при предусмотренном в проекте оттаивании их в процессе эксплуатации сооружения, следует относить к длительным; воздействия, связанные с возможным протаиванием и просадками грунтов при нарушениях эксплуатационного режима сооружения, — к особым.
Источник: poisk-ru.ru
Методические рекомендации Методические рекомендации по строительству оснований и покрытий дорожных одежд из щебеночных, гравийных и песчаных материалов, обработанных неорганическими вяжущими
Утверждены: заместителем директора Союздорнии кандидатом технических наук В.М. Юмашевым.
Одобрены Главным Техническим управлением Минтрансстроя (письмо № 373-4д(1) от 14.03.83г.)
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО СТРОИТЕЛЬСТВУ ОСНОВАНИЙ И ПОКРЫТИЙ ДОРОЖНЫХ ОДЕЖД ИЗ ЩЕБЕНОЧНЫХ, ГРАВИЙНЫХ И ПЕСЧАНЫХ МАТЕРИАЛОВ, ОБРАБОТАННЫХ НЕОРГАНИЧЕСКИМИ ВЯЖУЩИМИ. Союздорнии М ,…1985
Приведены рекомендации по строительству оснований и покрытий дорожных одежд из щебеночных, гравийных и песчаных материалов, обработанных неорганическими вяжущими.
Содержат требования к цементу, шлаковым и зольным вяжущим; даны требования к каменным материалам, обработанным неорганическими вяжущими, а также к конструкциям оснований из этих материалов. Приведены правила подбора составов смесей из каменных материалов с неорганическими вяжущими.
Даны рекомендации по технологии строительства оснований и покрытий в летнее и зимнее время, включая приготовление, транспортирование смеси и устройство основания. Приведены требования к контролю качества производства работ. Даны основные требования по технике безопасности на каждом технологическом этапе строительства.
ПРЕДИСЛОВИЕ
«Методические рекомендации по строительству оснований и покрытий дорожных одежд из щебеночных, гравийных и песчаных материалов, обработанных неорганическими вяжущими» разработаны Союздорнии на основе проведенных исследований, обобщения отечественного и зарубежного опыта с учетом ГОСТ 23558-79 и соответствующего раздела главы СНиП III -40-78.
В «Методических рекомендациях» детализируются требования к обработанным материалам и их компонентам в зависимости от области применения в конструкциях дорожных одежд; приведены подробные данные о составах, смесей с различными неорганическими вяжущими, обеспечивающих получение обработанных материалов требуемых марок, а также рекомендации по подбору состава смесей.
Даны рекомендации по технологии строительства оснований и покрытий в летнее и зимнее время, включая приготовление, транспортирование смеси и устройство основания. Приведены требования к контролю качества производства работ, по технике безопасности на каждом технологическом этапе строительства.
«Методические рекомендации» разработали: канд. техн. наук В.С.Исаев, инж. Н.А. Ёркина, канд. техн. наук В.М. Юмашев (Союздорнии), кандидаты технических наук Ю.М. Васильев, А.О. Салль (Ленинградский филиал Союздорнии), Б.А.
Асматулаев (Казахский филиал Союздорнии).
Общее редактирование выполнено В.С. Исаевым.
Замечания и предложения по данной работе просьба направлять по адресу: 143900, Московская обл., Балашиха-6, Союздорнии.
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Настоящие «Методические рекомендации» разработаны с учетом главы СНиП III -40-78, ГОСТ 23558-79 и предназначены для использования при строительстве оснований и покрытий из каменных материалов, обработанных неорганическими вяжущими.
1.2. Область применения рассматриваемых типов оснований и покрытий регламентируется главой СНиП II -Д.5-72.
1.3. Расчет дорожных одежд с рассматриваемыми типами оснований и покрытий следует вести в соответствии с инструкциями по расчету дорожных одежд.
1.4. Материалы для приготовления смесей выбирают на основе технико-экономического обоснования с учетом категории дороги, природно-климатических и эксплуатационных условий, а также наличия местных строительных материалов.
1.5. Приготовление обработанных материалов рекомендуется осуществлять в стационарных или передвижных смесительных установках, оборудованных смесителями принудительного перемешивания.
Допускается при технико-экономическом обосновании применять метод смешения на месте.
1.6. Устройство оснований целесообразно вести специальными укладочными машинами с автоматической системой обеспечения ровности.
Допускается при технико-экономическом обосновании использовать укладчики без автоматической системы обеспечения ровности и автогрейдеры.
1.7. Верхнюю часть земляного полотна перед устройством основания при необходимости надлежит повторно тщательно уплотнить до требуемой плотности.
2. ОПРЕДЕЛЕНИЕ И КЛАССИФИКАЦИЯ ОБРАБОТАННЫХ МАТЕРИАЛОВ
2.1. Каменные материалы, обработанные неорганическими вяжущими (обработанные материалы), — это материалы, получаемые после уплотнения смеси, приготовленной смешением щебня (гравия) различной крупности, природного или искусственного песка, вяжущего и воды, взятых в определенных соотношениях. Свойства обработанных материалов должны соответствовать требуемым по ГОСТ 23558-79.
2.2. Для устройства основания в качестве каменного материала следует применять щебеночно-песчаные, гравийно-песчаные, щебеночно (гравийно) — песчаные смеси или пески (природные и искусстве иные). Вместо песка могут быть использованы отсевы дробления, отвечающие требованиям нормативных документов.
2.3. В качестве вяжущего применяют цементы, цементы с поверхностно-активными (пластифицирующими и воздухововлекающими) добавками и шлаки черной металлургии с добавкой цемента, извести, содощелочного плава и др., топливные шлаки, золошлаковые смеси или золы ТЭС с добавкой цемента или извести, измельченные фосфорные шлаки с добавкой цемента, цементной пыли или жидкого стекла.
2.4. Смеси каменных материалов, обработанные вяжущими, в зависимости от наибольшего размера зерен щебня (гравия) подразделяют на крупнозернистые с зернами до 40(70) мм, среднезернистые с зернами до 20 мм, мелкозернистые с зернами до 10 мм и песчаные с зернами до 5 мм.
2.5. Обработанный материал по показателю предела прочности при сжатии подразделяют на марки 75, 60 , 40, 20.
2.6. Обработанный материал по морозостойкости подразделяют на марки 50, 25, 15, 10.
3. КОНСТРУКЦИИ ОСНОВАНИЙ И ПОКРЫТИИ
3.1. Основания и покрытия из каменных материалов, обработанных неорганическими вяжущими, устраивают на дорогах всех категорий во II — V дорожно-климатических зонах.
3.2. Основания из каменных материалов, обработанных неорганическими вяжущими, могут быть одно- или многослойными в зависимости от требований к прочности и долговечности дорожной одежды.
3.3. При использовании укладываемого слоя для движения построечного транспорта грузоподъемностью до 7 т его минимальная толщина должна быть 14 см, а для движения автомобилей грузоподъемностью 7-12т — 16см (слой из материала марки 40) и 18 см (при меньших марках). Если движение построечного транспорта не предусмотрено, то минимальная толщина слоя должна быть не менее 10 см.
