300 мм, а также 10d для вязаных каркасов и 12d для сварных каркасов — при МПа; где d — наименьший диаметр сжатых продольных стержней, мм.
6.7.10 Если общее насыщение внецентренно сжатого элемента продольной арматурой превышает 3%, хомуты должны устанавливаться на расстоянии не более 8d и не более 250 мм.
6.7.11 В вязаных каркасах концы хомутов необходимо загибать вокруг стержня продольной арматуры в направлении центра тяжести сечения и заводить их внутрь бетонного ядра не менее чем на 6d хомута, считая от оси продольного стержня.
6.7.12 В изгибаемых и внецентренно сжатых элементах конструкций допускается осуществлять стыкование рабочей арматуры при диаметре стержней до 20 мм — в 7- и 8-балльных зонах внахлестку без сварки, а в зонах 9 баллов — внахлестку без сварки, но с «лапками» или другими анкерными устройствами на концах стержней.
Длина нахлестки должна быть на 30% больше значений, требуемых по действующим нормативным документам на бетонные и железобетонные конструкции (СП 63.13330), с учетом дополнительных требований настоящего свода правил.
Армирование колонн — Поэтапно процесс. Строим дом
Допускается применение для соединений арматуры специальных механических соединений (опрессованных или резьбовых муфт).
При диаметре стержней 20 мм и более соединение стержней и каркасов должно выполняться с помощью специальных механических соединений (опрессованных и резьбовых муфт) или сварки независимо от сейсмичности площадки.
Шаг хомутов в местах стыкования внахлестку без сварки арматуры внецентренно сжатых элементов должен быть не более 8d.
Стыкование арматуры сварными соединениями внахлестку, как правило, не допускается. При стыковании арматуры в малоответственных конструкциях, кроме элементов несущего остова зданий, возможно применение сварных соединений арматуры внахлестку. При этом значение длины сварных швов должно быть на 30% больше значений, требуемых по ГОСТ 14098 для сварного соединения типа С23-Рэ.
В изгибаемых и внецентренно сжатых элементах стыки арматуры внахлестку со сваркой и без сварки следует располагать вне зон максимальных изгибающих моментов.
6.7.13 Несущая способность предварительно напряженных конструкций, определяемая по прочности сечений, должна превышать не менее чем на 25% усилия, воспринимаемые сечениями при образовании трещин.
6.7.14 В предварительно напряженных конструкциях с натяжением арматуры на бетон напрягаемую арматуру, устанавливаемую из расчета по прочности (предельному состоянию первой группы), следует располагать в закрытых каналах, замоноличиваемых бетоном или раствором прочностью не ниже прочности бетона конструкции.
В качестве напрягаемой арматуры, дополнительно устанавливаемой из расчета по предельным состояниям второй группы, допускается использовать арматурные канаты, располагаемые в закрытых трубках без сцепления с бетоном.
6.8 Железобетонные каркасные здания
6.8.1 В каркасных зданиях конструкцией, воспринимающей горизонтальную сейсмическую нагрузку, могут служить: каркас; каркас с заполнением; каркас с вертикальными связями, диафрагмами или ядрами жесткости. В качестве несущих конструкций зданий высотой более 9 этажей следует использовать каркасы с диафрагмами, связями или ядрами жесткости.
Работа арматуры и бетона в монолите
При выборе конструктивных схем предпочтение следует отдавать схемам, в которых зоны пластичности возникают в первую очередь в горизонтальных элементах каркаса (ригелях, перемычках, обвязочных балках и т.п.).
6.8.2 В колоннах рамных каркасов многоэтажных зданий при расчетной сейсмичности 8 и 9 баллов шаг хомутов (кроме требований, изложенных в 6.7.9, 6.7.10) не должен превышать 1/2h, а для рамно-связевых каркасов — не более h, где h — наименьший размер стороны колонн прямоугольного или двутаврового сечения. Диаметр хомутов в этом случае должен быть не менее 8 мм.
6.8.3 В вязаных каркасах концы хомутов необходимо загибать вокруг стержня продольной арматуры и заводить внутрь бетонного ядра не менее чем на 6d хомута, считая от оси продольного стержня. В угловых стержнях угол заведения должен быть 30°-60°.
