ВАШИ ЗАКАЗЫ ENG ПОИСК ПО САЙТУ
Испытания трубопроводов на прочность, плотность и герметичность
Категорийные трубопроводы после окончания сборочно—сварных работ, при необходимости термообработки, контроля качества сварных соединений неразрушающими методами, установки и закрепления всех опор и подвесок, подвергаются:
— визуальному осмотру;
— испытанию на прочность и плотность;
— при необходимости дополнительным испытаниям на герметичность.
Визуальный осмотр трубопровода предусматривает проверку: соответствия смонтированного трубопровода проектной документации; правильности установки запорных устройств, легкости их закрывания и открывания; установку всех проектных креплений и снятие всех временных креплений; окончание всех сварочных работ, включая врезки воздушников и дренажей; завершения работ по термообработке (при необходимости).
Вид испытания (на прочность и плотность, дополнительное испытание на герметичность), способ испытания (гидравлический, пневматический) и величина испытательного давления указываются в проекте для каждого трубопровода.
Суперсооружения: Подводный Газопровод. National Geographic. Наука и образование
Испытанию, как правило, подвергается весь трубопровод. Допускается проводить испытание трубопровода отдельными участками с нанесенной тепловой или антикоррозионной изоляцией трубопроводов.
При проведении испытаний вся запорная арматура, установленная на трубопроводе, должна быть полностью открыта, сальники — уплотнены на месте регулирующих клапанов и измерительных устройств должны быть установлены монтажные катушки; все врезки, штуцера, бобышки должны быть заглушены.
Для технологических трубопроводов испытание на прочность и плотность трубопроводов с условным давлением до 10 МПа может быть гидравлическим или пневматическим. Как правило, испытание проводится гидравлическим способом. Замена гидравлического испытания на пневматическое допускается в следующих случаях:
а) если несущая строительная конструкция или опоры не рассчитаны на заполнение трубопровода водой;
6) при температуре окружающего воздуха ниже 0°С и опасности промерзания отдельных участков трубопровода;
в) если применение жидкости (воды) недопустимо по иным причинам.
Испытание на прочность и плотность трубопроводов, рассчитанных на условное давление свыше 10 МПа, следует проводить гидравлическим способом. В технически обоснованных случаях для трубопроводов с условным давлением до 50 МПа допускается замена гидравлического испытания на пневматическое при условии контроля этого испытания методом акустической эмиссии (только при положительной температуре окружающего воздуха). На этот вид испытания разрабатывается инструкция, содержащая мероприятия, исключающие возможность разрушения трубопроводов в случае появления критического АЭ—сигнала.
Для трубопроводов пара и горячей воды предусмотрены гидравлические испытания с целью проверки прочности и плотности трубопроводов и их компонентов, а также всех сварных и других соединений. Подлежат испытанию:
Строительство трубопроводов
а) все элементы и детали трубопроводов; их гидравлическое испытание не является обязательным, если они подвергались 100 % контролю ультразвуком или иным равноценным методом неразрушающей дефектоскопии;
б) блоки трубопроводов; их гидравлическое испытание не является обязательным, если все составляющие их элементы были подвергнуты испытанию в соответствии с пунктом «а», а все выполненные при их изготовлении и монтаже сварные соединения проверены методами неразрушающей дефектоскопии (ультразвуком или радиографией) по всей протяженности;
в) трубопроводы всех категорий со всеми элементами и их арматурой после окончания монтажа.
Допускается проведение гидравлического испытания отдельных и собранных компонентов совместно с трубопроводом, если при изготовлении или монтаже невозможно провести их испытания отдельно от трубопровода.
Коммунально-сетевые газопроводы подвергаются пневматическим испытаниям на герметичность. Стальные наружные газопроводы, в том числе восстановленные тканевым шлангом, полиэтиленовые, проложенные внутри стальных, всех категорий, а также газопроводы газорегуляторных пунктов, внутренние газопроводы промышленных производств, законченные строительством или реконструкцией, должны быть испытаны на герметичность.
