Возможность применения решений теории упругости при расчете вертикальных деформаций обоснована Н.М. Герсевановым. Однако такой подход справедлив в пределах таких нагрузок, при которых наблюдается линейная зависимость между напряжениями и деформациями.
Запроектированные согласно зависимости (8.29) фундаменты во многих случаях получаются неэкономичными из-за недоиспользования несущей способности грунтов, особенно песчаных, а также глинистых (твердой, полутвердой и тугопластичной консистенции) даже в линейной стадии деформирования. В связи с этим СНиП 2.02.01—83* «Основания зданий и сооружений» рекомендует ограничивать среднее давление под подошвой фундамента расчетным сопротивлением грунта основания R , что позволяет рассчитывать осадки фундаментов по линейной зависимости между напряжениями и деформациями. Таким образом, при расчете оснований по деформациям необходимо, чтобы удовлетворялось условие
где Р — среднее давление по подошве фундамента; R — расчетное сопротивление грунта основания.
ГРАНД-Смета. Часть 05. Применение поправочных коэффициентов
СНиП 2.02.01—83* рекомендует следующую формулу для определения расчетного сопротивления грунта основания:
где γ с1 и γ с2 — коэффициенты условий работы соответственно грунтового основания и сооружения во взаимодействии с основанием, принимаемые по табл. 8.3 ; k — коэффициент надежности, принимаемый при определении прочностных характеристик грунта непосредственными испытаниями, k = 1,0; при использовании табличных расчетных значений грунтов k = 1,1; k z — коэффициент, принимаемый равным при ширине подошвы фундамента b ≤10 м, k z = 1,0; при b ≥10м — k z = Z 0 /b + 0,2 (здесь Z 0 = 8 м); M γ ; M q , М с — коэффициенты, зависящие от угла внутреннего трения несущего слоя грунта ; b — ширина подошвы фундамента, м;
Таблица 8.3. Значения коэффициентов условий работы γ с1 и γ с2
при отношении длины сооружения (отсека) к его высоте L/H, равном
Крупнообломочные с песчаным
заполнителем и песчаные, кроме мелких и пылеватых
Пески мелкие
Пески пылеватые:
— маловлажные и влажные
— насыщенные водой
Глинистые, а также крупнообломочные
с глинистым заполнителем с
показателем текучести грунта или заполнителя:
J L ≤ 0,25
0,25≤ J L J L > 0,5
1,0
1,0
1,0
1,1
1,1
1,0
1. Конструкции сооружений с жесткой конструктивной схемой приспособлены к восприятию усилий от деформаций оснований.
2. Для зданий с гибкой конструктивной схемой γ с2 принимается равным 1.
3. При промежуточных значениях L/H коэффициент γ с2 определяется по интерполяции.
Таблица 8.4. Значения коэффициентов M γ , M q , М с
φ | M γ | М q | М с | φ | M γ | М q | М с |
0,00 | 1,00 | 3,14 | 23 | 0,69 | 3,65 | 6,24 | |
1 | 0,01 | 1,06 | 3,23 | 24 | 0,72 | 3,87 | 6,45 |
2 | 0,03 | 1,12 | 3,32 | 25 | 0,78 | 4,11 | 6,67 |
3 | 0,04 | 1,18 | 3,41 | 26 | 0,84 | 4,37 | 6,90 |
4 | 0,06 | 1,25 | 3,51 | 27 | 0,91 | 4,64 | 7,14 |
5 | 0,08 | 1,32 | 3,61 | 28 | 0,98 | 4,93 | 7,40 |
6 | 0,80 | 1,39 | 3,71 | 29 | 1,06 | 5,25 | 7,67 |
7 | 0,12 | 1,47 | 3,82 | 30 | 1,15 | 5,59 | 7,95 |
8 | 0,14 | 1,55 | 3,93 | 31 | 1,24 | 5,95 | 8,24 |
9 | 0,16 | 1,64 | 4,05 | 32 | 1,34 | 6,34 | 8,55 |
10 | 0,18 | 1,73 | 4,17 | 33 | 1,44 | 6,76 | 8,88 |
11 | 0,21 | 1,83 | 4,29 | 34 | 1,55 | 7,22 | 9,22 |
12 | 0,23 | 1,94 | 4,42 | 35 | 1,68 | 7,71 | 9,58 |
13 | 0,26 | 2,05 | 4,55 | 36 | 1,81 | 8,24 | 9,97 |
14 | 0,29 | 2,17 | 4,69 | 37 | 1,95 | 8,81 | 10,37 |
15 | 0,32 | 2,30 | 4,84 | 38 | 2,11 | 9,44 | 10,80 |
16 | 0,36 | 2,43 | 4,94 | 39 | 2,28 | 10,11 | 11,25 |
17 | 0,39 | 2,57 | 5,15 | 40 | 2,46 | 10,85 | 11,73 |