Наименьшая конструктивная толщина основания должна превышать размер наиболее крупных зерен укладываемого материала в 1,5 раза.
3.4. При уплотнении слоя гладковальцовыми катками его максимальная толщина, должна быть 18 см, при уплотнении катками на пневматических шинах — 25 см.
3.5. Основание дорожной одежды следует устраивать шире покрытия на 0,5 м с каждой стороны для цементобетонных покрытий, устраиваемых комплектом машин, передвигающимся по рельс-формам. При устройстве бетонного покрытия комплектом со скользящими формами основание должно иметь ширину 9,6 м. Для покрытий других типов основание должно быть шире с каждой стороны на 0.3 м или на ширину укрепленных полос.
Рис. 1. Принципиальные схемы конструкций дорожных одежд нежесткого типа с основаниями из обработанных материалов: — асфальтобетон мелкозернистый; — асфальтобетон крупнозернистый; — черный щебень; — обработанные материалы
Рис. 2. Принципиальные схемы конструкций дорожных одежд с монолитными цементобетонными конструкциями: — монолитные цементобетонные покрытия; — песок, обработанный битумом ; — обработанные материалы (основание); — песок (подстилающий слой)
Рис. 3. Принципиальные схемы конструкций дорожных одежд со сборными бетонными покрытиями: — сборные плиты из бетона марки 300; — сухая песчано-цементная смесь марки 60 (выравнивающий слой); — обработанные материалы марки 40 (основание)
3.6. Поверхность слоя может быть с одно- или двускатным профилем в соответствии с пп. 3.15-3.19 СНиП II -Д.5-72.
3.7. В основаниях из каменных материалов, обработанных неорганическими вяжущими, продольные и поперечные швы сжатия и расширения не устраивают.
3.8. При проектировании дорожных одежд рекомендуется использовать принципиальные решения типовых конструкций, приведенные на рис.1- 3.
3.9. .Оптимальную конструкцию основания следует назначать на основе технико-экономического обоснования с учетом стоимости каменного материала и вяжущего и их количества в смеси, что, в свою очередь, определяет марку обработанного материала и толщину основания.
4 ТРЕБОВАНИЯ К МАТЕРИАЛАМ ДЛЯ ОСНОВАНИЙ И ПОКРЫТИЙ ИЗ КАМЕННЫХ МАТЕРИАЛОВ. ОБРАБОТАННЫХ НЕОРГАНИЧЕСКИМИ ВЯЖУЩИМИ
Обработанные материалы
4.1. Основными расчетными характеристиками слоев из обработанных материалов (при расчете на воздействие подвижной нагрузки) являются модуль упругости и предел прочности на растяжение при изгибе. Значения характеристик в возрасте 28(90) сут в зависимости от марок материала, определяемых пределом прочности при сжатии, приведены в табл. 1.
4.2. Основания под цементобетонные покрытия рекомендуется устраивать из обработанных материалов марки не ниже 40
4.3. Марка обработанного материала для нежестких покрытий автомобильных дорог IV и V категорий (с обязательным устройством слоев износа) должна быть не менее 60, для оснований дорог I — III категорий — не менее 40, для оснований дорог IV — V категорий — не менее 20.
Таблица 1
Марка обработанного материала
Предел прочности при изгибе, МПа, не менее
Модуль упругости, МПа, не менее
расчётный по ВСН 46-72
Примечание. Характеристики материалов, обработанных медленнотвердеющими вяжущими, допускается определять в возрасте 90 сут.
Таблица 2
Марка по морозостойкости обработанного материала в конструктивном слое дорожной одежды
Верхний слой основания
Нижний слой основания
Примечание. Суровые климатические условия характеризуются среднемесячной температурой наиболее холодного месяца в году ниже минус 15°С, умеренные — от минус 5 до минус 15°С, мягкие — до минус 5°С.
4.4. Марка обработанного материала, применяемого для устройства обочин на дорогах I и II категорий, должна быть не ниже 40, на дорогах III — V категорий не ниже 20 (устройство слоя износа обязательно).
4.5. Морозостойкость обработанных материалов в зависимости от их места расположения в конструкции дорожной одежды, категории дороги и климатических условий должна соответствовать требованиям табл. 2.
Каменные материалы и пески
4.6. Качество щебня, гравия и песка для обработанных материалов следует характеризовать:
маркой по дробимости в цилиндре и истираемости в полочном барабане;
маркой по морозостойкости.
4.7. Щебень из естественного камня, щебень шлаковый, щебень из гравия, гравий, туф, шлаковая пемза, а также керамзитовый и шунгизитовый гравий и аглопоритовый щебень по прочности и морозостойкости должны удовлетворять требованиям соответствующих ГОСТов.
4.8. Пески природный и искусственный из отходов дробления горных пород, а также песок аглопоритовый, песок керамзитовый и песок из металлургического шлака должны удовлетворять требованиям соответствующих стандартов.
4.9. Зерновой состав каменных материалов и песков согласно ГОСТ 23558-79 должен вписываться в кривые плотных смесей с коэффициентом сбега 0,6-0,8 с учетом дополнений, изложенных в разд. 5 настоящих «Методических рекомендаций».
Допускается применять смеси с прерывистым зерновым составом, входящим в кривые смесей, рекомендуемые ГОСТ 23558-79.
4.10. При технико-экономическом обосновании допускается применять исходный каменный материал и пески, не отвечающие требованиям соответствующего ГОСТа, при условии получения обработанного материала, отвечающего требованиям ГОСТ 23558-79.
Цемент
4.11. Для обработки каменных материалов следует применять пластифицированный и гидрофобный портландцементы, портландцемент и шлакопортландцемент, отвечающие требованиям ГОСТ 10178-76.
Схватывание цемента должно начинаться не ранее чем через 2 ч после его затворения.
Для удлинения сроков схватывания, снижения расхода цемента в смесь при ее приготовлении вводят поверхностно-активные добавки. Ориентировочные расходы СДБ — 0,2-2% массы цемента. Расход добавок следует уточнять при лабораторном подборе.
Шлаковое вяжущее из шлаков черной металлургии без активатора
4.13. Активность (марку вяжущего) следует устанавливать по ГОСТ 3344-83 испытанием на прочность при сжатии образцов из шлаков с оптимальным количеством воды, выдержанных в нормальных условиях в течение 28 сут. Шлаковое вяжущее должно удовлетворять следующим требованиям:
Шлаковое вяжущее №1
Шлаковое вяжущее №2
Марка вяжущего после 28 сут нормального твердения
Удельная поверхность шлака, см 2 /г
Содержание частиц мельче 0,071 мм, %
Предел прочности при сжатии после выдерживания в камере нормального твердения, МПа
Шлаковое вяжущее с добавкой цемента
4.14. Шлаковое вяжущее с добавкой цемента рекомендуется получать путем совместного измельчения шлака и цемента или тщательного смешения подготовленного шлака с цементом. Максимальная крупность не дробленого шлака 5 мм.
Цемент должен иметь марку по прочности не ниже 400 и соответствовать требованиям ГОСТ 10178-76.
4.15. В зависимости от удельной поверхности шлака; и количества цемента можно получать при испытании по ГОСТ 3344-83 шлаковое вяжущее марок 100-300, ориентировочные составы которого приведены в табл. 3.