Испытания газопроводов после их монтажа должна производить строительно- монтажная организация в присутствии представителей технадзора заказчика и газораспределительной организации.
Коммунально—сетевые теплопроводы после завершения строительно-монтажных работ должны быть подвергнуты окончательным (приемочным) испытаниям на прочность и герметичность, Кроме того, конденсатопроводы и трубопроводы водяных тепловых сетей должны быть промыты, паропроводы — продуты паром, а трубопроводы водяных тепловых сетей при открытой системе теплоснабжения и сети горячего водоснабжения — промыты и продезинфицированы.
Трубопроводы, прокладываемые бесканально и в непроходных каналах, подлежат также предварительным испытаниям на прочность и герметичность в процессе производства строительно—монтажных работ.
Испытание магистральных трубопроводов на прочность и проверку на герметичность следует производить после полной готовности участка или всего трубопровода (полной засыпки, обвалования или крепления на опорах, очистки полости, установки арматуры и приборов, катодных выводов и представления исполнительной документации: на испытываемый объект).
Испытание трубопроводов на прочность и проверку на герметичность следует производить гидравлическим (водой, незамерзающими жидкостями) или пневматическим (воздухом, природным газом) способом для газопроводов и гидравлическим способом для нефте— и нефтепродуктопроводов.
Испытания газопроводов в горной и пересеченной местности разрешается проводить комбинированным способом (воздухом и водой или газом и водой).
Гидравлическое испытание трубопроводов водой при отрицательной температуре воздуха допускается только при условии предохранения трубопровода, линейной арматуры и приборов от замораживания.
Гидравлические испытания трубопроводов. Согласно раздела 8 правил [1] гидравлические испытания технологических трубопроводов должны производиться преимущественно в теплое время года при положительной температуре окружающего воздуха. Для гидравлических испытаний должна применяться, как правило, вода с температурой не ниже 5 °С и не выше 40 °С или специальные смеси (для трубопроводов высокого давления). Если гидравлическое испытание производится при температуре окружающего воздуха ниже 0 °С, следует принять меры против замерзания воды и обеспечить надежное опорожнение трубопровода.
После окончания гидравлического испытания трубопровод следует полностью опорожнить и продуть до полного удаления воды.
Величина пробного давления на прочность (гидравлическим или пневматическим способом)устанавливается проектом и должна составлять не менее:
где Р — расчетное давление трубопровода, МПа;
[σ]20 — допускаемое напряжение для материала трубопровода при 20 °С;
[σ]t — допускаемое напряжение для материала трубопровода при максимальной положительной расчетной температуре.
Во всех случаях величина пробного давления должна приниматься такой, чтобы эквивалентное напряжение в стенке трубопровода при пробном давлении не превышало 90 % предела текучести материала при температуре испытания.
Величину пробного давления на прочность для вакуумных трубопроводов и трубопроводов без избыточного давления для токсичных и взрывопожароопасных сред следует принимать равной 0,2 МПа.
При заполнении трубопровода водой воздух следует удалять полностью. Давление в испытываемом трубопроводе следует повышать плавно. Скорость подъема давления должна быть указана в технической документации.
Испытываемый трубопровод допускается заливать водой непосредственно от водопровода или насосом при условии, чтобы давление, создаваемое в трубопроводе, не превышало испытательного давления.
Требуемое давление при испытании создается гидравлическим прессом или насосом, подсоединенным к испытываемому трубопроводу через два запорных клапана.
Испытательное давление в трубопроводе выдерживают в течение 10 минут (испытание на прочность), после чего его снижают до рабочего давления, при котором производят тщательный осмотр сварных швов (испытание на плотность).
По окончании осмотра давление вновь повышают до испытательного и выдерживают еще 5 минут, после чего снова снижают до рабочего и вторично тщательно осматривают трубопровод.
Продолжительность испытания на плотность определяется временем осмотра трубопровода и проверки герметичности разъемных соединений.
После окончания гидравлического испытания все воздушники на трубопроводе должны быть открыты и трубопровод должен быть полностью освобожден от воды через соответствующие дренажи.