18 | 0,43 | 2,73 | 5,31 | 41 | 2,66 | 11,64 | 12,24 |
19 | 0,47 | 2,89 | 5,48 | 42 | 2,88 | 12,51 | 12,79 |
20 | 0,51 | 3,06 | 5,66 | 43 | 3,12 | 13,46 | 13,37 |
21 | 0,56 | 3,24 | 5,84 | 44 | 3,38 | 14,50 | 13,98 |
22 | 0,61 | 3,44 | 6,04 | 45 | 3,66 | 15,64 | 14,64 |
γ II и γ’ II — осредненный расчетный удельный вес грунтов, залегающих соответственно ниже подошвы фундамента и в пределах глубины заложения фундамента, кН/м3 (при наличии подземных вод определяется с учетом взвешивающего действия воды); d 1 — глубина заложения фундамента от пола подвала; при отсутствии пола подвала — от планированной поверхности, м; d b — глубина подвала, считая от планировочной отметки, но не более 2 м (при ширине подвала В > 20 м принимается db = 0); c II — расчетное значение удельного сцепления несущего слоя грунта, кПа (индекс II означает, что расчет ведется по второй группе предельных состояний).
Формула (8.38) базируется на решении Н.П. Пузыревского, позволяющем определить давление на основание, при котором в массиве под краями фундамента образуются зоны предельного равновесия. Тем не менее формула (8.38) отличается по своей структуре от решения Н.П. Пузыревского дополнительными коэффициентами ( γ с1 и γ с2 ), которые повышают надежность расчетов и позволяют учесть соответственно влияние прочностных и деформационных свойств грунтов на формирование зон предельного равновесия под подошвой фундамента и жесткости возводимого сооружения.
Введенный в формулу (8.38) дополнительный член, равный ( M q — 1), позволяет учесть действие бытовой пригрузки грунта. При разработке котлована в известной мере сохраняется напряженное состояние грунта, обусловленное действием бытового давления грунта. При этом увеличивается предельное давление, при котором зоны местного нарушения под краем фундамента достигают величины, равной 0,25 ширины фундамента. Однако остаточное напряженное состояние зависит от глубины вскрываемого котлована и его ширины. Тогда с увеличением глубины котлована, т.е. с возрастанием бытовой нагрузки, в рассматриваемом слое будет большее остаточное давление.
Согласно формуле (8.38) расчетное сопротивление грунта основания определяется для несущего слоя, где залегает подошва фундамента. Иногда на глубине Z под несущим слоем залегает менее прочный грунт ( рис. 8.8 ), в котором могут развиваться пластические деформации. В этом случае рекомендуется проверять напряжения, передаваемые на кровлю слабого грунта по условию
где σ zp — дополнительное вертикальное напряжение; σ zg — напряжение от собственного веса грунта; R z — расчетное сопротивление грунта на глубине кровли слабого грунта z .
Рис. 8.8. Схема условного фундамента
Величина R z определяется по формуле (8.38), при этом коэффициенты условий работы γ с1 и γ с2 и надежности k , а также М γ , M q , М с находят применительно к слою слабого грунта.
Значения b z и d z определяют для условного фундамента АВСД , опирающегося на слабый грунт.
В этом случае принимают, что σ zp действует по подошве условного фундамента АВСД ( см. рис. 8.8 ), тогда площадь его подошвы
где N — нагрузка, передаваемая на обрез фундамента.
Зная площадь подошвы условного фундамента, можно определить его ширину по формуле
где а = (l- b)/2 (l и b — размеры проектируемого фундамента).
Определив по формуле (8.38) величину R z , проверяют условие (8.39). При его удовлетворении зоны сдвигов не играют существенной роли в величине развивающейся осадки. В противном случае необходимо принять большие размеры подошвы фундамента, при которых условие (8.39) удовлетворяется.
