Сложные основания в строительстве это

Содержание

Основание стройки — это массив грунта, что залегает под фундаментом, устойчиво воспринимает всю нагрузку строения на себя. Грунты, служащие основанием подразделяются на два вида: естественные, или природные и искусственные.

Грунты, их характеристика

Основание стройки — это массив грунта, что залегает под фундаментом, устойчиво воспринимает всю нагрузку строения на себя.
Грунты, служащие основанием подразделяются на два вида: а) естественные, или природные, и б) искусственные.

Природное основание может само нести нагрузку всего строения.

Искусственное же основание — это упрочненный искусственным путем грунт для основания под фундамент. Подобный грунт сам по себе не имеет по стандартам несущей возможности.

Требования при строительстве, предъявляемые грунтам основания:

во-первых, грунтам основания противопоказано обладать равномерной сжимаемостью;

во-вторых, грунты должны обладать действительной способностью нести груз. Такие возможности определяются в процессе инженерно-геологических работ на стройплощадках;

1.Основания фундаменты в сложных природно-климатических условий. Лекция. Доц., К.Н. Грузин А.В.

в-третьих, грунты должны быть без пучинистых качеств, при замерзании всякие такие грунты расширяются, при оттаивании же они уменьшаются, что приводит к нарушению правильной усадки строения и образованию деформативных трещин, зазоров;

в-четвертых, грунты должны обладать в себе способностью устоять против всяческих воздействий подземных вод, жидкостей.

Искусственные грунты

Они имеют следующую строительную классификацию:

  1. скальные — фактически не сжимаемые, совершенно не пучинистые, весьма водоустойчивые (лучшее основание). К примеру, Манхэттен в Нью-Йорке.
  2. крупнообломочные, то есть кусочки скального типа (примерно 50 процентов с объемом свыше двух миллиметров): гравий и щебенка ( достаточно неплохая основа);
  3. пески — и чем объемнее частички, тем больше их возможности под строительство. Песок гравелистый (частички крупной величины) при нагрузках существенно уплотняются, они не проявляют пучинистость (достаточно хорошее основание). А мелкие, почти пылевидные частички при попадании влаги начинают пучиниться;
  4. глинистые воспринимают на себя значительные нагрузки в сухом виде, однако в процессе увлажнения их несущая возможность существенно снижается, они становятся пучинистыми;
  5. лессовидные, то есть макропористые, обычно обладают хорошей прочностью, однако в процессе увлажнения нередко дают существенные просадки, они могут использоваться при условии их укрепления;
  6. насыпные — формируются при засыпании ям, мусорных свалок, каналов. Имеют непропорциональную сжимаемость (требуют упрочнения);
  7. намывные — формируются в итоге очищения высохшей реки либо озера . Неплохое основание из грунта;
  8. плывуны — формируются мелкими частичками песка, имеющего илистые смеси. Они не подходят для природного основания.

Требования к грунту для обратной засыпки

Основания и фундаменты

Методы укрепления

во-первых, уплотнение. Обычная пневматическая трамбовка либо трамбовка специальными плитами, в некоторых случаях добавляется щебень. На больших площадях применяют катки;

во-вторых, устройство подушки. В случаях, когда укрепить грунт трудно, то слой ненадежного грунта снимается и заменяется более устойчивым (к примеру, песком или щебенкой). Толщина подобной подушки обычно составляет 10 и более сантиметров;

в-третьих, силикатизация — используется для мелкого пылеватообразного песка. В таких случаях в грунт следует нагнетать смеси жидкого стекла с различными химическими добавками. После того, как грунтзатвердеет, он приобретет неплохую несущую способность;
в-четвертых, цементизация, то есть подача под основание цементной смеси в жидком виде либо жидкой смеси цемента с песком;

в-пятых, обжиг, то есть термический метод, сжигание различных горючих материалов в глубинах скважин. Используется для лессовидных типов грунта. Таким образом, основание грунта будет надежным, если при строительстве будут соблюдаться все эти требования и условия.

Плотность несущего грунта под сооружениями и конструкциями имеет решающее значение для их безопасной и длительной эксплуатации. В нашей стране случаи, когда здания, сооружения и дороги возводятся на плотных материковых грунтах, не требующих дополнительного укрепления сравнительно редки, чаще всего необходимо провести ряд мероприятий по укреплению грунта, причем большинство из них имеют объем и конечную стоимость, сравнимую со всем последующим строительством.

Способов укрепления грунта, как естественного, так и искусственно насыпанного всего лишь три. Это:

  1. Полная замена естественного грунта с низкой несущей способностью.
  2. Физическое уплотнение естественных грунтов.
  3. Укрепление с помощью дополнительных материалов

Полная замена естественного грунта с низкой несущей способностью может осуществляться двумя способами.

Первый: выемка грунта (обычно это мелкозернистые, пылевидные пески, водонасыщенные глеевые грунты на месте бывших болот) до материкового основания (обычно это глина или гравий) с последующей засыпкой котлована гравием, щебнем или заливкой сплошной бетонной плиты. Гравий и щебень уплотняются вибротрамбовками или тяжелой техникой, например — дорожными катками массой 10-15 тонн.

Второй: частая забивка свай в верхний слой непрочного грунта до материкового основания. В настоящее время применяются исключительно бетонные сваи, хотя история знает и другие примеры, например на строительстве Санкт-Петербурга использовались дубовые сваи.

Укрепление грунтов с помощью дополнительных материалов стало возможным в последние годы, когда появился геотекстиль, более известный как нетканый синтетический материал. Он сочетает в себе несколько полезных свойств и образует на поверхности грунта прочную, не гниющую, водопроницаемую основу. С его помощью можно укреплять откосы насыпей или каналов, делать основание для пешеходных дорожек и даже автомагистралей. Его применяют как самостоятельно, так и в качестве финишного покрытия гравийной или щебневой подсыпки.