6.8.4 Элементы сборных колонн многоэтажных каркасных зданий по возможности следует укрупнять на несколько этажей. Стыки сборных колонн необходимо располагать в зоне с наименьшими изгибающими моментами. Не допускается стыкование продольной арматуры в сборных элементах колонн внахлестку без сварки. Продольная арматура сборных элементов колонн длиной до 10,7 м должна состоять из целых стержней мерной длины.
6.8.5 Стыковать продольную арматуру следует в соответствии с требованиями 6.7.12. При стыковании арматуры сваркой следует применять соединения, выполняемые механизированной или ручной дуговой сваркой на стальной скобе-накладке. Для стержней арматуры диаметром до 22 мм, включительно, допускается стыкование дуговой сваркой продольными швами с парными накладками.
6.8.6 На опорных участках плит перекрытий число устанавливаемой поперечной арматуры, нормальной к плоскости плиты, определяют расчетом на продавливание, а если по расчету не требуется, то конструктивно. В обоих случаях стержни поперечной арматуры, ближайшие к контуру площадки передачи нагрузки, располагают на расстоянии не ближе и не далее от этого контура. Ширина зоны размещения расчетной или/конструктивной поперечной арматуры в обоих осевых направлениях должна быть не менее , считая от контура площадки передачи нагрузки.
Расчетная и конструктивная поперечные арматуры плиты должны состоять из стержней периодического профиля диаметром не менее 8 мм, которые следует соединять с продольной рабочей арматурой посредством контактной сварки или концевых отгибов (крюков). Шаг стержней поперечной арматуры — по нормам проектирования железобетонных конструкций.
6.8.7 Для железобетонных колонн многоэтажных каркасных зданий с арматурой классов А400 и А500 общий процент армирования рабочей продольной арматурой в любом сечении не должен превышать 6%, а арматурой А600 — 4%.
Допускается более высокое насыщение колонн продольной арматурой при условии усиления приопорных участков колонн с помощью конструктивного косвенного армирования сварными сетками с ячейками размером не более 100 мм не менее четырех, располагаемыми с шагом 60-100 мм на длине (считая от торца элемента не менее 10d, где d — наибольший диаметр стержней продольной арматуры). Сетки из арматуры классов А400, А500, В500 должны быть диаметром не менее 8 мм.
6.8.8 Жесткие узлы железобетонных каркасов зданий должны быть усилены применением сварных сеток, спиралей или замкнутых хомутов.
Зона пересечения ригелей и колонн, а также участки ригелей и колонн, примыкающие к жестким узлам рам на расстоянии, равном полуторной высоте их сечения (но не более 1/4 высоты этажа или пролета ригеля), должны армироваться замкнутой поперечной арматурой (хомутами), устанавливаемой по расчету, но не реже чем через 100 мм, а для рамных систем с несущими диафрагмами — не реже чем через 200 мм.
6.8.9 В зданиях с диафрагмами и ядрами жесткости не менее 50% поэтажной жесткости на каждом из этажей обеспечивается стенами, диафрагмами, связями, ядрами жесткости и не более 50% — колоннами.
Диафрагмы, связи и ядра жесткости, воспринимающие горизонтальную нагрузку, должны быть непрерывными по всей высоте здания и располагаться в обоих направлениях равномерно и симметрично относительно центра тяжести здания. В каждом направлении должно устанавливаться не менее двух диафрагм, расположенных в разных плоскостях. Допускается в верхних этажах здания уменьшать число и протяженность диафрагм при сохранении симметричности их расположения в пределах этажа. Изменение сдвиговой (изгибной) жесткости диафрагм соседних этажей при этом не должно превышать 20%, а длина каждой диафрагмы жесткости должна быть не менее высоты этажа. В каркасных железобетонных зданиях допускается применение рам-диафрагм и металлических связей.
6.8.10 При проектировании зданий с существенно меньшей жесткостью нижних этажей (здания с «гибким» нижним этажом) с расчетной сейсмичностью площадки строительства 8 и 9 баллов колонны «гибкого» этажа следует, как правило, выполнять стальными или с жесткой арматурой.
6.8.11 Максимальные расстояния между осями колонн в каждом направлении при безбалочных плитах и безбалочных плитах с капителями следует принимать 7,2 м — при сейсмичности 7 баллов, 6,0 м — при сейсмичности 8, 9 баллов. Толщину перекрытий (с капителями и без них) безригельного каркаса следует принимать не менее 1/30 расстояния между осями колонн и не менее 180 мм, класс бетона — не ниже В20.