Условные расчетные сопротивления грунтов основания Rо
Для назначения предварительных размеров фундаментов зданий и сооружений используются условные расчетные сопротивления грунтов основания Rо, которые приведены в табл. 8.5 — 8.8.
Примеры
Пример 8.2. Определить условное расчетное сопротивление песка мелкого, если известно: природная влажность ω = 0,07; природная плотность ρ = 1,87 т/м3, плотность твердых частиц ρ S = 2,67 т/м3.
Источник: www.drillings.su
Статистические показатели в сфере строительства
В экономической деятельности отрасль строительства позволяет создавать новые объекты, расширять, проводить другие строительные работы. Итогами строительной деятельности являются готовые здания, которые можно вводить в эксплуатацию.
Строительством занимаются следующие организации:
- Общество, которое занимается монтажными и строительными работами;
- Общество, занимающееся ремонтными работами внутри здания, и предоставляет ремонтные услуги населению;
- Выполнение работ бурения;
- Общества, которые проектируют и создают модель будущего сооружения или здания;
- Контролирующие организации, которые управляют строительством;
- Организации с частной формой собственности, которые предоставляют ремонтные работы на заказ.
Строительная деятельность имеет определенные черты, чем отличается от других отраслей экономики, которыми являются:
- Строительные объекты находятся на определенной территории;
- Разнообразие продукции для строительства;
- Конкретный период времени для выполнения строительных работ
Основная доля итоговой продукции принадлежит строительно — производственной деятельности. Следует отметить, что итоговая продукция может приобретать форму предмета или быть в виде производственных работ. Также результаты строительства можно поделить на две группы: готовые здания и незавершенное строительство. Учет строительства ведется на основании стоимости строительных материалов, трудовых ресурсов и других затрат.
Не нашли что искали?
Просто напиши и мы поможем
Статистические данные строительных услуг
Статистическое наблюдение строительной деятельности не обходится без статистики экономических процессов, которые исследуют все стороны явлений и процессов социального и экономического характера. К экономической статистке относятся также показания капитальных вложений в строительную сферу, техническая оснащенность, ремонт и модернизация и т.д.
Статистические данные строительной деятельности могут быть получены от производственных процессов и общих результатов основных фондов. К числу главных показателей статистики строительной сферы относятся:
- готовые здания, сооружения;
- этап введения в пользование объекта строительства;
- количество выполненных работ на строительство;
- квадратура здания;
- квадратура жилого помещения.
Основные показатели статистического наблюдения строительства позволяют создавать методы, проводить анализ информации, чтобы определить основные направления в строительстве, выявить пути для совершенствования при использовании финансовых вложений и освоения строительной деятельности. При изучении статистических данных строительства используются такие типы статистического наблюдения как: специализированное, организованное наблюдение и ведение отчетности. Особое внимание уделяется ведение отчетности строительства, где отражаются все данные статистического наблюдения, формируется форма отчета и предоставляется в органы управления.
Существует два вида строительной отчетности это:
- Отчетность текущая, которая предоставляется в органы управления несколько раз в год, то есть каждый квартал и за полгода;
- Отчетность, которая предоставляется раз в год.
На рисунке 1 показаны основные объекты статистического наблюдения строительства:
Среди задач статистического наблюдения в строительстве можно выделить следующие:
- Обеспечение своевременного предоставления отчетности органам управления государства, а также наличие правильных и достоверных данных в отчете;
- Выявление запасов для повышения результативности строительной сферы, которые позволят ускорить процесс строительства;
- Глубокое изучение плана строительства;
- Обобщение и анализ информации статистических данных.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Методика статистического наблюдения строительства
Учет продукции строительства может осуществляться в двух формах: в натуральном виде и по видам стоимости. Строительная продукция в натуральном виде отражается в отчете на всех стадиях готовности. Если проводятся обычные работы строительства или монтажные, то определенные элементы могут учитываться в единицах. Показатели строительных работ такого вида можно найти в специальных журналах, в нарядах и ведомостях.
К данным строительной продукции в натуральном виде относятся:
- общее количество готовых объектов и принятых в пользование;
- квадратура здания, которое было передано в пользование;
- состояние готового объекта.
В статистике строительства валовый выпуск продукции является основным, и равняется общей стоимости проведенных строительных работ, включая ремонт, монтаж и т.д., которые выполнили организации самостоятельно или с помощью подрядчиков.