Физическое уплотнение насыпных и естественных грунтов проводится в любом случае для образования более плотной «подушки». Для такого процесса пригодны лишь материалы, имеющие структуру средней дискретности — гравий, щебень (песок с естественными камнями), в редких случаях используется керамзит. В зависимости от объема работ и величины фракций материала применяют как легкий инструмент (вибротрамбовки), так и тяжелую технику.

Дата публикации статьи: 28 августа 2013 в 17:03
Последнее обновление: 19 февраля 2021 в 10:21

Глубина заложения фундамента

Расстояние от планировочной планировки до уровня подошвы фундамента. Глубина заложения должна соответствовать глубине заложения прочного слоя основания. Глубина…

Свайные фундаменты

Сваи Стержни из бетона, железобетона и других материалов в толще грунта основания, воспринимающие нагрузки от здания. Также называются…

Классификация экскаваторов

Одноковшовый экскаватор Для выполнения земляных работ в строительстве находят большое применение строительные экскаваторы. Машина периодического действия, применяемая для…

Виды дорожных машин

Для выполнения строительства гидротехнических сооружений (платины, мосты, искусственные водоемы) применяется способ гидромеханизации. Гидромонитор — водобойный снаряд, применяемый для…

Источник: knep.ru

Основания. Химические свойства и способы получения

Перед изучением этого раздела рекомендую прочитать следующую статью:

Основания – сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH4 + ) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания, которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na2O + H2O → 2NaOH

При этом оксид меди (II) с водой не реагирует:

CuO + H2O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно:

2K 0 + 2 H2 + O → 2 K + OH + H2 0

3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например , электролиз хлорида натрия:

2NaCl + 2H2O → 2NaOH + H2↑ + Cl2↑

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

щелочь + соль1 = соль2↓ + щелочь

щелочь + соль1 = соль2↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II):

CuCl2 + 2NaOH → Cu(OH)2↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода.

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей. Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления, которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4 Fe +2 (OH)2 + O2 0 + 2H2O → 4 Fe +3 ( O -2 H)3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

А в растворе образуется комплексная соль:

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (как правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

Читайте также:  Как вернуть налог на строительство дома частного

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли, в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь(избыток) + кислотный оксид = средняя соль + вода

щёлочь + кислотный оксид(избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO2 = NaHCO3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена.

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Cu 2+ SO4 2- + 2Na + OH — = Cu 2+ (OH)2 — ↓ + Na2 + SO4 2-

Также щёлочи взаимодействуют с растворами солей аммония.

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль !

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

Однако, в данной реакции образуется не основание, а амфотерный гидроксид. А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Т аким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла(избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь(избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO3 мы разбиваем на уольную кислоту H2CO3 и карбонат натрия Na2CO3. Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород, в расплаве — средняя соль и водород.

! Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6 H2 + O = 2Na[ Al +3 (OH)4] + 3 H2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах. Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О2 ≠

NaOH +N2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl2 0 = NaCl — + NaOCl + + H2O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl2 0 = 5NaCl — + NaCl +5 O3 + 3H2O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH + Si 0 + H2 + O= Na2Si +4 O3 + 2H2 0

Фтор окисляет щёлочи:

2F2 0 + 4NaO -2 H = O2 0 + 4NaF — + 2H2O

Более подробно про эти реакции можно прочитать в статье Окислительно-восстановительные реакции.

Источник: chemege.ru

Основания в химии — классификация, получение, свойства, формулы и определения с примерами

Основания, как и оксиды, кислоты и соли, относятся к сложным неорганическим веществам. Выясним, из каких частей состоит формула любого основания, воспользовавшись таким рядом формул:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Разделим формулы черточкой на две части, отделив символ металлического элемента от остальных символов, и напишем над металлом его валентность:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Общим для всех формул является наличие группы атомов которая имеет название гидроксильная группа. В первой формуле она записана без скобок, а в остальных формулах заключена в скобки, после которых стоит соответствующий индекс.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Как вы уже знаете, понятие валентности распространяется на группы атомов, в частности на кислотные остатки. Имеет свою валентность и гидроксильная группа Она одновалентна. Обратите внимание на валентность металла в приведенных формулах, и станет понятно, что наличие индексов связано с валентностью металла. Действительно, одновалентный калий соединен с одной гидроксильной группой, двухвалентные кальций и барий — с двумя, а трехвалентный алюминий — с тремя. Поэтому, чтобы соблюдать правило относительно одинаковой суммы единиц валентностей обеих частей формулы сложного вещества, и ставят соответствующие индексы.

Теперь можем сформулировать определение оснований:

Основания — это сложные вещества, образованные металлическим элементом и гидроксильными группами.

Запишем формулу оснований в общем виде:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Следует отметить, что основания, как и соли,— вещества не молекулярного, а ионного строения, поэтому их формулы отображают соотношения ионов металла и ионов гидроксильной группы в веществе.

Номенклатура оснований

По современной номенклатуре название оснований состоит из двух слов: слова гидроксид и названия металлического элемента, например: — гидроксид калия. Если металл проявляет переменную валентность, ее указывают в круглых скобках после названия металла без интервала: — гидроксид хрома

У некоторых оснований сохранились также исторические названия: — едкое кали, — едкий натр.

Составление формул оснований и определение валентности металла в формуле основания. Рассмотрим на примерах, как составлять формулы оснований и определять валентность металла по формуле основания.