По наружному контуру вертикальных несущих конструкций зданий перекрытия следует опирать на ригели в уровне каждого этажа. Допускается устройство на консольных свесах перекрытий и ограждающих конструкций, выступающих за пределы основного каркаса частично или по периметру здания. Конструкции узлов сопряжения стен и перекрытий должны удовлетворять требованиям 6.8.15.
6.8.12 При расчете прочности нормального сечения плиты безригельных бескапительных каркасов на действие изгибающего момента расчетную ширину сжатой зоны бетона следует принимать не более трехкратной ширины колонн. На этой расчетной ширине в каждом осевом направлении должно быть размещено не менее 50% площади всей продольной рабочей арматуры плиты, приходящейся на шаг колонн в направлении, перпендикулярном направлению арматуры. 10% площади всей рабочей арматуры, размещенной на указанной расчетной ширине плиты, необходимо пропустить сквозь тело колонны.
Рекомендуется не менее 30% всей продольной арматуры плиты устанавливать в виде групп каркасов, плоских вертикальных или пространственных прямоугольного или треугольного сечения. Такие каркасы в обоих осевых направлениях следует сосредоточивать в составе полос усиленного армирования над колоннами, где не менее двух плоских каркасов или двух верхних стержней пространственного каркаса должны быть пропущены сквозь тело колонны, а также в составе арматуры, проходящей через срединные участки пролетов. Непрерывность этих каркасов в пределах общих габаритов перекрытия должна быть обеспечена стыковыми сварными соединениями продольных стержней каркасов. Эти стыковые соединения должны располагаться в зонах минимальных изгибающих моментов по соответствующим осевым направлениям и иметь прочность не ниже нормативного сопротивления стыкуемых стержней.
6.8.13 В качестве ограждающих стеновых конструкций каркасных зданий следует применять легкие навесные панели. Допускается устройство кирпичного или каменного заполнения, соответствующего требованиям 6.14.4, 6.14.5.
при высоте стен зданий, возводимых на площадках сейсмичностью 7, 8 и 9 баллов, не более 12, 9 и 6 м соответственно.
6.8.15 Для обеспечения раздельной работы ненесущих и несущих конструкций при сейсмических воздействиях конструкция узлов сопряжения каменных стен и колонн, диафрагм и перекрытий (ригелей) должна исключать возможность передачи на них нагрузок, действующих в их плоскости. Прочность элементов стен и узлы их крепления к элементам каркаса должны соответствовать 5.5 и быть подтверждены расчетом на действие расчетных сейсмических нагрузок из плоскости.
Кладка самонесущих стен в каркасных зданиях должна иметь гибкие связи с каркасом, не препятствующие горизонтальным смещениям каркаса вдоль стен.
Между поверхностями стен и колонн каркаса должен предусматриваться зазор не менее 20 мм. В местах пересечения торцевых и поперечных стен с продольными стенами должны устраиваться антисейсмические швы на всю высоту стен.
По всей длине стен в уровне плит покрытия и верха оконных проемов должны устраиваться антисейсмические пояса, соединенные с каркасом здания.
6.8.16 При проектировании каркасных зданий кроме деформаций изгиба и сдвига в стойках каркаса необходимо учитывать осевые деформации, а также должен быть выполнен расчет на устойчивость против опрокидывания.
6.8.17 Стены из штучной кладки поэтажной разрезки и узлы их крепления могут конструироваться как заполнение, участвующее в работе каркаса, либо как заполнение, отделенное от каркаса. Заполнение, участвующее в работе каркаса, рассчитывают и конструируют как несущую стену.
6.8.18 Конструкции узлов примыканий элементов ненесущих стен, отделенных от каркаса, к несущим конструкциям здания должны исключать возможность передачи на них нагрузок, действующих в их плоскости. Прочность элементов стен такой конструкции и узлов их крепления к элементам каркаса должна быть подтверждена расчетом на действие сейсмических нагрузок из плоскости. В узлах примыкания участков ненесущих стен различных направлений должны быть предусмотрены вертикальные антисейсмические швы толщиной не менее 20 мм, заполненные эластичным материалом.
6.8.19 Железобетонные каркасы одноэтажных зданий в поперечном направлении рекомендуется проектировать, как правило, по конструктивной схеме в виде стоек, защемленных в фундаментах и с шарнирным сопряжением с ригелями покрытия. Для районов с сейсмичностью 7 баллов пролеты, стропильные и подстропильные конструкции принимаются как для несейсмических районов. Для районов с сейсмичностью 8 и 9 баллов пролеты принимаются соответственно 24,0 м и 12 м. Шаг стропильных конструкций принимается для 8 баллов — 6,0 м и 12 м, для 9 баллов — 6,0 м; подстропильные конструкции не применяются.