4.16. Шлаковое вяжущее с добавкой цемента должно отвечать требованиям табл. 4.
Таблица 3
Количество частиц мельче 0,71 мм, %
Удельная поверхность, см 2 /г
Содержание компонентов, %, для получения вяжущего марки
+цемент марки 400
+цемент марки 400
+цемент марки 400
Таблица 4
Марка вяжущего после 28 сут.
Предел прочности при сжатии вяжущего, МПа, после выдерживания в камере нормального, твердения, сут.
Шлаковое вяжущее с добавкой извести
4.17. Шлаковое вяжущее с добавкой извести можно получать совместным измельчением воздушной или гидравлической извести со шлаком или тщательным смешением подготовленного шлака с известью.
Известь должна соответствовать требованиям ГОСТ 9179-77.
4.18. В зависимости от удельной поверхности шлака и количества извести при испытании по ГОСТ 3344-83 можно получать шлаковое вяжущее марок 50-200, ориентировочные составы которого представлены в табл. 5.
Таблица 5
Количество частиц мельче 0,071 мм, %
Удельная поверхность шлака, см 2 /г
Содержание компонентов, %, для получения вяжущего марки
Примечание. Максимальная крупность недробленого шлака 5 мм.
4.19. Шлаковое вяжущее с добавкой извести должно удовлетворять требованиям табл. 6.
Таблица 6
Марка вяжущего после 28 сут.
Предел прочности при сжатии вяжущего, МПа, не менее, после выдерживания в камере нормального твердения, сут.
Шлакощелочное вяжущее
4.20. Для приготовления шлакощелочного вяжущего рекомендуется применять гранулированные доменные шлаки и активатор — содощелочной плав.
Гранулированный доменный шлак должен отвечать требованиям ГОСТ 3476-74 и иметь удельную поверхность не менее 3000 см 2 /г.
Содощелочной плав (отход капролактамового производства), содержащий 95-97% углекислого натрия Na 2 CO 3 и 2-4% гидрата окиси натрия NaOH 1 , должен иметь следующий химический состав:
Н2 O гигроскопическая
Содощелочной плав следует предварительно измельчать и растворять в оптимально подобранном количестве подогретой до 40-50°С воды. Плотность раствора содощелочного плава измеряют ареометром с точностью до 0,01 г/см 3 .
Шлакощелочное вяжущее является медленнотвердеющим. Активность вяжущего после 360 сут. хранения возрастает на 40-50%.
Шлакосиликатное вяжущее
4.22. Для приготовления шлакосиликатного вяжущего рекомендуется использовать измельченные фосфорные гранулированные шлаки и жидкое стекло.
Фосфорный гранулированный шлак можно применять как заранее заготовленный, так и непосредственно после грануляции. Активность недробленого шлака практически не изменяется длительное время (до двух лет).
Химический состав этих шлаков должен быть следующим:
Жидкое стекло должно иметь кремнеземистый модуль в пределах 1,7-1,8 и плотность в пределах 1,15-1,25 г/см 3 .
Жидкое стекло требуемого модуля можно получить двумя способами (в зависимости от наличия исходных материалов): путем автоклавного растворения силиката натрия (силикат глыбы) по ГОСТ 13079-81 с добавкой соответствующего количества едкого натра по ГОСТ 2263-79 и путем добавки едкого натра в высокомодульное стекло ( ГОСТ 13078-81).
4.23. В зависимости от количества жидкого стекла, добавляемого в шлак (удельная поверхность 3000 см 2 /г, частиц мельче 0,071 мм 90%), можно получить по ГОСТ 3344-83 вяжущее марок 50-300, ориентировочные составы которого приведены в табл. 7.
Таблица 7
Марка получаемого вяжущего.
Содержание в вяжущем, %
Шлаковое вяжущее на основе фосфорных гранулированных шлаков и цементной пыли
4.24. При производстве шлакового вяжущего на основе фосфорного гранулированного шлака в качестве активатора можно применять цементную пыль вторичного улавливания, которая относится к среднещелочным веществам. Химический состав пыли должен быть следующим:
Потери при прокаливании
4.25. Фосфорный гранулированный шлак должен соответствовать требованиям п.4.22.
Цементная пыль должна полностью проходить через сито с отверстиями 0,315 мм. В ней не должно быть комков и посторонних примесей.
Максимальная добавка цементной пыли не должна превышать 10-12% массы шлака.
4.26. Марку вяжущего (активность) следует определять по ГОСТ 3344-83.
Таблица 8
Марка получаемого вяжущего
Содержание в вяжущем, %
Золошлаковое вяжущее на основе топливных шлаков, зол и золошлаковых смесей с добавкой цемента или извести
4.27. Золы уноса или золошлаковые смеси, применяемые в качестве самостоятельного вяжущего пли активного компонента смешанного вяжущего, должны отвечать требованиям ГОСТ 23558-79.
4.28. Вяжущее на основе неактивных топливных шлаков и зол с удельной поверхностью 3500-4000 см 2 /г должно содержать 75-95% шлака (золы) и 25-5% портландцемента или 85-95% шлака (золы) и 15-5% извести по массе и иметь марку не ниже 100, определяемую по ГОСТ 310.1-76 — 310.3-76, ГОСТ 310.4-81.
При применении активных зол для получения вяжущего требуемой марки введение портландцемента или извести не обязательно.
Вода и ПАВ
4.29. Для приготовления смесей из каменных материалов, обработанных неорганическими вяжущими, а также для ухода за основанием следует применять питьевую воду без предварительного анализа.
Минерализованную природную воду из соленых озер, заливов и водоемов можно применять для приготовления и поливки смесей, если она имеет следующий химический состав:
Содержание ионов SO 4
Водородный показатель рН
Использование промышленных, сточных и болотных вод для приготовления и поливки смесей без проверки не допускается.
4.30. Для снижения расхода цемента и удлинения сроков схватывания обработанной смеси в нее рекомендуется вводить сульфитно-дрожжевую бражку (СДБ) в количестве 0,2-2% массы цемента.
СДБ должна отвечать требованиям ОСТ 81-77-74 или ТУ 81-04-225-73 Минбумпрома.
Оптимальное количество добавки СДБ устанавливается экспериментально при подборе состава материала.
5. ПОДБОР СОСТАВОВ СМЕСЕЙ
5.1. Подобранные составы смесей должны обеспечивать проектные марки обработанного материала по прочности и морозостойкости ( ГОСТ 23558-79).
5.2. При подборе составов смеси с требуемыми параметрами необходимо определить:
зерновой состав каменных материалов, соответствующий кривым плотных смесей и обеспечивающий максимальную плотность обработанных материалов;
оптимальное количество воды в смеси с заданным количеством вяжущего для получения максимальной плотности смеси выбранных каменных материалов и вяжущих;
оптимальное количество и качество вяжущего в смеси, обеспечивающие заданную прочность и морозостойкость.
Ориентировочное определение количества вяжущих в смеси
5.3. При подборе смесей из каменных материалов оптимального зернового состава ( ГОСТ 23558-79) ориентировочное количество цемента назначают по табл. 9.