Чтобы решить задачи по статистике в сфере строительной деятельности, следует использовать группированный метод. С его помощью можно отразить все этапы производства по разным видам, а также дать характеристику составляющим капитального вложения, оценить уровень развития народного хозяйства, выявить отрасли эффективности деятельности.
Не нашли нужную информацию?
Закажите подходящий материал на нашем сервисе. Разместите задание – система его автоматически разошлет в течение 59 секунд. Выберите подходящего эксперта, и он избавит вас от хлопот с учёбой.
Гарантия низких цен
Все работы выполняются без посредников, поэтому цены вас приятно удивят.
Доработки и консультации включены в стоимость
В рамках задания они бесплатны и выполняются в оговоренные сроки.
Вернем деньги за невыполненное задание
Если эксперт не справился – гарантируем 100% возврат средств.
Тех.поддержка 7 дней в неделю
Наши менеджеры работают в выходные и праздники, чтобы оперативно отвечать на ваши вопросы.
Тысячи проверенных экспертов
Мы отбираем только надёжных исполнителей – профессионалов в своей области. Все они имеют высшее образование с оценками в дипломе «хорошо» и «отлично».
Гарантия возврата денег
Эксперт получил деньги, а работу не выполнил?
Только не у нас!
Деньги хранятся на вашем балансе во время работы над заданием и гарантийного срока
Гарантия возврата денег
В случае, если что-то пойдет не так, мы гарантируем возврат полной уплаченой суммы
Источник: spravochnikvs.com
Понятие коэффициента разрыхления грунта при разработке котлована и правила его расчета
Любое строительство начинается с разработки котлована под возведение фундамента. Прочное основание жилого дома является залогом его долговечности.
На это влияет множество факторов: качество используемых стройматериалов, грамотное проектирование, анализ геологических проб почвы на близость протекания грунтовых вод и прочее.
А при определении конструкции фундамента и глубины его залегания необходимо брать во внимание разновидность и свойства грунта.
Поэтому мало нанести разметку, надо еще знать особенности грунта. Базовой его характеристикой выступает коэффициент разрыхления. Он позволяет установить увеличение объема земли при извлечении из котлована. От этого будет зависеть стоимость земляных работ.
Какие есть типы почвы с точки зрения строительства?
Если подразделять грунт с точки зрения строительства, то он бывает следующих типов:
- Сцементированный (скальный) – камнеобразные горные породы, которые поддаются разработке только путем взрыва (по специальной технологии) либо дробления. Это обусловлено их повышенной плотностью и водостойкостью.
- Несцементированный – отличается меньшей дисперсностью и проще поддается обработке. Поэтому разработка может вестись с привлечением спецтехники (бульдозеров, экскаваторов) или вручную. К подобной категории грунта относятся чернозем, песок, суглинки, смешанные почвосмеси.
Грунты скального происхождения – это горные породы высокой плотности, выпучивающиеся на поверхность либо покрытые небольшим слоем почвы. К таким относят: гранит, известь, песчаник, доломит, базальт.
Благодаря высоким прочностным показателям, они устойчивы к негативным внешним факторам:
- температурным скачкам,
- воздействию влаги.
По сравнению с другими видами грунта, данный тип самый надежный в плане строительства оснований.
Только скальный грунт в нашей стране редко встречается. К тому же, он имеет определенные минусы, которые создают много проблем при устройстве подвальных помещений и цокольных этажей.
Крупнообломочный грунт – это результат раскола скальных пород. Он не подвержен сжатию, равномерно оседает и не пучнится. Благодаря своим природным свойствам он идеально подходит для оснований. Но рекомендуется поверх него укладывать песчаник и глину.
Стоит отметить еще один вид грунта – песчаный. Он включает жесткие частицы в виде зерен.
В зависимости от их величины, песок бывает:
- гравелистый;
- крупный;
- средний;
- мелкий;
- пылеобразный.
От крупности частиц зависит уровень проседания песка, следовательно, и фундамента. Крупнозернистый песок лучше всего. Он меньше подвергается уплотнению и не размывается водой, а также практически не подвержен вспучиванию.
Наиболее опасными считаются пылеобразные песчаники с гравийным включением. Их еще называют «плывунами», потому что они сильно подвижны и для основания мало подходят.
Глинистая почвосмесь состоит из мельчайших чешуйчатых частиц, за счет чего они крепко сцепляются между собой. Промежуточным видом грунта (между песком и глиной) считается супесчаник. В нем содержится до 10% глинистых частиц и до 30% суглинок. Свойства такой почвы зависят от места добычи, состава и влажности. Чем больше она насыщена влагой, тем выше текучесть.