Результаты гидравлического испытания на прочность и плотность признаются удовлетворительными, если во время и0пытания не произошло разрывов, видимых деформаций, падения давления по манометру, а в основном металле, сварных швах, корпусах арматуры, разъемных соединениях и во всех врезках не обнаружено течи и запотевания.
Одновременное гидравлическое испытание нескольких трубопроводов, смонтированных на общих несущих строительных конструкциях или эстакаде, допускается, если это установлено проектом.
В соответствии с разделом 4 правил [2] минимальная величина пробного давления при гидравлическом испытании трубопроводов пара и горячей воды должна составлять 1,25 рабочего давления, но не менее 0,2 МПа.
Арматура и фасонные детали трубопроводов должны подвергаться гидравлическому испытанию пробным давлением в соответствии с НТД.
Максимальная величина пробного давления устанавливается расчетом на прочность по НТД, согласованной в установленном порядке. Величину пробного давления выбирает организация—изготовитель (проектная организация) в пределах между минимальным и максимальным значениями.
Гидравлическое испытание трубопроводов должно производиться при положительной температуре окружающего воздуха. При гидравлическом испытании паропроводов, работающих с давлением 10 МПа и выше, температура их стенок должна быть не менее 10 °С.
Давление в трубопроводе следует повышать плавно. Скорость подъема давления должна быть указана в НТД на изготовление трубопровода. Использование сжатого воздуха для подъема давления не допускается.
Давление при испытании должно контролироваться двумя манометрами. При этом выбираются манометры одного типа с одинаковым классом точности, пределом измерения и ценой деления.
После снижения пробного давления до рабочего производится тщательный осмотр трубопровода по всей его длине.
Разность между температурами металла и окружающего воздуха во время испытания не должна вызывать выпадения влаги на поверхностях объекта испытаний.
Трубопровод и его компоненты считаются выдержавшими гидравлическое испытание, если не обнаружено: течи, потения в сварных соединениях и в основном металле, видимых остаточных деформаций, трещин или признаков разрывов.
Испытания теплопроводов следует выполнять с соблюдением следующих основных требований:
— испытательное давление должно быть обеспечено в верхней точке (отметке) трубопроводов;
— температура воды при испытаниях должна быть не ниже 5 °С;
— при отрицательной температуре наружного воздуха трубопровод необходимо заполнить водой температурой не выше 70 °С и обеспечить возможность заполнения и опорожнения его в течение 1 ч;
— при постепенном заполнении водой из трубопроводов должен быть полностью удален воздух;
— испытательное давление должно быть выдержано в течение 10 мин и затем снижено до рабочего;
— при рабочем давлении должен быть произведен осмотр трубопровода по всей его длине.
Следуя нормам раздела 8 норм [3] трубопроводы водяных тепловых сетей следует испытывать давлением, равным 1,25 рабочего, но не менее 1,6 МПа; паропроводы, конденсатопроводы и сети горячего водоснабжения — давлением, равным 1,25 рабочего, если другие требования не обоснованы проектом (рабочим проектом).
Перед выполнением испытаний на прочность и герметичность надлежит:
— произвести контроль качества сварных стыков трубопроводов и исправление обнаруженных дефектов в соответствии с требованиями [3];
— отключить заглушками испытываемые трубопроводы от действующих и от пер- вой запорной арматуры, установленной в здании (сооружении);
—установить заглушки на концах испытываемых трубопроводов, вместо сальниковых (сильфонных) компенсаторов и селекционирующих задвижек при предварительных испытаниях;
— обеспечить на всем протяжении испытываемых трубопроводов доступ для их внешнего осмотра и осмотра сварных швов на время проведения испытаний;
— открыть полностью арматуру и байпасные линии.
Одновременные предварительные испытания нескольких трубопроводов на прочность и герметичность допускается производить в случаях, обоснованных проектом производства работ.