Таблица 9
Расход цемента, % массы смеси, для получения обработанного материала марки
Известняковый и шлаковый щебень
Песчано-гравийная смесь и легкие искусственные каменные материалы
Примечание. Расход приведен для цемента марки 400. При применении цемента марки 300 приведенные значения надо умножить на коэффициент 1,2.
5.4. При приготовлении шлакоминеральных материалов со шлаковым вяжущим без активатора, которое медленно твердеет, в качестве заполнителя рекомендуется использовать известняковый щебень и отходы его дробления с тем, чтобы до омоноличивания материала несущую способность основания обеспечивал каркас каменных материалов.
5.5. Ориентировочный расход шлакового вяжущего из шлаков черной металлургии без активаторов для получения шлакоминерального материала по ГОСТ 23558-79 из песчано-гравийной смеси различных марок после 180 сут. хранения приведен в табл. 10.
Таблица 10
Номер шлакового вяжущего (п.4.13)
Расход шлакового вяжущего, % массы смеси, для получения обработанного материала марки
После 360 сут. хранения прочность обработанного материала увеличивается в 2 раза, а после 90 сут. уменьшается в 2 раза по сравнению с прочностью в возрасте 180 сут.
При обработке известняков расход вяжущего, указанный в табл. 10, уменьшают на 10-20%, а при обработке природных кварцевых песков увеличивают на 10-20%.
5.6. Морозостойкость материалов, обработанных шлаковым вяжущим без активаторов, рекомендуется определять после 180 сут. Смеси в возрасте 180 сут, содержащие 10-20% шлакового вяжущего с удильной поверхностью 1000-2000 см 2 /г, выдерживают 15-25 циклов попеременного замораживания-оттаивания при коэффициенте морозостойкости 0,8-0,9. В возрасте 360 сут. смеси, содержащие 10-20% шлакового вяжущего с удельной поверхностью 2000-3000 см 2 /г, выдерживают 50 циклов попеременного замораживания-оттаивания.
Таблица 11
Расход вяжущего, % массы смеси, для получения обработанного материала марки
по ГОСТ 310.1-76- 310.3-76, 310.4-81
Шлак с удельной поверхностью 100 см 2 /г
Цемент марки 400
Шлак с удельной поверхностью 3000 см 2 /г
Цемент марки 400
Примечание. При использовании шлакового вяжущего (по ГОСТ 3344-83 ) марки 100 его количество надо увеличить на 10-20%, марки 300 — уменьшить на 10-20%.
При обработке известняков расход вяжущего, указанный в табл. 11, уменьшают на 10-20%, а при обработке песков увеличивают на 10-20%.
Прочность шлакоминеральных материалов в возрасте 360 сут. выше, чем в возрасте 28 сут, в 1,5-1,6 раза.
5.8. Морозостойкость шлакоминеральных материалов с активатором-цементом следует определять в возрасте 28 сут. Шлакоминеральные материалы с прочностью 1-10 МПа выдерживают 10-50 циклов замораживания-оттаивания, коэффициент морозостойкости при этом 0,7-0,9.
5.9. Прочность шлакоминеральных материалов можно увеличивать также введением в смесь в качестве активатора извести до 5% массы всей смеси. Ориентировочные составы вяжущего (шлака и извести) для получения обработанных материалов по ГОСТ 23558-79 с заполнителем — песчано-гравийной смесью в возрасте 28 сут. приведены в табл. 12.
Таблица 12
Марка вяжущего по ГОСТ 3344-83
Расход вяжущего, % массы смеси, для получения обработанного материала марки
Шлак с удельной поверхностью 100 см 2 /г (частицы мельче 0,071 мм отсутствуют)
Шлак с удельной поверхностью 1000 см 2 /г (30% частиц мельче 0,071 мм)
Шлак с удельной поверхностью 3000 см 2 /г 90% частиц мельче 0,071 мм)
Примечание. Над чертой — расход шлака, под чертой — извести.
При обработке известняков расход вяжущего, указанный в табл. 12, уменьшают на 10-20%, а при обработке; песков увеличивают на 10-20%
Прочность шлакоминеральных материалов в возрасте 360 сут. увеличивается в 1,5-2 раза по сравнению с нормируемой в возрасте 28 сут.
5.10. Шлакоминеральные материалы с активатором-известью могут выдерживать не более 10 циклов замораживания-оттаивания, т.е. иметь максимальную марку по морозостойкости 10.
5.11. Шлакоминеральные материалы на шлаковом вяжущем с активатором-известью, имеющие невысокую прочность и морозостойкость, можно применять лишь в нижних слоях основания в районах с мягким климатом.
5.12. Обработкой каменных материалов шлакощелочным вяжущим (измельченный металлургический шлак с активатором-содощелочным плавом; можно получить материалы марок по прочности 20-100, выдерживающие до 25 циклов замораживания-оттаивания.
5.13. Содощелочной плав должен вводиться в смесь вместе с водой затворения. Ориентировочное количество воды, обеспечивающее оптимальную плотность смеси, составляет 11-12% массы смеси.
Таблица 13
Марка вяжущего по ГОСТ 3344-83
Расход вяжущего, % массы смеси, для получения обработанного материала марки
Содощелочной плав (5)
Содощелочной плав (7)
Содощелочной плав (9)
При обработке песчано-гравийной смеси расход вяжущего, приведенный в табл. 13, увеличивают на 10-20%, при обработке песка — на 15-30%.
5.15. В зависимости от марки по прочности шлако-силикатоминеральных материалов ( ГОСТ 23558-79) плотность жидкого стекла следует назначать по табл. 14, при этом кремнеземистый модуль жидкого стекла должен находиться в пределах 1,7-1,8, а расход шлака с удельной поверхностью 3000 см 2 /г (90% частиц мельче 0,071 мм) составлять 15-20% массы смеси.
Таблица 14
Марка по прочности шлако-силикатного материала
Плотность жидкого стекла, г/см 3
5.16. При обработке каменных материалов шлаковым вяжущим на основе фосфорных гранулированных шлаков с добавкой цементной пыли марки 400 по ГОСТ 3344-83 в количестве 5-20% можно получить материалы марок 20-75 по ГОСТ 23558-79.
Таблица 15
Марка вяжущего по ГОСТ 310.1-76- 310.3-76, 310.4-81
Расход вяжущего, % массы смеси, для получения обработанного материала марок
Цемент марки 400
Цемент марки 400
Примечание. Активную золу допускается использовать без добавок цемента при получении обработанных материалов, отвечающих требованиям ГОСТ 23558 -79.
5.17. Обработкой каменных материалов золошлаковым вяжущим (топливные шлаки, золы, золошлаковые смеси с добавкой цемента) можно получить в возрасте 28 сут. материалы марок 20-75 по ГОСТ 23558-79. Ориентировочные расходы вяжущего при обработке песчано-гравийной смеси приведены в табл. 15.
Содержание воды
5.18. Количество воды в смесях должно быть таким, чтобы обеспечивалась их максимальная плотность. Уменьшение или увеличение влажности смеси на 1-2% оптимальной приводит к снижению прочности обработанного материала на 10-30%. Компенсация потери прочности в этом случае возможна лишь увеличением количества вяжущего в смеси на 10-20%.