Органогенные разновидности:
- растительная прослойка;
- органический ил;
- грунт с болот и торфяники.
Подобный вариант мало пригоден для возведения фундамента. Это потому, что в таком грунте имеются соли, которые разрушают строительный материал.
Свойства, влияющие на сложность работ по копке ямы
Сложность проведения работ по разработке котлована зависит от определенных свойств грунта:
- Влажность – пропорции масс воды, содержащейся в почве, и твердых включений. Выводится в процентном соотношении: меньше 5% — грунт сухой, свыше 30% — влажный, 5-30% — нормальный. Чем мокрее земля, тем труднее ее вынимать. Исключением из правил будет глина – ее проблематичней извлекать в сухом виде.
- Разрыхляемость – свойство грунта увеличиваться в объеме в процессе выемки и разработки.
- Плотность – масса одного кубометра в обычном состоянии. Наиболее плотный и тяжелый грунт – это скальный, легкий – песчаники и супеси.
- Сцепление – степень противодействия сдвигу. Супесчаный и песчаный грунт имеет показатель от 3 до 50 кПа, суглинки – от 5 до 200 кПа. Отсюда следует, что первый вид легче поддается разработке.
Что обозначает понятие коэффициент разрыхления?
С коэффициентом разрыхления грунта приходится иметь дело не только проектировщикам, но и строителям в ходе работы. Данную характеристику используют для сравнения действительной плотности почвы на стройплощадке с номинальной.
Разумеется, для учета надежнее было бы применить взвешивание материала, но это часто невозможно осуществить по ряду причин. Тогда приходится прибегать к объемному учету, где не требуется специальное оборудование.
Такой способ позволяет выявить разницу между количеством грунта добытого в карьере, имеющегося на складе и используемого на строительной площадке.
Поскольку объемы земли до и после извлечения различаются, то расчеты с участием коэф. придется перевозить грунта.
Коэффициент первоначального разрыхления (Кp) – это значение, обозначающее увеличение количества почвосмеси в результате разработки и складирования в насыпях, по сравнению с ее изначальным состоянием в уплотненном виде.
Характеристики почв представлены в таблице:
Из таблицы видно, что коэффициент первоначального рыхления напрямую зависит от плотности. Так что, чем тяжелее грунт в естественном состоянии, тем больше он займет места после выборки. Данный показатель учитывается при вывозке извлеченной земли.
Также существует коэф. остаточного разрыхления (Кop) – показатель степени усадки грунта, уложенного в насыпь, под воздействием определенных факторов:
- слеживания,
- контакта с влагой,
- утрамбовки механизмами.
Данное значение учитывают при определении количества необходимого материала, который требуется доставить на стройплощадку, а также при ссыпании для хранения и уничтожения земли.
Чтобы подсчитать стоимость земляных работ, необходимо сделать соответствующие подсчеты. Зная размер планируемого котлована, высчитывают объем грунта. Его перемножают на коэффициент первоначального рыхления.
Полученное значение и будет фактически подвергнуто разработке с помощью спецтехники и потом вывезено со строительного объекта. Полученную цифру и надо умножить на стоимость разработки, погрузки и транспортировки для 1 м3 грунта.