Пример:

Составить формулу гидроксида магния.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Исходя из определения оснований, первым записываем символ металла, а после него — гидроксильную группу Магний проявляет постоянную валентность 2. Поэтому и гидроксильных групп в формуле этого основания будет две.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Ответ: формула основания —

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Пример 2. Определить валентность меди в формулах оснований

Известно, что в формуле основания валентность металла совпадает с количеством гидроксильных групп. Первая формула содержит одну гидроксильную группу, вторая — две. Поэтому в первой формуле медь одновалентна, а во второй — двухвалентна.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Ответ:

Физические свойства и классификация оснований

Основания — твердые вещества, преимущественно белого цвета, хотя встречаются и других цветов. Например, гидроксид меди — голубой, гидроксид железа — коричневый.

По способности растворяться в воде основания, как и соли, бывают растворимые, малорастворимые и нерастворимые. Преобладают нерастворимые. Среди хорошо растворимых — гидроксид натрия, гидроксид калия. Их растворы мылкие на ощупь.

Растворимые в воде основания получили название щелочи. По таблице растворимости солей, оснований и кислот можно узнать, к какой группе по способности растворяться в воде принадлежит то или иное основание.

Итак, по физической характеристике — способности растворяться в воде — основания разделяют на растворимые, или щелочи, и нерастворимые.

Существует еще одна классификация оснований — по химическим свойствам. Согласно ей их разделяют на типичные основания и амфотерные гидроксиды. Но об этом речь пойдет позже.

Основания, хорошо растворимые в воде,— тугоплавкие вещества. Основания, нерастворимые в воде, при нагревании разлагаются с выделением воды и образованием оксида.

Итоги:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

  • Основания — сложные вещества немолекулярного строения, химическая формула которых состоит из одного атома металла и одной или нескольких гидроксильных групп.
  • Число одновалентных гидроксильных групп в формуле основания равно валентности металла, поэтому в общем виде формула оснований имеет вид
  • Современное название основания состоит из слова гидроксид с добавлением к нему названия металла. Если металл проявляет переменную валентность, то ее указывают после названия металла в скобках.
  • При обычных условиях основания находятся в твердом состоянии, часть из них хорошо растворяется в воде. Растворенные в воде основания называются щелочами.

Что такое основания

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Известь — соединение, известное человеку давно. Смесь извести с водой нередко используют и в настоящее время в строительстве. Такой смесью белят стволы и ветки деревьев, защищая их от вредителей, а зимой — от солнечных ожогов. Известь (точнее — гашеная известь) принадлежит к классу оснований.

Каждое основание образовано тремя элементами. Из них два элемента «обязательные» — Оксиген и Гидроген, а третьим является металлический элемент.

Основание — соединение, которое состоит из катионов металлического элемента и гидроксид-анионов

Название иона происходит от названий элементов Гидрогена и Оксигена. Объяснить, почему его заряд равен — 1, можно так. Представим себе, что ион образуется в результате соединения ионов и сложим заряды этих частиц:

Формулы оснований

Выведем общую химическую формулу соединений этого класса. Вы знаете, что любое вещество электронейтрально. Поэтому в основании на каждый ион металлического элемента с зарядом +n должно приходиться n ионов . Следовательно, общая формула оснований —

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Примеры химических формул оснований:

Основания — ионные соединения. Поэтому для них не составляют графические формулы.

Названия оснований

Химические названия оснований состоят из двух слов. Первым словом является название элемента, а вторым — «гидроксид». Например, соединение с формулой называют «натрий гидроксид», а основание — «магний гидроксид» . Склоняется лишь второе слово названия: натрий гидроксида, магний гидроксидом.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Если элемент имеет переменную валентность, то в названии основания указывают ее значение после названия элемента (римской цифрой в скобках): — феррум(II) гидроксид.

Это интересно. Оснований и не существует.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Среди соединений с общей формулой есть и такие, которые не принадлежат к основаниям, так как отличаются от них по химическим свойствам. Их называют амфотерными гидроксидами (§ 13).

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основание основный оксид. Каждому основанию соответствует определенный оксид:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Заряд иона металлического элемента в основании и оксиде один и тот же.

Оксиды, которые отвечают основаниям, называют основными.

В отличие от оксидов, оснований в природе нет.

Основания — соединения, которые содержат катионы металлических элементов и гидроксид-анионы Общая формула оснований —

Химическое название основания состоит из названия металлического элемента и слова «гидроксид».

Каждому основанию соответствует оксид; его называют основным оксидом. Заряд иона металлического элемента в этих соединениях один и тот же.

Свойства и применение оснований

Физические свойства оснований:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Вам известно, что каждое основание состоит из положительно заряженных ионов металлического элемента и отрицательно заряженных гидроксид-ионов . Основания, как и ионные оксиды, в обычных условиях являются твердыми веществами. Они должны иметь высокие температуры плавления. Но при умеренном нагревании почти все основания разлагаются (на соответствующий оксид и воду). Расплавить удается только гидроксиды Натрия и Калия (температуры плавления соединений составляют соответственно 322 и 405 °С).

Большинство оснований не растворяются в воде (рис. 20). Малорастворимыми являются гидроксиды а хорошо растворимыми — основания, образованные щелочными элементами и соединение
> > >

Водорастворимые основания называют щелочами*.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

* — К щелочам часто относят соединения

Сведения о растворимости оснований в воде можно найти в таблице, размещенной на форзаце 2 учебника. Ее называют таблицей растворимости. Приводим соответствующий фрагмент этой таблицы:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Растворимость некоторых оснований в воде при температуре 20—25 °С

Буквой «р» обозначены растворимые основания (щелочи), «м» —малорастворимые, «н>> — нерастворимые. Прочерк «— » означает, что такого основания не существует.