5.19. Ориентировочный расход воды следует назначать сверх 100% каменных материалов и вяжущих. В смеси с цементом вводят 5-8% воды, с медленнотвердеющим вяжущим — 8-10%. При обработке легких искусственных каменных материалов ориентировочный расход воды составляет 8-11% массы сухой смеси. Для смесей, содержащих 10-25% пылевато-глинистых частиц, количество воды увеличивают на 2-3%.
Перед производственным изготовлением смесей оптимальный расход воды необходимо уточнять на образцах из конкретных материалов.
Влияние характеристик каменных материалов на прочность обработанных материалов
5.20. Для исключения перерасхода вяжущего рекомендуется ( ГОСТ 23558-79) применять каменные материалы, зерновые составы которых находятся внутри граничных кривых плотных смесей с коэффициентом сбега 0,6-0,8 ( рис. 4).
5.21. Для сокращения расхода вяжущего на 2-5% целесообразно применять каменные материалы и пески с непрерывным зерновым составом, соответствующим кривым плотных смесей, с коэффициентом сбега 0,65-0,75 ( рис. 5).
Рис. 4. Непрерывный зерновой состав щебеночно (гравийно) — песчаной смеси с коэффициентом сбега 0,6-0,8
Для уменьшения расхода вяжущего можно также применять:
каменный материал с прерывистым в песчаной части зерновым составом, ограниченным кривыми плотных смесей с коэффициентом сбега 0,6-0,7 ( рис. 6), вместо каменного материала, имеющего непрерывный зерновой состав с коэффициентом сбега 0,8 или 0,8;
каменный материал с прерывистым в области частиц крупнее 5 мм зерновым составом (рис. 7, 8) вместо каменного материала с непрерывным зерновым составом с коэффициентом сбега 0,6 или 0,8.
Рис. 5. Непрерывный зерновой состав щебеночно (гравийно)-песчаной смеси с коэффициентом сбега 0,65-0,75
Рис. 6. Зерновой состав щебеночно (гравийно)-песчаной смеси, прерывистый в песчаной части, с коэффициентом сбега 0,6-0,7
Рис. 7. Зерновой состав щебеночно (гравийно)-песчаной смеси, прерывистый в щебеночной части, с коэффициентом сбега .0,7-0,8
Рис. 8. Зерновой состав щебеночно( гравнйно)-песчаной смеси, прерывистый в песчаной части, с коэффициентом сбега 0,6-0,7
Уменьшение расхода цемента возможно также при применении каменных, материалов полупрерывистой гранулометрии в зоне оптимальных кривых с коэффициентом сбега 0,6-0,8 ( рис. 9).
Рис. 9. Полупрерывистый зерновой состав щебеночно (гравийно)-песчаной смеси
Зерновой состав малопрочных и легких каменных материалов должен соответствовать кривым плотных смесей с коэффициентом сбега 0,6-0,7.
5.22. Содержание частиц мельче 0,071 мм не должно превышать 8-10%. Уменьшение до 3-5% или увеличение до 20% приводит к снижению прочности обработанного материала на 15-30% или требует повышения расхода вяжущего на 20-40%.
Содержание в крупнозернистых и песчаных смесях частиц мельче 0,14 мм из известняка можно увеличить до 10-15%.
5.23. Изменение максимальной крупности каменного материала в пределах 5-20 мм незначительно влияет на прочность обработанного материала.
Песчаные смеси на природных песках требуют большего расхода вяжущего, чем .смеси на основе гравия или щебня.
В смесях не должно быть включений крупнее 1,25 Dmax , если максимальный размер зерен в смеси более 40 мм, и 1,5 Dmax , если максимальный размер зерен менее 40 мм.
Максимальная крупность каменных материалов, прочность которых менее 30 МПа (300 кгс/см 2 ), — 20 мм.
5.24. Марка легкого искусственного заполнителя должна быть не ниже П35. Снижение марки заполнителя с П35 до П25 приводит к уменьшению марки обработанного материала с 40 до 20 при одинаковом расходе вяжущего.
5.26. Содержание в смесях более 64% легкого заполнителя при 36% природного песка нецелесообразно, поскольку прочность обработанных материалов снижается из-за малой прочности зерен легкого заполнителя по сравнению с прочностью природных зерен.
5.27. Целесообразно применять щебень или щебень из гравия вместо гравия. Это позволяет уменьшить расход вяжущего в обработанном материале на 0,5-1% массы смеси.
В гравийные смеси, с целью повысить прочность и устойчивость основания в процессе их формирования и обеспечить сдвигоустойчивость при движении построечного транспорта, рекомендуется добавлять щебень или щебень из гравия: при строительстве оснований на дорогах I категории — 30%, II категории — 25%, III категории — 20%.
5.28. Для приготовления обработанных материалов согласно ГОСТ 23558-79 можно использовать каменные материалы различного петрографического состава — известняк, шлак, гранит и др.
Применение известнякового щебня или щебня из шлаков черной металлургии позволяет уменьшить расход вяжущего на 1-2%.
5.29. Целесообразно применять каменный материал одной горной породы более высоких марок, что позволяет снизить расход вяжущего на 0,5-1% массы смеси,
Порядок подбора состава смесей
5.30. Перед подбором составов смесей все используемые материалы следует испытать и установить соответствие их свойств требованиям ГОСТов (прил. 1 и 2 к настоящим «Методическим рекомендациям»).
5.31. Для определения общего зернового состава обработанной смеси в соответствии с кривыми плотных смесей необходимо определить зерновые составы ее составляющих и подобрать процентное соотношение каждого компонента, чтобы сумма соответствовала кривым плотных смесей ( прил. 3 к настоящим «Методическим рекомендациям»).
5.32. Оптимальную влажность и максимальную плотность материала определяют экспериментально (прил. 4, 5 к настоящим «Методическим рекомендациям»).
5.33. Необходимое количество вяжущего, обеспечивающее требуемые свойства обработанных материалов, определяют экспериментально, для чего изготавливают и испытывают образцы по методикам, приведенным в прил. 6-14 к настоящим «Методическим рекомендациям», обрабатывают экспериментальные данные по прил. 15.
5.34. В результате подбора определяют расход материалов для приготовления 1 м 3 плотной смеси на производстве ( прил. 7 к настоящим «Методическим рекомендациям»).
Особенности подбора составов смесей обработанных материалов для зимнего строительства
5.35. Порядок подбора составов смесей обработанных материалов для строительства оснований в зимних условиях аналогичен порядку подбора в обычных условиях со следующими, дополнениями.
При проектировании составов смесей на основе цемента следует определять, количество добавляемых хлористых солей, которые должны обеспечить набор 70 % проектной прочности обработанного материала до его замерзания.
При проектировании составов смесей на основе шлаковых и зольных вяжущих следует определять количество добавляемых хлористых солей, которые должны обеспечить уплотнение смеси в основании. Этот материал допускается замораживать сразу после уплотнения. Набор прочности обработанного материала будет продолжаться после его оттаивания весной.
5.36. При проектировании составов смесей, приготавливаемых с подогревом воды и при необходимости щебня (гравия) и песка, назначают температуру подогрева, обеспечивающую требуемый технологический режим укладки и твердения.