6.9 Особенности проектирования зданий со стальным каркасом
6.9.1 Стальные колонны многоэтажных каркасов рамного типа следует проектировать замкнутого (коробчатого или круглого) сечения, равноустойчивого относительно главных осей инерций, а колонны рамно-связевых каркасов двутаврового, крестового или замкнутого сечений.
Источник dokipedia.ruМаксимальный пролет монолитного перекрытия
Люди, какаие максимальные пролеты безбалочного монолитного перекрытия вы применяете, если оно оперто на монолитные ж/б стены? толщина 160мм, бетон В25. По расчеты в скаде получается , что плита 6*6 м проходит с армированием 8АIII ш.200. Можно-ли делать бОльший пролет, если принять армирование 10АIII ш.150? просто нужно концепцию для дачи придумать, примрно прикидываю.
Хочется 7*8м.
Нагрузки: собств.вес, полезная 250кг/м2.
проектирование гидротехнических сооружений
Бетон увеличь до В35 |
проектирование гидротехнических сооружений
просто цемент с водой мешай без щебня |
Толщину принимаю 1/30 пролета (в крайнем случае до 1/35)
При больших пролетах в первую очередь по прогибам надо смотреть — тут либо толщину плиты надо больше задавать либо о-очень много арматуры пихать
Щас сдание проектирую с пролетом 8м, h=0.25м. Арматуры на всякий случай наложил раза в 2-3 больше, чем по прочности требовалось. По всем расчетам вроде проходит.
На днях перекрытие заливать будут — посмотрю что получится.
Щас сдание проектирую с пролетом 8м, h=0.25м. Арматуры на всякий случай наложил раза в 2-3 больше, чем по прочности требовалось. По всем расчетам вроде проходит.
На днях перекрытие заливать будут — посмотрю что получится.
уже не такой малограмный
Безбалочное перекрытие можно выполнить и пустотным при высоте 300 мм. и болеее. Внутри разместив утеплитель 1 м3 которого стоит дешевле бетона. Так же можно грамотно склеить утеплитель в сквозную конструкцию и тогда будет еще дешевле. Вместо утеплителя можно использовать еще и картонные трубы. Пролет такого перекрытия может быть болше чем сплошного.
Безбалочное перекрытие можно выполнить и пустотным при высоте 300 мм. и болеее. Внутри разместив утеплитель 1 м3 которого стоит дешевле бетона. Так же можно грамотно склеить утеплитель в сквозную конструкцию и тогда будет еще дешевле. Вместо утеплителя можно использовать еще и картонные трубы. Пролет такого перекрытия может быть болше чем сплошного.
Безбалочное перекрытие можно выполнить и пустотным при высоте 300 мм. и болеее. Внутри разместив утеплитель
Идея картонных труб не нова. Как-то присутствовал я на совещании, где проектировщики всерьез обсуждали такую идею. А потом все уперлось в банальность — где взять такие трубы, искали-искали по Киеву, да так и не нашли. В итоге сделали сплошное жб перекрытие. вот так вот у нас большинство светлых идей и умирает. 😥
Ну а без труб и т.д. все-таки сколько возможно перекрыть? кто может дать пример расчета какого-нибудь перекрвтия в скад? хотел посмотреть. можт я что-то не так делаю?
Ну а без труб и т.д. все-таки сколько возможно перекрыть? кто может дать пример расчета какого-нибудь перекрвтия в скад? хотел посмотреть. можт я что-то не так делаю?
В СКАДЕ нет физической нелинейности, а без учета этого прогиб у вас будет заниженным (возможно даже в несколько раз. )
ihoo51
Почему не накидаете ж/б пустотн. панелей! Получить бетон В25-35 на строительной площадке очень и очень сложно. Прикинул монол. плиту толщ. 300мм, пролет 8м, нагрузка ваша.Армирование нижняя диам.22 шаг 200мм, верхняя диам.12 шаг 200мм.Арматура лезет из-за прогибов. Бетон В15.