Щелочи и их растворы мылки на ощупь, разъедают многие материалы, вызывают серьезные ожоги кожи, слизистых оболочек, сильно поражают глаза (рис. 21). Поэтому натрий гидроксид в прошлом получил название «едкий натр», а калий гидроксид — «едкое кали ».

Читайте также:  Точечное строительство что это

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Работая со щелочами и их растворами, будьте особенно осторожны. Если раствор щелочи попал на руку, немедленно смойте его большим количеством проточной воды и обратитесь за помощью к учителю или лаборанту. Вы получите у них разбавленный раствор определенного вещества (например, уксусной кислоты), которым нужно обработать кожу для удаления остатков щелочи. После этого руку тщательно промойте водой.

Химические свойства оснований:

Возможность протекания многих реакций с участием оснований зависит от растворимости этих соединений в воде. Щелочи в химических превращениях значительно более активны, чем нерастворимые основания, которые, например, с солями и некоторыми кислотами не реагируют.

Действие на индикаторы:

Растворы щелочей способны изменять окраску особых веществ — индикаторов*. Эти вещества были обнаружены в некоторых плодах и цветах. В настоящее время используют индикаторы, которые производят на химических заводах. Они более эффективны, чем природные, и лучше сохраняются.

К важнейшим индикаторам относятся лакмус, фенолфталеин, метиловый оранжевый (сокращенное название — метилоранж), а также универсальный индикатор. Последний является смесью нескольких веществ. Эта смесь, в отличие от отдельных веществ-индикаторов, изменяет цвет не только в присутствии щелочи, но и в зависимости от ее количества в растворе.

В химических лабораториях применяют водные растворы метилоранжа и лакмуса, водно-спиртовый раствор фенолфталеина. Очень удобна в использовании так называемая индикаторная бумага. Это — специальная бумага, пропитанная раствором индикатора, а затем высушенная и нарезанная маленькими полосками (рис. 22). Существует также индикаторная бумага, пропитанная раствором лакмуса или фенолфталеина.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Изменение окраски индикатора (рис. 23) является следствием его реакции со щелочью.

* — Термин происходит от латинского слова indico — указываю, определяю.

Уравнения таких реакций не приводим, поскольку формулы индикаторов и продуктов их химических превращений довольно сложные.

Нерастворимые основания на индикаторы не действуют.

Растворимые и нерастворимые основания взаимодействуют с соединениями противоположного характера, т. е. имеющими кислотные свойства. Среди этих соединений — кислотные оксиды. Соответствующие реакции были рассмотрены в предыдущем параграфе. Приводим дополнительные примеры:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

При взаимодействии основания с кислотой вещества обмениваются своими составными частями:

Это — реакция обмена.

Выяснить, осталась ли щелочь после добавления определенной порции кислоты, можно, добавив к жидкости 1 — 2 капли раствора фенолфталеина. Если малиновый цвет не появился, то щелочь полностью прореагировала с кислотой.

Пример реакции нерастворимого основания с кислотой:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Реакцию между основанием и кислотой называют реакцией нейтрализации.

Выяснить, осталась ли щелочь после добавления определенной порции кислоты, можно, добавив к жидкости 1 — 2 капли раствора фенолфталеина. Если малиновый цвет не появился, то щелочь полностью прореагировала с кислотой.

Пример реакции нерастворимого основания с кислотой:

Мп(ОН)2 + 2HN03 = Mn(N03)2 + 2Н20.

Реакцию между основанием и кислотой называют реакцией нейтрализации.

Это — реакции обмена. Они происходят в растворе, причем исходная соль должна быть растворимой, а новое основание или новая соль — нерастворимыми.

Выясним возможность реакции между натрий гидроксидом и манган(II) нитратом:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Воспользуемся таблицей растворимости (приводим ее фрагмент):

Как видим, соль растворяется в воде. Чтобы реакция произошла, исходные вещества — щелочь и соль — должны обменяться своими ионами с образованием нерастворимого соединения. По таблице определяем, что этим соединением является новое основание а новая соль растворяется в воде. Значит, реакция между натрий гидроксидом и манган(II) нитратом возможна:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Термическое разложение

Почти все основания (кроме гидроксидов Натрия и Калия) при нагревании разлагаются на соответствующий оксид и воду (водяной пар):

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Взрослым известна жидкость под названием «нашатырный спирт». Это — водный раствор газа аммиака его используют как лечебное средство. В нашатырном спирте содержится необычное по своему составу основание. Его формула — а химическое название — аммоний гидроксид. Соединение образуется в результате реакции

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

в которую вступает небольшая часть растворенного аммиака, и одновременно разлагается на исходные вещества. На это указывает знак в химическом уравнении.

Аммоний гидроксид подобно щелочам (NaOH, КОН и др.) изменяет окраску индикаторов, взаимодействует с кислотными оксидами, кислотами, солями:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Изложенный материал обобщен в схеме 2.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Применение оснований

Широкое применение среди оснований получили щелочи, прежде всего гидроксиды Кальция и Натрия.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Вам известно, что вещество, называемое гашеной известью, является кальций гидроксидом Гашеную известь используют как связующий материал в строительстве. Ее смешивают с песком и водой. Полученную смесь наносят на кирпич, штукатурят ею стены. В результате реакций основания с углекислым газом и силиций(IV) оксидом смесь затвердевает. Кальций гидроксид также применяют в сахарной промышленности, сельском хозяйстве, при изготовлении зубных паст, получении многих важных веществ.