Измерения давления при выполнении испытаний трубопроводов на прочность и герметичность следует производить по аттестованным в установленном порядке двум (один —- контрольный) пружинным манометрам класса не ниже 1,5 с диаметром корпуса не менее 160 мм и шкалой с номинальным давлением 4/3 измеряемого.
Испытания трубопроводов на прочность и герметичность (плотность), их продувку, промывку, дезинфекцию необходимо производить по технологическим схемам (согласованным с эксплуатационными организациями), регламентирующим технологию и технику безопасности проведения работ (в том числе границы охранных зон).
Результаты гидравлических испытаний на прочность и герметичность трубопровода считаются удовлетворительными, если во время их проведения не произошло падения давления, не обнаружены признаки разрыва, течи или запотевания в сварных швах, а также течи в основном металле, фланцевых соединениях, арматуре, компенсаторах и других компонентах трубопроводов, отсутствуют признаки сдвига или деформации трубопроводов и неподвижных опор.
О результатах испытаний трубопроводов на прочность и герметичность следует составить акт по форме, приведенной в (СНиП 3.05.03-85, приложение 2).
Подвергаемый испытанию на прочность и проверке на герметичность магистральный трубопровод следует разделить на отдельные участки, ограниченные заглушками или линейной арматурой.
Линейная арматура может быть использована в качестве ограничительного элемента при испытании в случае, если перепад давлений не превышает максимальной величины, допустимой для данного типа арматуры.
Проверку на герметичность участков всех категорий трубопроводов необходимо производить после испытания на прочность и снижения испытательного давления до максимального рабочего, принятого по проекту.
Линейная часть и лупинги нефтепроводов, газопроводов и нефтепродуктопроводов должны подвергаться циклическому гидравлическому испытанию на прочность (в исключительных случаях проведение испытаний газопроводов на прочность допускается газом) и проверке на герметичность (газопроводы испытывают газом). При этом количество циклов должно быть не менее трех, а величины испытательного давления в каждом цикле должны изменяться от давления, вызывающего в металле трубы напряжение 0,9. 0,75 предела текучести.
Общее время выдержки участка трубопровода под испытательным давлением без учета времени циклов снижения давления и восстановления должно быть не менее 24 ч.
Время выдержки участка под испытательным давлением должно быть не менее, ч:
— до первого цикла снижения давления — 6;
— между циклами снижения давления — 3;
— после ликвидации последнего дефекта или последнего цикла снижения давления — 3.
При заполнении трубопроводов водой для гидравлического испытания из труб должен быть полностью удален воздух. Удаление воздуха осуществляется поршнями-разделителями или через воздухоспускные краны, устанавливаемые в местах возможного скопления воздуха.
Трубопровод считается выдержавшим испытание на прочность и проверку на герметичность, если за время испытания трубопровода на прочность давление остается неизменным, а при проверке на герметичность не будут обнаружены утечки. При пневматическом испытании трубопровода на прочность допускается снижение давления на 1 % за 12 ч.
При обнаружении утечек визуально, по звуку, запаху или с помощью приборов участок трубопровода подлежит ремонту и повторному испытанию на прочность и проверке на герметичность.
После испытания трубопровода на прочность и проверки на герметичность гидравлическим способом из него должна быть полностью удалена вода.
Полное удаление воды из газопроводов должно производиться с пропуском не менее двух (основного и контрольного) поршней—разделителей под давлением сжатого воздуха или в исключительных случаях природного газа.
Скорость движения поршней—разделителей при удалении воды из газопроводов должна быть в пределах 3. 10 км/ч.
Результаты удаления воды из газопровода следует считать удовлетворительными, если впереди контрольного поршня—разделителя нет воды и он вышел из газопровода неразрушенным. В противном случае пропуски контрольных поршней—разделителей по газопроводу необходимо повторить.
Полное удаление воды из нефте— и нефтепродуктопровода производится одним поршнем-разделителем, перемещаемым под давлением транспортируемого продукта или самим транспортируемым продуктом. При отсутствии продукта к моменту окончания испытания удаление воды производится двумя поршнями—разделителями, перемещаемыми под давлением сжатого воздуха.