Идея картонных труб не нова. Как-то присутствовал я на совещании, где проектировщики всерьез обсуждали такую идею. А потом все уперлось в банальность — где взять такие трубы, искали-искали по Киеву, да так и не нашли. В итоге сделали сплошное жб перекрытие. вот так вот у нас большинство светлых идей и умирает. 😥
Я конечно не дока, но все-же есть сомнения.
1.Методика расчета таких конструкций? По сути это пустотное монолитное перекрытие, но с балочным опиранием. Экономим мы на весе и количестве бетона, но теряем в трудоемкости.
2.Конструктивные трудности (к примеру трубы линейные, а плита работает в 2-х направлениях, что и куда вставлять? или ограничения на размещение арматуры. )
3.А трубы можно было бы и асбоцементные применить. Думаю основная причина была обозначена в 1 и 2 п.п. и насчет «светлости» есть все же сомнения.
уже не такой малограмный
Монолитное перекрытие с утеплителем внутри было в проекте одного из домов разработанного для Оренбурга. Я точно помню так как сам привязывал даннное здание менял стены с бетона на кирпич а плиту с монолитной пустотки на сплошную. Чертежи исходника поищу. Может завтра сброшу А хорошие идеи хоронит лень и сроки поставленные заказчиками.
Источник forum.dwg.ruСтрой-справка.ру
Выбор ширины и высоты пролетов, шага колонн
Выбор ширины и высоты пролетов, шага колонн
Конфигурация и размеры плана, высота и профиль промышленных зданий определяются параметрами, числом и взаимным расположением пролетов. Эти факторы, как отмечалось, зависят от технологии производства, характера выпускаемой продукции, производительности предприятия, требований санитарных норм и пр. Ниже рассмотрены те компоненты, из которых складываются объемно-планировочные параметры пролетов (ширина, высота и пгаг колонн).
Ширина пролета L — расстояние между продольными разби-вочными осями — слагается из пролета мостового крана LK и удвоенного расстояния между осью рельса подкранового пути и разбивочнон осью 2 К.
Пролеты мостовых кранов увязаны с шириной пролетов и определены ГОСТом. Размер К принимают: 750 мм — при кранах Q 50 т, а также при устройстве в надкрановой части колонн прохода для об-служивания подкрановых путей. При железобетонных колоннах проходы вдоль подкрановых путей чаще располагают рядом с колоннами.
В размер привязки подкранового пути входит зазор (не менее 60 мм) между торцовой плоскостью крана и колоннами, а также расстояние между центром катков крана и его торцовой плоскостью, принимаемое от 125 до 500 мм в зависимости от грузоподъемности кранов. Ширина пролетов, не имеющих мостовых кранов, равна расстоянию между разбивочными осями.
Минимально допустимая ширина пролетов, определяемая условиями технологии производства (габариты и характер оборудования, система его расстановки, ширина проездов и др.), не всегда экономически целесообразна. Цехи, равновеликие по площади и имеющие одинаковую длину, могут быть мелко-, крупно- и большепролетными. В первом случае цех будет состоять из нескольких относительно нешироких пролетов, в последнем — из меньшего числа пролетов большой ширины. Например, при ширине 72 м цех может иметь 6 пролетов по 12 м или 4 пролета по 18 м, 3 пролета по 24 м, 2 пролета по 36 м и 1 пролет шириной 72 м. Возможны и другие сочетания при различной ширине пролетов (например, 2 пролета по 18 м плюс 3 пролета по 12 м).
При выборе ширины пролетов следует учитывать тенденции развития данной отрасли промышленности, оптимальные возможности изготовления, перевозки и монтажа конструкций покрытия здания, грузоподъемность внутрицехового транспорта и т. д.
Понятно, что большепролетные здания, имея укрупненную сетку осей, отличаются высокой универсальностью в технологическом отношении и позволяют применять для их монтажа крупноразмерные конструкции. Однако необходимо учитывать, что подвесные краны утяжеляют несущие конструкции, а крупнопролетные мостовые краны имеют большие габариты. Окончательный выбор ширины пролетов делают на основе сравнительных технико-экономических расчетов.
Шаг колонн (расстояние между поперечными разбивочными осями) выбирают с учетом габаритов и способа расстановки технологического оборудования, размеров выпускаемых изделий, вида внутрицеховых подъемно-транспортных средств и других факторов. Так, при крупногабаритном оборудовании и больших изделиях шаг колонн назначают по возможности большим, обеспечивая тем самым помещениям технологическую гибкость.