Натрий гидроксид используют при производстве мыла (осуществляют реакции щелочи с жирами), лекарств, в кожевенной промышленности, для очистки нефти и т. д.

Выводы:

Основания — твердые вещества ионного строения. Большинство оснований не растворяется в воде. Водорастворимые основания называют щелочами. Щелочи изменяют окраску особых веществ — индикаторов.

Основания взаимодействуют с кислотными оксидами и кислотами с образованием солей и воды. Щелочи реагируют и с солями; продукты каждой реакции — другие основание и соль. Нерастворимые основания разлагаются при нагревании на соответствующие оксиды и воду.

Реакцию между основанием и кислотой называют реакцией нейтрализации. На практике используют преимущественно гидроксиды Кальция и Натрия.

Способы получения оснований и амфотерных гидроксидов

Получение щелочей: один из способов получения щелочей основан на реакции металла с водой (рис. 40). Кроме щелочи, образуется водород:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Второй способ получения щелочей — взаимодействие основного оксида с водой:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Таким способом получают гашеную известь на заводах и непосредственно перед использованием этого вещества для строительных работ, побелки стволов деревьев:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Щелочь можно получить и с помощью реакции обмена между растворимой солью и другой щелочью (в растворе). Исходные соединения подбирают так, чтобы образовалась нерастворимая соль:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Гидроксиды Натрия и Калия производят в промышленности действием постоянного электрического тока на водные растворы хлоридов:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Этот процесс называют электролизом.

Получение нерастворимых оснований

Нерастворимое основание можно получить только с помощью реакции обмена между солью и щелочью в растворе. Поскольку основание будет выпадать в осадок, то образующаяся соль должна быть растворимой в воде (два нерастворимых соединения разделить невозможно):

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Малорастворимый магний гидроксид может быть не только продуктом реакции обмена. Это соединение, как и щелочи, образуется при взаимодействии металла или оксида с водой. Правда, эти реакции происходят медленно, а первая — только при нагревании:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Изложенное обобщает схема 7.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Схема 7. Получение оснований

Получение амфотерных гидроксидов

Ввиду того что амфотерный гидроксид проявляет свойства основания и кислоты, его можно получить с помощью реакций обмена и как основание

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Эти превращения происходят потому, что все амфотерные гидроксиды нерастворимы в воде.

Щелочь или кислоту нельзя брать в избытке, поскольку амфотерный гидроксид реагирует с обоими соединениями. Например, при взаимодействии натрий цинка с избытком сульфатной кислоты вместо цинк гидроксида образуется цинк сульфат:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Некоторые амфотерные гидроксиды можно получить реакцией обмена между двумя солями в растворе, если одна из солей — продуктов реакции — разлагается водой (такие сведения имеются в таблице растворимости):

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Выводы:

Щелочи получают взаимодействием соответствующих металлов или оксидов с водой.

Общий метод получения растворимых и нерастворимых оснований, а также амфотерных гидроксидов основан на реакции обмена между щелочью и солью в растворе. Амфотерные гидроксиды, кроме того, получают взаимодействием соответствующих солей с кислотами.

Химические свойства оснований

О действии растворов оснований на индикаторы, взаимодействие оснований с кислотными оксидами и кислотами вы узнали ранее. Вспомним соответствующие реакции.

Действие оснований на индикаторы

(Это свойство имеют лишь основания, растворимые в воде, то есть щелочи.) В растворе щелочей лакмус приобретает синий цвет, метиловый оранжевый — желтый, а фенолфталеин — малиновый. Универсальный индикатор в разбавленном растворе щелочи имеет зеленую окраску, в концентрированном — синюю и сине-фиолетовую.

Взаимодействие с кислотными оксидами

Щелочи взаимодействуют с кислотными оксидами, образовывая соль кислоты, которой отвечает взятый для реакции оксид, и воду:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Взаимодействие с кислотами (реакция нейтрализации)

Щелочи (уравнение а) и нерастворимые основания (уравнение б) взаимодействуют с кислотами, образуя соль и воду:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Следующие два свойства оснований вам еще неизвестны, поэтому для их изучения проведем химический эксперимент.

Взаимодействие щелочей с растворами солей

(Реакция происходит в том случае, если по крайней мере один из продуктов реакции выпадает в осадок или выделяется в виде газа.)

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Опыт 1. Нальем в сосуд раствор сульфата железа и прибавим к нему раствор гидроксида натрия. Сразу же происходит взаимодействие веществ, о чем свидетельствует образование коричнево-красного осадка:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Отношение оснований к нагреванию

Щелочи устойчивы к нагреванию. Нерастворимые основания при нагревании разлагаются на оксид металла и воду.

Опыт 2. Сухую пробирку на 1/4 наполним гидроксидом меди закрепим ее в держателе и нагреем. Наблюдаем, как голубой цвет (цвет гидроксида меди изменится на черный (цвет оксида меди а вблизи отверстия пробирки появятся капельки воды:

В том, что одним из продуктов этой реакции будет вода, можно удостовериться, подержав холодный предмет (например, стеклянную пластину) около отверстия пробирки.

Чтобы закрепить знания о химических свойствах оснований, выполните лабораторные опыты 3, 4, 5, 6. Прежде чем приступить к их выполнению, ознакомьтесь с мерами предосторожности во время работы со щелочами и неуклонно выполняйте их.

Меры предосторожности во время работы со щелочами:

Твердые щелочи и их растворы разъедают ткань, бумагу, вызывают ожоги кожи, глаз, что очень опасно. Поэтому обращаться с ними нужно осторожно: гранулу щелочи (вспомните, что это твердые вещества) ни в коем случае не брать руками; не разливать растворы; следить, чтобы раствор не попадал на открытые участки кожи, в глаза, на одежду, парту, книги, тетради. Вам понадобятся защитная одежда (халат, передник) и защитные очки. Посуду с раствором щелочи следует держать закрытой, чтобы она не реагировала с углекислым газом воздуха.