Способ удаления воды из нефте— и нефтепродуктопроводов устанавливается заказчиком, который обеспечивает своевременную подачу нефти или нефтепродукта.
Заполнение трубопровода на участках переходов через водные преграды нефтью или нефтепродуктом должно производиться таким образом, чтобы полностью исключить возможность поступления в полость трубопровода воздуха.
При всех способах испытания на прочность и герметичность для измерения давления должны применяться поверенные, опломбированные и имеющие паспорт дистанционные приборы или манометры класса точности не ниже 1 и с предельной шкалой на давление около 4/3 испытательного, устанавливаемые вне охранной зоны.
О производстве и результатах очистки полости, а также испытаниях трубопроводов на прочность и проверки их на герметичность необходимо составить акты.
Пневматические испытания трубопроводов. Пневматическое испытание технологических трубопроводов должно проводиться водухом или инертным газом и только в светлое время суток.
В соответствии с разделом 8 правил [1] пневматическое испытание следует проводить по документации, согласованной и утвержденной в установленном порядке.
При пневматическом испытании трубопроводов на прочность, подъем давления следует производить плавно со скоростью, равной 5 % от Ру в минуту, но не более 0,2 МПа в минуту с периодическим осмотром трубопровода на следующих этапах:
а) при рабочем давлении до 0,2 МПа — осмотр проводится при давлении, равном 0,6 от пробного давления, и при рабочем давлении;
б) при рабочем давлении выше 0,2 МПа осмотр производится при давлении, равном 0,3 и 0,6 от пробного давления, и при рабочем давлении.
Во время осмотра подъем давления не допускается. При осмотре обстукивание трубопровода, находящегося под давлением, не допускается.
Места утечки определяются по звуку просачивающегося воздуха, а также по пузырям при покрытии сварных швов и фланцевых соединений мыльной эмульсией и другими методами.
Наружные и внутренние газопроводы следует испытывать на герметичность воздухом, Для испытания газопровод в соответствии с проектом производства работ следует разделить на отдельные участки, ограниченные заглушками или закрытые линей- ной арматурой и запорными устройствами перед газоиспользующим оборудованием, с учетом допускаемого перепада давления для данного типа арматуры (устройств).
Если арматура, оборудование и приборы не рассчитаны на испытательное давление, то вместо них на период испытаний следует устанавливать катушки, заглушки.
Испытания газопроводов должна производить строительно—монтажная организация в присутствии представителя эксплуатационной организации.
Перед испытанием на герметичность внутренняя полость газопровода должна быть очищена в соответствии с проектом производства рабов Очистку полости внутренних газопроводов следует производить перед их монтажом продувкой воздухом.
Для проведения испытаний газопроводов следует применять манометры класса точности 0,15. Допускается применение манометров класса точности 0,40, а также класса точности 0,6. При испытательном давлении до 0,01 МПа следует применять V-образные жидкостные манометры (с водяным заполнением).
Испытания подземных газопроводов следует производить после их монтажа в траншее и присыпки выше верхней образующей трубы не менее чем на 0,2 м или после полной засыпки траншеи.
До начала испытаний на герметичность газопроводы следует выдерживать под испытательным давлением в течение времени, необходимого для выравнивания температуры воздуха в газопроводе с температурой грунта.
При испытании надземных и внутренних газопроводов следует соблюдать меры безопасности, предусмотренные проектом производства работ.
Испытания газопроводов на герметичность проводят путем подачи в газопровод сжатого воздуха и создания в газопроводе испытательного давления. Значения испытательного давления и время выдержки под давлением стальных подземных газопроводов принимают в соответствии с табл. 1
Источник: www.gaksnpo.ru
Магистральные нефтегазопроводы
Трубопроводный транспорт является одним из наиболее экономичных, а в случае транспорта газообразных веществ — единственным видом транспорта. С другой стороны, это один из самых капитало- и металлоемких видов транспорта. Будучи при нормальной работе экологически чистым, он может нанести невосполнимый ущерб природе при авариях. Отсюда понятно внимание, уделяемое вопросам надежности и эффективности работы магистральных трубопроводов при их проектировании и эксплуатации.