Коэффициенты разрыхления до и после разработки грунта различны. Они приведены в таблице в процентах:
Таблица первоначального на основании СНиП
Согласно строительным нормам СНИП, коэффициент рыхления грунтовой спеси (первоначальный) и значение плотности по соответствующим категориям, будут следующими:
Категория | Наименование | Плотность, тонн /м3 | Коэффициент разрыхления |
І | Влажный песок, супесчаник, суглинки | 1,5–1,7 | 1,1–1,25 |
І | Рыхлый сухой песок | 1,2–1,6 | 1,05–1,15 |
ІІ | Суглинок, гравий средне- и мелкодисперсный, сухая глина | 1,5–1,8 | 1,2–1,27 |
ІІІ | Глина, плотная суглинистая почва | 1,6–1,9 | 1,2–1,35 |
ІV | Влажная глина, сланцы, смесь суглинка с щебенкой и гравием, скальные породы | 1,9–2,0 | 1,35–1,5 |
Таблица остаточного на основании СНиП
Коэффициенты остаточного разрыхления по СНИП для разного типа грунта, приведены в таблице:
Разновидность грунта | Изначальное превышение объема грунта после разработки, % | Остаточное рыхление, % |
Ломовая глина | 28-32 | От 6 до 9 |
Гравий+галька | 16-20 | От 5 до 8 |
Растительного происхождения | 20-25 | От 3 до 4 |
Мягкий лесс | 18-24 | От 3 до 6 |
Плотный лесс | 24-30 | От 4 до 7 |
Песчаник | 10-15 | От 2 до 5 |
Скальные породы | Около 50 | От 20 до 30 |
Солончак (солонец) мягкий/твердый | 20-26/28-32 | От 3 до 6/от 5 до 9 |
Суглинок легкий/тяжелый | 18-24/24-30 | От 3 до 6/от 5 до 8 |
Супесчаная почвосмесь | 12-17 | От 3 до 5 |
Торфяник | 24-30 | От 8 до 10 |
Чернозем | 21-27 | От 5 до 7 |
Пример расчета
Если отталкиваться от школьного курса геометрии, то для подсчета количества рейсов грузового автомобиля, вывозимого извлеченный грунт, достаточно трех действий:
- рассчитать объем земли;
- рассчитать объем кузова самосвал;
- поделить первую величину на вторую.
Отсюда станет ясно, сколько по финансам придется потратиться на перевозку.
К примеру, проектируется дом с площадью основания 7х9 метров и двухметровой глубиной фундамента, с учетом настеленного пола и обустроенного подвала.
Тогда достаточно перемножить данные показатели, чтобы вывести количество почвы: 7х9х2 = 126 м3. Средний объем кузова машины составляет 12-13 м3. Исходя из этого определяется число рейсов: 126:12 = около 10.
Такие расчеты ошибочны, поскольку в реальности объем транспортируемого грунта явно отличен от расчетного. Это объясняется тем, что ему свойственно разрыхляться. За счет этого изначальный объем увеличивается. Вот для чего существует коэффициент разрыхления, которые учитывает подобные изменения.
Предположим, что требуется разработать определенный участок земли, отведенный под строительство какого-либо объекта. Стоит задача – выяснить, какой будет объем земли после завершения подготовительных мероприятий.
Известны следующие параметры:
- ширина ямы под фундамент – 1 метр;
- длина фундамента – 45 метров;
- углубление котлована – 1,5 метра;
- толщина подушки из гравия после уплотнения – 0,3 метра;
- тип почвы – влажный песчаник.
Принцип расчета будет следующим:
- Сначала определяют объем котлована (Vк): Vк = 45х1х1,5 = 67,5 м3.
- Теперь смотрят средний показатель первоначального разрыхления по влажному песку (в таблице). Он равен 1,2. Формула, по которой высчитывается количество грунта после его извлечения: V1 = 1,2х67,5 = 81 м3. Отсюда следует, что вывезти нужно 81 м3 выкопанной земли.
- Потом выясняют конечный объем земляного пласта после трамбовки под подушку по формуле: Vп = 45х1х0,3 = 13,5 м3.
- По таблице смотрят максимальный начальный и остаточный коэффициент рыхления гравия и гальки, переводят их в доли. Так, первый коэффициент kр = 20% или 1,2, а второй kор = 8% или 1,08. Считают объем гравия, который потребуется для укладки основания: V2 = Vп х kр/kор = 13,5х1,2/1,8 = 15 м3. Значит, понадобится для отсыпки такое количество гравия.
Подобный расчет приблизительный, но дает ориентировочное представление о том, что такое коэффициент разрыхления и для чего он нужен в строительстве. При составлении проекта возведения жилого строения задействуется более усложненная методика. А при строительстве небольшого объекта (например, гаража), подобная схема подойдет.
Заключение
Из всего изложенного материала ясно, что при разработке котлована под фундамент возводимого здания извлекаемый грунт меняется в объеме за счет формирования пустоты между кусками. Под этим подразумевается увеличение количества земли по отношению к той, что была вначале.
Такое явление характеризуется первичным коэффициентом разрыхления. Его значение варьируется в зависимости от типа грунта. А после укладки почвы в отвалы и после принудительной утрамбовки она вновь становится плотнее. Здесь уже имеет место остаточный коэффициент разрыхления.