Если вы разлили щелочь, сразу нейтрализуйте ее уксусом. Участок кожи, на который попала щелочь, быстро промойте большим количеством воды. Если щелочь попала в глаза, немедленно промойте их медицинским раствором борной кислоты.

Итоги:

  • Щелочи в химическом отношении более активны, чем нерастворимые основания, и имеют такие типичные свойства:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

  • Типичными химическими свойствами нерастворимых оснований является взаимодействие с кислотами и разложение при нагревании:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

  • Реакция нейтрализации свойственна и щелочам, и нерастворимым основаниям.
  • Взаимодействие щелочи с раствором соли происходит, если среди продуктов реакции есть нерастворимые вещества.

«Для того, чтобы спаять две железные части какого-либо предмета, необходимо поверхность металла тщательным образом очистить от ржавчины, в состав которой входит гидроксид железа (этот процесс имеет еще название «травление»). Чаще всего для этого используют соляную кислоту:

Чтобы во время травления с кислотой взаимодействовала только ржавчина, а не железо, из которого изготовлен предмет, в травильный раствор добавляют ингибиторы — вещества, которые действуют противоположно катализаторам. Они замедляют реакции, а то и совсем их прекращают. Ингибитором реакции между железом и соляной кислотой является органическое вещество уротропин.

Если вы хотя бы раз пользовались горючим под названием «сухой спирт», то имели дело со смесью уротропина с небольшим количеством парафина. Это горючее удобно тем, что быстро зажигается, легко гаснет и почти не оставляет пепла.

Понятие об амфотерных гидроксидах

Щелочи и большинство нерастворимых оснований взаимодействуют с кислотами и не взаимодействуют с представителями своего класса. Кислоты взаимодействуют с основаниями и не взаимодействуют с другими кислотами. Проверив экспериментально, с какими веществами данное вещество взаимодействует, а с какими — нет, можно сказать: к классу оснований или к классу кислот оно относится. Это общее правило. Однако оно имеет исключение, понять которое нам помогут опыты с гидроксидом цинка.

Читайте также:  1 долевое участие в строительстве

По способности растворяться в воде это вещество принадлежит к нерастворимым основаниям. Единственным способом получения нерастворимых оснований является взаимодействие растворимой соли соответствующего металла с раствором щелочи. Одним из продуктов этого взаимодействия будет нерастворимое основание.

Опыт 1. Нальем в колбу раствор сульфата цинка и добавим к нему небольшими порциями раствор гидроксида натрия, пока в колбе не образуется белый осадок (рис. 13):

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Образовавшийся осадок разделим, поместим в 2 колбы и проведем следующие опыты.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Опыт 2. В первую колбу с гидроксидом цинка добавим соляной кислоты. Осадок сразу исчезает, что является признаком химического явления:

Обратимся к таблице растворимости и увидим, что образовавшаяся соль хлорид цинка — растворимое в воде соединение.

Произошла реакция нейтрализации, в которой гидроксид цинка проявил свойства основания.

Опыт 3. Во вторую колбу с гидроксидом цинка добавим раствор гидроксида натрия. Наблюдение показывает, что, как и в опыте с соляной кислотой, осадок исчез. Следовательно, осадок прореагировал с избытком щелочи (в опыте 1 мы прекратили доливать раствор щелочи, как только образовался осадок. При избыточном добавлении щелочи мы успели бы лишь визуально зафиксировать появление и исчезновение осадка).

Запишем уравнение проведенной реакции:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Образовалась соль натрия, в которой вместо привычного кислотного остатка есть остаток, содержащий один атом цинка и четыре (тетра — четыре) гидроксильные группы. Остаток такого вида записывают в квадратных скобках.

В этой реакции гидроксид цинка сыграл роль кислоты, потому что металлический элемент цинк после реакции вошел в состав кислотного остатка.

Гидроксиды, которые образуют соль при взаимодействии как с кислотой, так и со щелочью, называют амфотерными гидроксидами.

Повторите материал об амфотерных оксидах (§ 13) и составьте формулы амфотерных гидроксидов, которые им отвечают.

Амфотерные гидроксиды реагируют со щелочами не только в растворе, но и в расплаве:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Образовавшаяся соль имеет двухвалентный кислотный остаток Наличие в нем цинка доказывает, что при сплавлении со щелочью гидроксид цинка проявил свойства кислоты.

Проведенные опыты свидетельствуют, что разделение сложных неорганических веществ на оксиды, кислоты, основания и

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

соли не лишено исключений. Бывают вещества со смешанными свойствами, например амфотерные гидроксиды.

Применение оснований:

Представители этого класса неорганических веществ в природе отсутствуют. Но потребность в них существует, поэтому их получают специально. Наибольшее практическое значение имеют щелочи гидроксид натрия и гидроксид калия. Применение этих и некоторых других оснований показано на рисунке 14.

Итоги:

  • По характерным химическим свойствам исниваним разделяют на типичные и амфотерные гидроксиды.
  • Амфотерные гидроксиды, в отличие от типичных, взаимодействуют не только с кислотами, но и со щелочами, образуя соли.
  • В формулах солей, образовавшихся в результате взаимодействия амфотерного гидроксида с кислотой, металлическим элементом образовавшейся соли является металл, который входил в состав основания и т. п.).
  • В формулах солей, образовавшихся при взаимодействии амфотерного гидроксида со щелочью, металлический элемент амфотерного гидроксида входит в состав кислотного остатка и некоторых других).