Увеличение шага колонн в большинстве случаев повышает эффективность использования производственных площадей, но усложняет конструкции покрытия и подкрановых путей здания. Поэтому размер шага колонн, увязывая с технологическими требованиями, всегда обосновывают технико-экономическим расчетом. Наиболее распространены шаги колонн 6 и 12 м.
Высота пролетов (расстояние от уровня пола до низа несущих конструкций покрытия) зависит от технологических, санитарно-гигиени-ческих и экономических требований. Складывается она в пролетах с мостовыми кранами из расстояния от уровня пола до верха кранового рельса Hi и расстояния от рельса до низа несущих конструкций покрытия Я2.
Высоту пролета предварительно определяют суммированием следующих величин: высоты наибольшего технологического оборудования (при небольших его размерах принимают 2,3 м); просвета между верхом наибольшего оборудования и низом перемещаемого груза, поднятого в верхнее положение (6^0,5 м); высоты перемещаемых грузов в транспортном положении (в); расстояния от верха транспортируемого изделия до центра крюка м); расстояния от центра крюка до головки рельса (зависящего от Q крана и принимаемого д = 0,05—4,8 м); высоты крана (А = 0,5—5,9 м) и просвета между верхом крана и низом несущих конструкций покрытия (е-0,1 м).
Определение высоты пролетов бескрановых или с подвесным транспортом не вызывает затруднений. Следует подчеркнуть, что из-за одного какого-либо технологического агрегата, превышающего по высоте остальное оборудование, нецелесообразно увеличивать высоту всего пролета. В таких случаях иногда решают заглубить высокий агрегат или надстраивают над ним башню.
Длину пролетов, которая, как правило, является и длиной цеха, определяют графическим способом — путем расстановки макетов технологического оборудования с соблюдением ширины проездов и проходов или аналитическим способом — делением общей площади цеха, подсчитанной с учетом мощности предприятия, на принятую ширину (как сумму ширины всех пролетов).
Наметив основные размеры пролетов с учетом отмеченных выше требований, выбирают применительно к ним габаритные схемы и разработанные на их основе унифицированные типовые секции.
Одноэтажные здания, как правило, проектируют с параллельно расположенными пролетами одинаковой ширины и высоты. В соответствии с требованиями технологии допускается проектировать здания с пролетами взаимно перпендикулярного направления и разной унифицированной ширины.
При технологической и подтвержденной расчетами экономической целесообразности понижения части параллельных пролетов перепады высот рекомендуется совмещать с продольными температурными швами, а величину понижения принимать краткой 0,6 м (но не менее 1,2 м).
Устраивать перепады целесообразно в тех зданиях, низкие пролеты которых отводят под заготовительные отделения, а высокие — под сборочные. При этом в месте перепада высот пролетов применяют ленточное остекление, что позволяет уменьшить размеры световых фонарей.
При назначении размеров зданий должны быть соблюдены санитарные нормы, предусматривающие на каждого рабочего не менее 15 м3 объема и не менее 4,5 м2 площади помещения.
Многовариантность технологических компоновок, предлагаемая при обсуждении проекта специалистами, при обычном проектировании требует массы чертежей. При макетном проектировании эти неудобства отсутствуют и надобность в непроизводительных графических работах отпадает, так как любой предлагаемый вариант получают перестановкой макетов или шаблонов оборудования.
Макетный метод компоновки оборудования с использованием макетов или шаблонов дает возможность упростить решение технических узлов, повысить качество проектов, сократить количество ошибок и время оформления чертежей, получить наглядное представление о технологическом процессе и добиться значительной экономии.
Сущность макетного проектирования состоит в следующем. В определенном масштабе (1 :20—1 : 50) из легкообрабатываемой пластмассы изготовляют макеты станков и агрегатов, зданий и сооружений. Макеты собирают на моделировочных столах с координатной сеткой. Собранные макеты представляют в миниатюре цех перед сдачей в эксплуатацию.
В случае проектирования невысоких зданий большой площади часто вместо макетного метода применяют способ компоновки оборудования с помощью двухкоординатных габаритных шаблонов, изготовляемых из картона, фанеры или листовой пластмассы. Законченный по методу непрозрачных шаблонов макет фотографируется, после чего на фотографию наносят размеры, надписи и масштаб. Полученный чертеж отвечает требованиям, предъявляемым к обычному рабочему чертежу.
Навигация:
Главная → Все категории → Реконструкция и ремонт жилых зданий