5.37. Количество воды в смеси, учитывая влажность заполнителей и пластифицирующие свойства солевых добавок, необходимо уменьшить по сравнению с расчетным на 8-10%.
5.38. Ориентировочное количество вводимых в смесь на основе цемента хлористых солей в зависимости от температуры твердения следует принимать по табл. 16.
Рассчитывают необходимое количество солей в соответствии с прил. 16 к настоящим «Методическим рекомендациям».
Таблица 16
Расчетная температура твердения t ,º C
Количество солей, % массы воды, содержащихся в смеси
3% СаС l 2 или 5% N аС l , или 2% СаС l 2 + 3% Nacl
3% СаС l 2 + 4% Nacl
3% СаС l 2 + 7% Nacl
6% СаС l 2 + 9% Nacl
Примечание. За расчетную температуру твердения следует принимать самую низкую температуру воздуха в день укладки смеси или среднесуточную температуру за 25-30 сут. со дня укладки основания по долгосрочному прогнозу, если она ниже температуры в день укладки.
5.39. Содержание безводных солей в растворе, а также температуру их замерзания следует контролировать по плотности раствора в соответствии с прил. 17 и 18 к настоящим «Методическим рекомендациям».
5.40. Достижение 70%-ной проектной прочности цементно-минерального материала с противоморозными добавками — хлористыми солями до замерзания рекомендуется определять по табл. 17.
Таблица 17
Температура твердения основания t ºС
Прочность обработанного материала, % R 28 в возрасте, сут., не менее
5.41. При строительстве оснований из смесей на основе шлаковых и зольных вяжущих количество добавок солей устанавливается только с учетом обеспечения уплотнения, т.е. исходя из необходимости предохранить смесь от замерзания до завершения её уплотнения в основаниях. При этом целесообразно применять только хлористый натрий, количество которого следует назначать по общему процентному содержанию солей согласно табл. 16.
5.42. Температуру смеси, приготавливаемой без солевых добавок на подогретых воде и при необходимости заполнителях, рекомендуется назначать 35-40°С.
Наибольшая допустимая температура подаваемых в смеситель воды -80°С, заполнителя -50°С. Температуру нагрева воды и заполнителей, обеспечивающую получение смеси с температурой 35-40°С, устанавливают опытным путем в начале производства работ.
6. ТЕХНОЛОГИЯ И ОРГАНИЗАЦИЯ СТРОИТЕЛЬСТВА ОСНОВАНИЙ И ПОКРЫТИЙ
Организация строительства
6.1. Строительство дорожной одежды, в том числе ее основания, следует осуществлять на основе предварительно разработанного строительной организацией проекта производства работ (ППР) в соответствии с требованиями «Инструкции по разработке проектов организации строительства и проектов производства работ» СН 47-74. Госстроя (М.: Стройиздат, 1975).
6.2. Производительность и количество смесительных установок, укладочных и уплотняющих машин следует определять исходя из требуемого темпа устройства оснований с учетом длительности строительного сезона в данной дорожно-климатической зоне.
При поставке строительных материалов до начала строительства должны быть заблаговременно выбраны площадки для складирования и проведены работы по их оборудованию с целью предотвратить загрязнение и потери материала во время хранения.
Количество транспортных средств должно постоянно корректироваться в соответствии с дальностью возки смеси с учетом полной загрузки смесительных установок и укладочных машин.
Для более четкой работы автомобильного транспорта и ведущей машины технологического потока необходимо составить график работы транспорта в течение смены и всего строительного сезона в зависимости от расстояния возки с учетом передислокации смесительных установок на предусмотренные ППР места стоянок.
6.3. Необходимое количество проходов уплотняющих машин по одному следу должно быть определено в процессе опытного уплотнения участка с составлением акта.
6.4. Перед началом работ по устройству оснований (покрытий) следует проверить наличие подъездов для автомобильного транспорта для подачи смеси на место укладки, готовность к работе укладчиков и уплотняющих машин, а также исправность вспомогательного инструмента. Перед началом укладки смеси необходимо выполнить разбивку, обеспечивающую соблюдение проектной ширины и поперечных уклонов конструкции.
6.5. Устраивать основания (покрытия) из обработанных материалов можно только после приемки готового земляного полотна и нижележащего слоя основания на участке длиной не менее 500 м. При этом особое внимание следует обращать на соответствие плотности, толщины нижележащих слоев, ровности и уклонов земляного полотна или нижележащего слоя основания действующим СНиПам.
6.6. Строительство основания (покрытия) рекомендуется начинать от смесительной установки, используя для транспортирования смеси готовые участки, по которым разрешено открывать движение.
6.7. Работы по строительству оснований (покрытий) следует вести, как правило, в две смены, а в третью смену проводить профилактический ремонт и техническое обслуживание всех машин, установок, агрегатов и систем автоматического управления.
6.8. При определении стоимости строительства основания (покрытия) необходимо учитывать темп строительства, объем и стоимость используемых материалов, производительность и стоимость машин, количество рабочих, их разряды и тарифную ставку, расход топлива дорожными машинами и автомобильным транспортом.
6.9. Следует иметь в виду, что стоимость приготовления смеси однотипным смесителем, энерго- и трудозатраты на ее приготовление уменьшаются на 20-40% при увеличении темпов строительства со 100 до 500 м в смену.
При темпе строительства 100 м в смену рекомендуется использовать смесительную установку производительностью 30 м 3 /ч, при темпе 250 м — производительностью 60 м 3 /ч, при темпе 500 м — 120 м 3 /ч.
6.10. Стоимость транспортирования смеси самосвалами одной грузоподъемности можно уменьшить на 40-60%, сократив дальность возки с 30 до 10 км.
Чтобы уменьшить на 40-60% стоимость транспортирования смеси, энерго- и трудозатраты на ее перевозку при одинаковом расстоянии транспортирования, рекомендуется повысить грузоподъемность применяемых самосвалов с 4,5 до 12 т.
6.11. Уменьшить энерго- и трудозатраты, стоимость линейных работ по строительству 1 км основания (покрытия) в 1,5-2,5 раза можно, увеличив темп строительства со 100 до 500 м в смену.
Приготовление местных вяжущих
6.12. Измельчать шлаки рекомендуется в шаровой мельнице или вибромельнице, предварительно высушив их в сушильном барабане. Чтобы получить комплексное вяжущее (активатор + шлак), его компоненты одновременно в заданных соотношениях подают в мельницу, где шлак измельчается и перемешивается с активатором. Готовое вяжущее поступает на силосный склад.
Технология получения шлакового вяжущего приведена на рис. 10.
6.13. Производительность мельниц зависит от требуемой тонкости измельчения шлака. С увеличением требуемой удельной поверхности шлака производительность мельниц уменьшается (табл. 18).
Источник: gosthelp.ru
Естественные и искусственные основания
Естественные основания. К естественных основаниям предъявляются следующие требования:
— грунт основания должен обладать небольшой и равномерной сжимаемостью, обеспечивающей допустимую и равномерную осадку здания, и иметь достаточную несущую способность;
— грунт основания либо не должен подвергаться выщелачиванию грунтовыми водами и пучению (увеличению в объеме) при промерзании, либо подошва фундаментов на пучинистых грунтах должна располагаться ниже уровня промерзания грунта;
— грунт основания должен обладать неподвижностью и иметь достаточную мощность слоя.