Надежность работы обеспечивается соблюдением рекомендаций нормативных документов при проектировании и эксплуатации трубопроводов (строительных норм и правил, норм технологического проектирования и правил эксплуатации).
Эффективность работы зависит от технического состояния объектов и оборудования и рациональности их использования. Фактические условия работы трубопроводов отличаются от проектных. Так, производительность зависит как от возможности добычи нефти и газа, так и от потребности в них. В процессе эксплуатации меняется состояние линейной части и оборудования станций, что предопределяет изменение пропускной способности нефте- и газопроводов и изменение параметров работы при постоянной производительности. В этих условиях приходится решать следующие задачи: выбор оптимальной схемы работы при заданной производительности, определение параметров работы при максимальной загрузке, разработка мероприятий по улучшению технико-экономических показателей работы.
Решение задачи повышения эффективности эксплуатации трубопровода полностью зависит от качества выполнения анализа функционирования всего трубопровода и отдельных его элементов в предшествующий период. Результаты анализа должны позволить сделать вывод о фактическом состоянии линейной части и оборудования, рациональности их использования, экономичности используемой технологической схемы и об основных причинах, снижающих эффективность работы.
В данной работе рассматриваются указанные проблемы и возможные методы их решения. Она будет полезна студентам при выполнении дипломных и курсовых проектов и других самостоятельных работ.
1. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПРОЕКТИРОВАНИЯ
МАГИСТРАЛЬНЫХ ТРУБОПРОВОДОВ
Магистральные трубопроводы (МТ) (газопроводы, нефтепроводы, нефтепродуктопроводы), как правило, прокладываются подземно [1]. Прокладка по поверхности земли в насыпи (наземная прокладка) и на опорах (надземная прокладка) допускается только как исключение.
Магистральные газопроводы (МГ) в зависимости от давления в трубопроводе подразделяются на два класса:
I класс — при рабочем давлении свыше 2,5 до 10 МПа;
II класс — при рабочем давлении свыше 1,2 до 2,5 МПа.
Магистральные нефтепроводы (МН) и нефтепродуктопроводы в зависимости от диаметра подразделяются на четыре класса:
I класс — при условном диаметре свыше 1000 до 1200 мм;
II класс — свыше 500 до 1000 мм;
III класс — свыше 300 до 500 мм;
IV класс — 300 мм и менее.
Для обеспечения нормальных условий эксплуатации и исключения возможности повреждения МТ и их объектов вокруг них устанавливаются охранные зоны, размеры которых и порядок производства в этих зонах сельскохозяйственных и других работ регламентируются Правилами охраны МТ.
Температура газа, нефти (нефтепродуктов), поступающих в трубопровод, должна устанавливаться, исходя из возможности транспортирования продукта и требований, предъявляемых к сохранности изоляционных покрытий, прочности, устойчивости и надежности трубопровода. Необходимость и степень охлаждения транспортируемого продукта решается при проектировании.
Выбор трассы трубопровода должен производиться по критериям оптимальности, учитывающим затраты при сооружении, техническом обслуживании и ремонте трубопроводов при эксплуатации, включая мероприятия по обеспечению сохранности окружающей среды, а также металлоемкость, конструктивные схемы прокладки, безопасность, заданное время строительства, наличие дорог и т.д.
Диаметр трубопровода определяется расчетами в соответствии с нормами технологического проектирования.
При отсутствии необходимости в транспорте продукта в обратном направлении трубопровод следует проектировать из труб со стенкой различной толщины в зависимости от падения давления по длине трубопровода и условий эксплуатации.
В зависимости от условий прокладки и эксплуатации МТ и участки делятся на пять категорий:
IV — газопроводы диаметром менее 1200 мм и нефтепроводы диаметром менее 700 мм;
III — остальные нефтепроводы и газопроводы;
II- трубопроводы, прокладываемые по территории распространения вечномерзлых грунтов, переходы через болота II типа, газопроводы D I — переходы через водные препятствия нефтепроводов D В — газопроводы на территории станций, переходы нефтепроводов D>1000 мм через водные препятствия.