Эти значения нужны для составления строительной сметы при подсчете земляных работ. А именно, во сколько обойдется аренда грузового автотранспорта и спецтехники. Если предварительная смета будет неверной, встанет необходимость в сверхурочном задействовании ТС, что обойдется дороже, поскольку услуга будет считаться сверхурочной.
Источник: stroim-domik.org
Смесь песчано гравийная природная коэффициент уплотнения
Как известно, при транспортировке инертных строительных материалов происходит их уплотнение. Видимый объем сыпучего материала сокращается, что может вызвать проблемы при сдаче материала заказчику.
Для разрешения данных вопросов заказчику желательно ознакомиться с таким нормативным понятием как коэффициент уплотнения.
Коэффициент уплотнения — это нормативное число, определяемое ГОСТом и учитывающее, во сколько раз сыпучий материал уплотнился (а, следовательно, уменьшился и его видимый объем) при перевозке. Величина коэффициента колеблется в пределах 1,05 — 1,52:
- для щебня и гравия 1,1 (ГОСТ 8267-93);
- для керамзита 1,15 (ГОСТ 9757-90);
- для ПГС 1,2 (ГОСТ 7394-85);
- для песка ГОСТом 8736-93 не устанавливается, по ГОСТ 7394-85 1,15;
- для многокомпонентной почво-смеси 1,5;
- для различных видов грунтов 1,1-1,4 (по СНиП)
Необходимо помнить, что плотность любого сыпучего материала зависит также от погоды, влажности, карьера добычи, расстояния от карьера до места назначения и т.п. Изменения плотности, например, в разных погодных условиях могут достигать 1,5-2 раз.
Итак, для корректного расчета объема заказанного материала нужно замерить объем кузова (ДхШхВ, где В равняется уровню материала, а не высоте бортов). Полученный объём надо умножить на коэффициент уплотнения. В случае если сыпучий груз доставлен с так называемой «горкой» над бортом, к полученному объему всегда прибавляют 2 куб. м. Это среднее значение данного объёма, принятое у всех поставщиков нерудных материалов.
+7 +7 г. Екатеринбург, ул. Заводская, 27 офис 213
Обращаем Ваше внимание на то, что данный сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой, определяемой положениями статьи 437 Гражданского кодекса Российской Федерации. Информация, представленная на сайте, ни при каких условиях не должна рассматриваться как предложение, сделанное Продавцом какому-либо лицу. Продавец оставляет за собой право в любое время изменить данную информацию без предварительного уведомления.
Уважаемый посетитель сайта, ваши персональные данные обрабатываются на сайте в целях его функционирования и если Вы не согласны, то должны покинуть сайт. Продолжение пользования сайтом является согласием на обработку ваших персональных данных. С политикой обработки персональных данных Вы можете ознакомиться здесь.
Технические виды строительных смесей
ПГС — смесь из песка и гравия. Используется для строительных работ. Состав смеси регламентируется ГОСТом 23735-2014.
ЩПС — смесь из щебня, гравия, песка естественной добычи. Производится по ГОСТу 25607-2009.
ЩПС из дробленых бетонов — изготавливаются по техническому регламенту ГОСТа 32495-2013.
В оценке качества смесей учитывают:
- общие показатели составного материала;
- свойства песка;
- свойства щебня, гравия.
Сыпучие материалы проверяют по плотности, прочности, содержанию пыли и сора, включениям опасных веществ.
Происхождение и пути добычи строительных смесей
Песчано-гравийные смеси добывают из гравийно-песчаных, валуйно-гравийно-песчаных пород.
В состав ПГС входят:
- песок крупностью 0,05–5 мм;
- гравий 5–70 мм;
- валуны свыше 70 мм.
Наличие гравия колеблется от 10-90% от общей массы.
Производят два вида песчано-гравийной смеси:
- природная смесь, добываемая и поставляемая без переработки;
- обогащенная смесь добывается природным путем, обогащается добавкой или извлечением песчано-гравийной составляющей.
Добычу ПГС производят из оврагов, озер и морей. Морской материал самый чистый. В остальных могут быть примеси из глины, известняка, сора.
В состав ЩПС естественного происхождения входит щебень основной (40–80 мм, 80–120 мм) и расклинивающей фракции (5–20 мм, 5–40 мм).
Дробимость щебня из осадочных пород, а также щебня из изверженных пород имеет марку 400 и 600 соответственно.
ЩПС из дробленого бетона, железобетона включает:
- неорганическую щебеночную дробь крупностью от 5 мм;
- неорганический песок, получаемый из дробимого бетонного щебня.