Получение оснований

Растворимые основания (щелочи) получают взаимодействием металла или его оксида с водой.

1. Взаимодействие активных металлов с водой приводит к образованию щелочей и выделению водорода:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

(К какому типу относятся эти реакции?)

2. Взаимодействие оксидов активных металлов с водой завершается образованием растворимого в воде гидроксида — щелочи:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

(Какой это тип реакции?)

3. В промышленности щелочи получают электролизом водных растворов бескислородных кислот. Этот способ вы будете изучать в следующем классе.

4. Нерастворимые основания получают действием раствора щелочи на растворимую соль соответствующего металла:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Классификация, номенклатура и получение оснований

Поместите в керамический тигель немного карбоната кальция (известняка) и в течение 10 минут раскалите на огне спиртовки.
После того как тигель остынет, влейте поверх него немного дистиллированной воды, Затем помешивайте стеклянной палочкой и проверьте красной лакмусовой бумагой. Что вы наблюдаете? Обсудите свои соображения с товарищами. Запишите уравнения реакций.

Сложные вещества, в составе которых содержатся одна или несколько гидроксильных групп (ОН), соединенных с атомами металлов, называются основаниями. Основания обозначаются общей формулой Me(OH)n

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Гидроксильная группа ОН всегда одновалентна. Число гидроксильных групп соответствует валентности металла.

Классификация:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Основания классифицируются по своей растворимости в воде и кислотности.

Растворимые в воде основания называют щелочами. Кроме Li, Na, К, Rb, Cs, Ca, Sr, Ba, гидроксиды других металлов не растворяются или очень мало растворяются в воде. Часть нерастворимых в воде оснований обладает амфотерными (двойственными) свойствами.

Основания, вступающие в реакцию как с кислотами, так и с щелочами, образуя соль и воду, называются амфотерными основаниями: Zn (ОН)2, Be (OH)2, Al (OH)3, Fe (OH)3.

Число гидроксильных групп в составе оснований определяет их кислотность.

Номенклатура:

При наименовании оснований по международной номенклатуре, если металл, образующий основание, имеет постоянную валентность, то вначале указывается слово «гидроксид», а затем название металла. Если же металл обладает переменной валентностью, то после слова «гидроксид» и названия металла валентность отмечают римскими цифрами в скобках.

Основания металлов с постоянной валентностью Основания металлов с постоянной валентностью
Гидроксид металла Международное название Гидроксид металла Международное название
Mg(OH)2 Гидроксид магния Pb(OH)2 Гидроксид свинца (II)
NaOH Гидроксид натрия Cr(OH)3 Гидроксид хрома (III)
Al(OH)3 Гидроксид алюминия CuOH Гидроксид меди (I)

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Графические формулы оснований:

Получение растворимых в воде оснований

Получение в лабораторных условиях.
При взаимодействии активных металлов (щелочных металлов Li, Na, К, Rh, Cs и щелочноземельных металлов Ca, Sr, Ba) с водой. Эти реакции протекают в обычных условиях.

металл + вода → щелочь + H2 ↑

2Li + 2HОH → 2LiOH + H2 ↑

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

При взаимодействии в обычных условиях гидридов щелочных (NaH3 КН) и щелочноземельных металлов(CaH2, BaH2) с водой.
гидрид металла + вода → щелочь + H2↑

При взаимодействии оксидов щелочных и щелочноземельных металлов с водой.
оксид металла + вода → щелочь

Получение нерастворимых в воде оснований

При добавлении в раствор растворимой соли среднеактивных и пассивных металлов щелочи. Получение растворимых в воде оснований этим методом возможно в том случае, если в результате реакции получится нерастворимая соль.

Получение в промышленности

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Путем воздействия постоянного электрического тока на водные растворы хлоридов щелочных и щелочноземельных металлов.
2NaCl + 2H2OH2↑ +Cl2 ↑ +2NaOH

Физические и химические свойства оснований

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Определите основания по цвету раствора и осадка в пробирке. Какие физические и химические свойства имеют основания?

Физические свойства: В обычных условиях щелочи это растворимые в воде твердые вещества белого цвета. Некоторые нерастворимые в воде основания имеют другие цвета. Cu(OH)2 голубого, CuOH желтого, Fe(OH)3 бурого, Fe(ОН)2 зеленовато-бурого, Сг(ОН)3 серовато-зеленого цвета.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами
гидроксид железа (III)
Основания в химии - классификация, получение, свойства, формулы и определения с примерами
гидроксидмеди (II)
Основания в химии - классификация, получение, свойства, формулы и определения с примерами
гидроксид натрия
Основания в химии - классификация, получение, свойства, формулы и определения с примерами
гидроксид кальция

Все щелочи бывают скользкие как мыло. При растворении в воде они образуют бесцветный раствор.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

На рисунке показывается, как меняется цвет индикаторов под действием щелочей. Нерастворимые в воде основания не меняют окраску индикаторов.

Слово «индико» в переводе с латинского означает «показываю», «определяю». Индикаторы это сложные органические соединения. Для определения щелочей (а также кислот) используют такие индикаторы, как лакмус, фенолфталеин и метилоранж.

Химические свойства: Взаимодействие оснований с кислотами (реакция нейтрализации). Для всех оснований характерным химическим свойством является их взаимодействие с кислотами. При взаимодействии кислот с основаниями образуются соль и вода.

Основания в химии - классификация, получение, свойства, формулы и определения с примерами Нальем в химический стакан (или колбу) на 1/4 раствора гидроксида натрия и добавим к нему 1 2 капли лакмуса. Затем к полученному раствору будем прикатывать раствор соляной кислоты.
Понаблюдайте, как меняется цвет. Запишите уравнение реакции.