Несущая способность грунта основания определяется нагрузкой, при которой величина осадки грунта и ее равномерность не превосходят пределов, установленных для данного вида зданий в Строительных нормах и правилах. Величина этой нагрузки, называемая нормативным давлением на грунты основания, выраженная в кг на 1 см2, устанавливается расчетом или определяется по нормативам, приведенным в строительных нормах и правилах.
На механические свойства грунтов, их физическое состояние и структуру существенное влияние имеют грунтовые воды, которые в большинстве случаев уменьшают величину несущей способности грунта. Грунтовые воды также отрицательно влияют на грунты, которые содержат легко растворимые ‘вещества (например, гипс), так как в этом случае может произойти выщелачивание из грунта этих веществ и, как результат, увеличение пористости грунта и возрастание осадки при тех же нагрузках.
Наличие влаги в грунте, если он способен удерживать в своих порах воду, приводит к увеличению объема грунта при замерзании и к осадкам грунта под нагрузкой при оттаивании. Увеличение объема такого грунта при замерзании связано с увеличением объема воды при превращении ее в лед. Пучение при замерзании и осадка при оттаивании грунта могут вызвать неравномерную осадку здания я появление в нем трещин.
Используемые в качестве естественных оснований грунты подразделяются на скальные, крупнообломочные, песчаные и глинистые.
Скальные грунты — это изверженные, метаморфические и осадочные породы с жесткой сзязью между зернами (спаянные и сцементированные). Они залегают в виде сплошного массива или трещиноватого слоя, образующего подобие сухой кладки.
Крупнообломочными называются несцементированные грунты, содержащие более 50% по весу обломков кристаллических или осадочных пород с размерами частиц более 2 мм. К крупнообломочным относятся щебенистый, галечниковый, дресвяный и гравийный грунты.
Щебенистый грунт состоит из неокатанных обломков горных пород, в котором вес частиц крупнее 10мм составляет более 50%. При преобладании в таком грунте окатанных частиц его называют галечниковым. Отдельные камни размером более 200 мм называют валунами.
Дресвяный грунт состоит из острореберных обломков выветрившихся пород, в котором вес частиц крупнее 2 мм составляет более 50%. При преобладании в таких грунтах окатанных частиц его называют гравийным.
Песчаные грунты состоят из отдельных частиц (зерен) и в зависимости от зернового состава подразделяются на: песок гравелистый, в котором вес частиц крупнее 2 мм составляет более 25%; песок крупный, в котором вес частиц крупнее 0,5 мм составляет более 50%; песок средней крупности, в котором вес частиц крупнее 0,25 мм составляет более 50%; песок мелкий, в котором вес частиц крупнее 0,1 мм составляет более 75%; песок пылеватый, в котором вес частиц крупнее 0,1 мм составляет менее 75%.
Гравелистые, крупные и средней крупности пески имеют значительную водопроницаемость и поэтому не пучатся при замерзании.
Глинистые грунты состоят из глины, песка и пылева- тых частиц (размером от 0,05 до 0,005 мм) и подразделяются на глины, суглинки и супеси. Кроме того, глинистые грунты, образовавшиеся как структурный осадок в воде при наличии микробиологических процессов и обладающие в природном сложении определенной влажностью, называются илами.
Глины состоят из очень мелких частиц — крупностью менее 0,005 мм, имеющих в большинстве чешуйчатую форму, количество которых более 30%- В отличие от песчаных грунтов глины имеют тонкие капилляры. По этим капиллярам глина всасывает воду, которая заполняет все поры и образует тонкие водоколло- идные пленки, обволакивающие частицы скелета. Благодаря этому создается взаимное притяжение частиц, обусловливающее связность глинистого грунта.
Несущая способность глинистого грунта в большой степени зависит от влажности. Несущая способность сухих глин довольно высокая. При повышенной влажности глин она уменьшается.
При содержании в глинистых грунтах глины от 10 до 30% грунт называют суглинком, а при содержании глины от 3 до 10% — супесью. По своим свойствам суглинки и супеси занимают промежуточное положение между песком и глиной.
Супеси и мелкозернистые пески, будучи разжижены водой, становятся настолько подвижными, что текут, как жидкость, и носят название плывунов. Вследствие подвижности плывунов и незначительной их несущей способности возведение на них зданий создает значительные затруднения.
Среди глинистых имеются грунты (лёссы), которые при замачивании их водой обладают просадочнымп свойствами или набухают. Использование таких грунтов в качестве основании требует применения специальных мер.
Помимо перечисленных видов грунтов, встречаются также грунты с органическими примесями (растительный грунт, торф, болотный грунт и др.) и насыпные грунты. Грунты с органическими примесями в качестве естественных оснований не применяют, так как они неоднородны по своему составу, рыхлы, обладают значительной и неравномерной сжимаемостью.
Насыпные грунты, являющиеся искусственными насыпями, образованными при засыпке оврагов, мест свалок, прудов, побережий рек не только грунтом, но и мусором, содержащим большое количество органических примесей, отходами производства, шлаком и т. п., также неоднородны по составу и по сжимаемости, а плотность их во многом зависит от возраста насыпи. Поэтому возможность использования их в качестве оснований зданий решается в каждом отдельном случае в зависимости от характера трунтов насыпи и от назначения здания.
В результате атмосферных осадков и при наличии различных водоемов (рек, каналов, озер, прудов и др.) в грунтах могут появиться грунтовые воды, если под водопроницаемыми слоями грунта имеется водонепроницаемый слой (водоупор), которым обычно бывают глины.
Наивысшего уровня грунтовые воды обычно достигают в дождливое время года и во время таяния снега, а наименьшего — в засушливые периоды.
В грунтовых водах могут содержаться различные вещества и газы, разрушительно действующие на материал фундаментов и других подземных частей зданий. Грунтовая вода, содержащая эти вредные вещества, называется агрессивной. Наибольшей агрессивностью обладают воды, просачивающиеся через старые свалки, слой торфа и другие органические вещества, а также сточные воды некоторых промышленных предприятий. Степень агрессивности грунтовых воды определяется химическим анализом в лаборатории.
Для проектирования фундаментов зданий необходимо иметь исчерпывающие сведения по напластованию слоев грунта на данном участке и о режиме грунтовых вод. Это осуществляется исследованием грунтов в натуре на площадке будущего строительства. Результаты исследования заносят в отчет, в котором подробно описывают геологическое строение грунтов и физико- химические их свойства, характеристики грунтовых вод и данные об уровне их стояния, возможные колебания этого уровня в период строительства и эксплуатации зданий и степень агрессивности грунтовых вод по данным лабораторного анализа.
Образцы грунтов берут из скважин или шурфов, расположенных на участке предполагаемого строительства, и по ним составляют разрезы (колонки) и геологические профили грунтового массива на участке по характерным направлениям. Несколько геологических профилей дают пространственное представление о геологическом строении участка, предназначенного под строительство, и являются основным исходным материалом для проектирования фундаментов здания.