Материалы являются дробимыми остатками при разрушении бетонных или железобетонных строительных конструкций.
Преимущества штукатурных смесей
Среди основных достоинств смесей с включением цемента – их относительно небольшая стоимость, возможность применения при производстве отделочных работ любого типа, способность хорошо сцепляться с гладкими поверхностями (пенобетон, пеноблоки, оштукатуренные ранее покрытия и т.д.), умеренный расход даже на поверхностях с повышенной пористостью, влагостойкость. Среди недостатков стоит отметить длительное высыхание и сложность нанесения в определенное количество слоев.
Преимущества сложных смесей – это:
Небольшой вес;
При учете прочности на сжатие выделяют марки строительных смесей, от М10 до М300. Число после буквы «М» обозначает ту нагрузку, которую способен выдержать затвердевший и набравший заданную прочность раствор, сделанный из промаркированной смеси.
При работе с растворами из ЦПС требуется соблюдать температурный режим в помещении, а если работы ведутся на улице и при отрицательных температурах – потребуется добавление противоморозных добавок.
Область применения
ПГС применяют при возведении оснований под автомобильные дороги, подушек фундаментов, обратной засыпке котлованов и отсыпке насыпей.
В строительстве железных дорог применяют балластные смеси по ГОСТу 7394-85, состоящие из песка и гравия либо только из гравия.
ЩПС естественных пород применяют в дорожном строительстве.
ЩПС из дробленых строительных материалов используются в производстве бетонов, а также в подсыпках и основаниях при возведении зданий.
Порядок производства работ
Сыпучие материалы во время строительства укладываются на величину, равную произведению размера самых крупных частиц, умноженному на 1,5. Один слой укладки должен быть не менее 10 см.
Песок должен увлажняться в случае отсыпки основания насухо.
Расход воды зависит от температурных условий.
Методы уплотнения грунта при устройстве оснований из ПГС:
- уплотнение поверхностного слоя тяжелыми трамбовками;
- применение вибрационных машин;
- использование трамбовок;
- глубинное гидровиброуплотнение.
Контроль плотности при трамбовке производят на величину 1/3 уплотняемого слоя, на толщину не менее 8 см.
Коэффициенты уплотнения
Средний коэффициент естественного уплотнения сыпучих смесей имеет значение 1,2, т. е. объем уплотненной смеси уменьшится в 1,2 раза.
По ГОСТу максимальный коэффициент уплотнения отсева при транспортировке равен 1,1.
Коэффициенты уплотнения при строительных работах приведены в СНиП «Земляные сооружения, основания и фундаменты» таблица 6. Песок имеет k=0,92÷0,98.
При дорожном строительстве, коэффициенты к материалам применяются согласно СНиП «Автомобильные дороги». Для ПГС оптимального состава с маркой щебня 800 коэффициент запаса уплотнения принимается 1,25–1,3. При марке щебня 600÷300 — коэффициент запаса будет 1,1–1,5. Коэффициент запаса шлака принимается 1,3–1,5.
Объемы материалов в смете закладывают с учетом приведенных коэффициентов.
Приборы для измерения плотности грунта
При послойной укладке грунта, контролируется плотность каждого уровня. С помощью плотномера или пенетрометра можно проверить трамбовку песка на стройке.
Плотномер электромагнитный — электронный прибор, измеряющий плотность посредством электромагнитного излучения. Он способен выдать характеристики гранулометрии, влажности, определить пределы пластичности и текучести.
Конструкции зданий и сооружений
Зависит от песка. Когда-то нашел К=1,18, с тех пор его и беру.
Когда-то стоял вопрос разрыхления грунта. Прикладываю то, что «накопал».
Вы проектировщик, или на стройке присутствуете?
Объясню проблему: работаю в фирме, строящей коттеджи. В сметы закладываем коэффициент к объемы от 1,45 до 1,55 от балды. При коэффициенте 1,45 прорабы упорно жалуются, что не хватает.
Я пытаюсь выяснить реальны коэф. и вижу в разных местах, что он порядка 1,05-1,2. и начинаю чего то охреневать. Сколько нужно закладывать на потери (при транспортировке и разносу по участку)? Как понимаю, зачастую на карьере еще не досыпают людям, и с этим никак нельзя бороться. но какой то заоблачный коэффициент выходит.
Источник: lesprom-08.ru