Взаимодействие щелочей с амфотерными металлами. Из металлов щелочи взаимодействуют только с амфотерными металлами (Be, Zn, Al), при этом образуется соль и выделяется водород.

Zn+ 2NaOH Na2ZnO2 + H2 ↑
2Al + 2NaOH + 2H2O 2NaAlO2+3H2 ↑

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Взаимодействие щелочей с неметаллами. Щелочи взаимодействуют с целым рядом неметаллов (CL, Br2), образуя соль и воду. Лишь при взаимодействии с кремнием выделяется водород.
Si+ 2NaOH +H2ONa2SiO3+ 2H2 ↑

Щелочам и нерастворимым в воде основаниям присущи и отличающие их друг от друга химические свойства.

Взаимодействие щелочей с кислотными оксидами. Щелочи вступают в реакцию с кислотными оксидами, а нерастворимые в воде основания не вступают в такую реакцию. 1 моль таких кислотных оксидов, как CO2, S02, SO2, вступает в реакцию соединения с 1 молем однокислотной щелочи.
CO2+NaOH → NaHCO3

Хранить щелочи в открытой посуде нельзя. Потому что при вступлении в реакцию с углекислым газам воздуха образуются соответствующие карбонаты.

В этих реакциях даже в том случае, если кислотного оксида берется в избытке, реакция соединения всё равно происходит. При избытке щелочи, например, в соотношении молей 1:2, получится нормальная соль и вода.

Такие кислотные оксиды, как CO2, SO2, SO2, в зависимости от мольного соотношения, вступают в различные реакции с двухкислотными щелочами, при этом получаются различные продукты.

Из кислотных оксидов NO2 при взаимодействии с щелочами образует две различные соли.
2NO2 + 2NaOH → NaNO3 + NaNO2 +H2O

Взаимодействие щелочей с амфотерными оксидами и гидроксидами. Щелочи также взаимодействуют с амфотерными оксидами и гидроксидами, образуя соль и воду.

Разложение оснований. В то время как щелочи не разлагаются, нерастворимые в воде основания при нагревании разлагаются. Самыми неустойчивыми основаниями являются гидроксиды серебра и ртути. Они подвергаются разложению при комнатной температуре.
Hg(OH)2 → HgO+ H2O

Задача:

При размешивании растворов, как показано на рисунке, то в I сосуде красный цвет лакмуса превратится в голубой, а во II сосуде голубой цвет превратится в красный. На основе этих данных определите, какое из веществ X, Y, Z является кислотой, а какие основанием?

Кислота Основание
A) X, Y Z
В) Y, Z X
С) Y X, Z
D) Z X, Y
Е) X Y, Z

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Решение: Если в I сосуде красный цвет лакмуса превращается в голубой, то Х→кислота, a Y→ щелочь.
А во II сосуде голубой цвет лакмуса превращается в красный, значит, Z→ щелочь, a X→ кислота.
Ответ: E

Задача:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Какие выражения верные, если в результате реакции получается нерастворимая в воде соль?
1) Формула полученной соли: YxAb
2) Получится х+b моль Н2О
3) xb
4) Продукты реакции проводят электрический ток
5) Полученный в реакции v (H2O)=x=b

Вступившие в реакцию вещества v (моль)
HxA кислота a
Y(OH)b основание a

Решение: HxA + Y(OH)b→ YxAb+ xH2O (или b H2O).
Ответ: 1:5. Согласно условиям, поскольку соль YxAb нерастворимая в воде соль, то она не проводит электрический ток.

Задача:

Что можно определить на основе таблицы?
1) Массу оксида
2) Ar (X)
3) Степень окисления X в оксиде.

Вещества, полностью вступившие в реакцию Продукт реакции
X O2 XO
4 г 1,6 г

Решение:

m(ХО) = 4+1,6 = 5,6г;

Ответ: 1,2,3

Задача:

Вещества, вступившие в реакцию, и их мольное количество Масса полученной соли (в г) N (атом) в молекуле полученной соли (в целом)
Fe(OH)3 HNO3
1 xl yl z1
x2 y2 z2
x3 y3 z3
1 2
A) х1Основания в химии - классификация, получение, свойства, формулы и определения с примерамих2Основания в химии - классификация, получение, свойства, формулы и определения с примерамих3 z1Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz2Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz3
В) х3Основания в химии - классификация, получение, свойства, формулы и определения с примерамих2Основания в химии - классификация, получение, свойства, формулы и определения с примерамих1 z1Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz2Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz3
С) х1Основания в химии - классификация, получение, свойства, формулы и определения с примерамих2Основания в химии - классификация, получение, свойства, формулы и определения с примерамих3 z3Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz2Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz1
D) x2Основания в химии - классификация, получение, свойства, формулы и определения с примерамиx1Основания в химии - классификация, получение, свойства, формулы и определения с примерамиx3 z2Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz1Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz3
Е) х3Основания в химии - классификация, получение, свойства, формулы и определения с примерамих2Основания в химии - классификация, получение, свойства, формулы и определения с примерамих1 z3Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz2Основания в химии - классификация, получение, свойства, формулы и определения с примерамиz1

Если y3y2y1, то определите отношения между x1x2χ3 и z1z2z3.

Решение:

Основания в химии - классификация, получение, свойства, формулы и определения с примерами
Основания в химии - классификация, получение, свойства, формулы и определения с примерами
Основания в химии - классификация, получение, свойства, формулы и определения с примерами

Ответ: E x3x2x1 z3z2z1

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник: www.evkova.org

Рейтинг
Загрузка ...