Если грунты в состоянии своего природного залегания не имеют достаточной несущей способности, чтобы воспринять давление от фундамента, их укрепляют либо проектируют фундаменты глубокого заложения.
Искусственные основания. Для устройства искусственного основания грунт укрепляют следующим способами: заменой слабого грунта более прочным, поверхностным и глубинным уплотнением грунтов, закреплением грунтов различными способами.
Замену слабого грунта более прочным выполняют устройством под подошвами фундаментов гравийных или песчаных подушек.
Поверхностное уплотнение грунтов выполняют различными способами и механизмами в зависимости от необходимой глубины уплотнения, вида их, состояния грунта по влажности. Глинистые грунты на глубину до 50 см уплотняют катками. Несвязные грунты закрепляют на глубину до 1,5 м виброплитами. Поверхностное уплотнение различных грунтов на глубину до 2,5 м осуществляют тяжелыми трамбовочными плитами, подвешиваемыми к стрелам кранов, экскаваторов, трактороь, копров.
Глубинное у плотнение грунтов выполняют в слабых грунтах — устройством грунтовых или песчаных свай, а в песчаных — вибрацией.
Закрепление слабых грунтов выполняют нагнетанием в них различных веществ. Способы нагнетания и состав нагнетаемых веществ зависят от вида и состояния грунтов.
Прочность и устойчивость зданий и сооружений в значительной мере зависят от правильного выбора оснований и конструктивного решения фундаментов. Для проектирования оснований и фундаментов необходимо знать геологическое строение и несущую способность слоя грунта, принятого в качестве основания, глубину его промерзания и режим грунтовых вод.
Основанием называют толщу грунта или скальных пород, расположенных под фундаментом и воспринимающих нагрузку от здания или сооружения.
Если основанием служат грунты в условиях естественного залегания, то их называют естественными основаниями, а грунты, предварительно уплотненные и укрепленные теми или иными способами, — искусственно улучшенными основаниями сооружений.
Правильный выбор прочного, надежного и экономичного основания возможен в результате всестороннего изучения геологических и гидрогеологических условий места строительства. С этой целью на строительной площадке проводят инженерно-геологические изыскания — определяют общее геологическое и гидрогеологическое строение района строительства и детальное Расположение и мощность пластов грунта, их физические и механические свойства, а также положение уровня грунтовых вод на участках, предназначенных для отдельных зданий и сооружений.
Исследования должны обосновать выбор основания будущего здания или сооружения и определить величину расчетного давления.
В качестве естественных и искусственно улучшенных оснований могут служить различные виды грунтов: пески, супеси, суглинки, глины, лессы, мергель, гравий, щебень, скальные породы.
Естественные основания. Все грунты, используемые в качестве естественных оснований, должны иметь необходимую прочность, небольшую и равномерную сжимаемость (деформативность), хорошо сопротивляться действию грунтовых вод, не подвергаться пучению при промерзании, иметь достаточную мощность слоя и обладать неподвижностью.
Грунты оснований под действием нагрузки от здания или сооружения деформируются. Деформацию основания, не сопровождающуюся коренным изменением сложения грунта, называют осадкой, а значительное оседание отдельных пластов грунта с выпиранием грунта из-под подошвы фундамента — просадкой.
Надежным основанием для сооружений являются скальные породы и крупнообломочные грунты, обладающие высокой несущей способностью и малой деформативностью.
Песчаные грунты ввиду малой сжимаемости песка и большой скорости его уплотнения под нагрузкой служат также надежным естественным основанием. При этом чем крупнее зерна и плотнее песчаный грунт, тем меньше осадка под нагрузкой и выше несущая способность.
Глинистые грунты являются связными породами. Они обладают пластичностью, большей пористостью и сжимаемостью, уменьшаются в объеме при высыхании и увеличиваются при увлажнении. Глина сильно поглощает воду и при насыщении становится водонепроницаемой; при замерзании она пучится. Сухая глина обладает большой прочностью и является хорошим основанием; несущая способность пластической и разжиженной глины резко снижается. Суглинки и супеси, относящиеся к глинистым грунтам, представляют собой смесь глины, песка и пылеватых частиц.
Значительное распространение имеют лессовые грунты, которые относятся к группе пылеватых суглинков. Лессовые грунты, обладающие в природном состоянии видимыми порами (макропорами), размеры которых значительно превосходят размеры частиц, составляющих скелет грунта, называют макропористыми грунтами. Эти грунты, содержащие растворимые в воде известь, гипс и другие соли, при увлажнении теряют связность, быстро намокают и при этом уплотняются, образуя просадки. Такие грунты называют проса-дочными. При строительстве на таких грунтах предусматривают специальные меры по их укреплению И защите от увлажнения.
Искусственные основания устраивают тогда, когда грунт обладает слабой несущей способностью и не может быть использован в качестве естественного основания. Такие основания создают путем уплотнения, закрепления, замены слабого грунта грунтом с большей несущей способностью или путем передачи нагрузки на заглубленные слои грунта при помощи специальных инженерных устройств (сваи, опускные колодцы и др.). Искусственное улучшение свойств слабого грунта достигается путем поверхностного или глубинного уплотнения. Поверхностное уплотнение грунта осуществляют катками (на глубину 15—20 см), пневматическими трамбовками или трамбовочными плитами (на глубину до 1,5—2 м) и другими механическими способами.
Глубинное уплотнение слабых грунтов выполняют при помощи грунтовых или песчаных свай, образуемых путем пробивания скважин и заполнения их песком или грунтовым материалом с уплотнением.
Простейшим видом грунтовых искусственных оснований являются песчаные подушки. Слой слабого грунта под будущим фундаментом удаляют и вместо него насыпают песок (с тщательным уплотнением). Подушки можно устраивать также из материала большой несущей способности: гравия, щебня или смеси грунта с гравием или щебнем.
К более сложным способам искусственного улучшения свойств грунтов относят закрепление их различными вяжущими материалами, нагнетаемыми под давлением через инъекторы: цементным молоком (цементация), раствором жидкого стекла и отвердителя (силикатизация), горячим битумом или холодной битумной мастикой (битумизация). Вяжущие материалы после отвердения связывают частицы грунта в прочный камневидный монолит.
Цементации подвергают грунты, представляющие собой крупные и среднезернистые пески; силикатизацию грунта применяют при упрочнении пылеватых песков и лессовых грунтов. Битумизация обломочных грунтов способствует их упрочнению и предотвращению фильтрации грунтовых вод. Лессовидные просадочные грунты и пористые суглинки (неводонасыщенные) можно закреплять термическим способом — обжигом на глубину до 15 м раскаленными газами через пробуренные в грунте скважины диаметром 15—20 см.
Упрочнение слабых грунтов при создании искусственных оснований способствует увеличению их несущей способности до заданной величины.
Несущая способность основания определяется нагрузкой, при которой осадка (сжимаемость) грунта по величине и равномерности соответствует нормам. Нагрузка — расчетное давление на основание — выражается в МПа. Осадка основания зависит не только от нагрузки и степени сжимаемости, но и от формы и размеров подошвы фундамента.
Источник: samstroy.com