Прокладка трубопроводов может осуществляться однониточно или параллельно другим трубопроводам — в техническом коридоре.
Под техническим коридором МТ понимают систему параллельно проложенных трубопроводов по одной трассе. В отдельных случаях, при технико-экономическом обосновании и условии обеспечения надежности работы, допускается совместная прокладка в одном техническом коридоре нефтепроводов (нефтепродуктопроводов) и газопроводов.
В пределах одного технического коридора допускается прокладывать:
— для транспорта нефти (нефтепродуктов) — не более двух трубопроводов диаметром 1200 мм и не более трех трубопроводов диаметром 1020 мм и менее;
— для транспорта газа (газового конденсата) — не более шести трубопроводов диаметром 1420 мм.
Трубопровод и узлы пуска и приема очистных устройств должны быть оборудованы сигнальными приборами, регистрирующими их прохождение.
На трубопроводах предусматривается установка запорной арматуры на расстояниях, определенных расчетом, но не более 30 км.
При параллельной прокладке газопроводов узлы линейных кранов на отдельных нитках следует сдвигать не менее 100 м друг от друга по длине газопровода. В сложных условиях допускается сокращать это расстояние до 50 метров.
На обоих концах участков газопроводов между кранами, на узлах подключения компрессорной станции (КС) и узлах приема и пуска очистных устройств следует предусматривать установку продувочных свечей на расстоянии не менее 15 м от запорной арматуры при диаметре газопровода до 1000 мм и не менее 50 м при диаметре газопровода 1000 мм и более. Диаметр продувочных свечей должен определяться из условия опорожнения участка между запорной арматурой за 1,5-2,0 часа. Высота продувочной свечи должна быть не менее 3 м от уровня земли.
Параллельно прокладываемые трубопроводы одного назначения должны быть связаны между собой перемычками.
Толщину стенок труб следует принимать не менее (1/140)Dн, но не менее 3 мм для труб условным диаметром 200 мм и менее, и не менее 4 мм для труб диаметром свыше 200 мм. Полученные расчетные значения толщины стенки округляются до ближайшего большего значения, предусмотренного ГОСТ или техническими условиями, в соответствии с фактической номенклатурой завода-изготовителя.
1.1. Магистральные газопроводы
В состав магистральных газопроводов (МГ) [2] входят: линейные сооружения, КС, газораспределительные станции (ГРС), пункты измерения расхода газа, станции охлаждения газа (СОГ)(при необходимости).
Параметры попутного газа, транспортируемого по МГ, следует принимать с учетом предотвращения выпадения конденсата в газопроводе.
Здания следует предусматривать для оборудования, размещение которого на открытых площадках недопустимо.
В состав линейных сооружений входят: газопровод с отводами и лупингами, переходы через естественные и искусственные препятствия, перемычки, узлы редуцирования, узлы очистки газопровода, узлы сбора продуктов очистки полости газопровода, узлы подключения КС, запорная арматура, система электроснабжения линейных потребителей, устройства контроля и автоматики, система телемеханизации, система оперативно-технической связи, система электрохимической защиты, здания и сооружения для обслуживания линейной части (дороги, вертолетные площадки, дома обходчиков и т.д.).
Для обеспечения максимальных значений коэффициента гидравлической эффективности (E) следует предусматривать периодическую очистку полости газопровода, как правило, без прекращения подачи газа.
Для предотвращения гидратообразования в начальный период эксплуатации предусматриваются устройства для заливки метанола в газопровод на выходе каждой КС и у линейного крана или перемычки посреди участка между КС.
Узлы линейной запорной арматуры, установки катодной защиты, усилительные пункты кабельной или радиорелейной линии связи, а также контролируемые пункты телемеханики следует предусматривать, как правило, совмещенными.
Диаметры резервных ниток перехода принимаются одинаковыми с диаметром МГ. Допускается предусматривать одну общую резервную нитку для газопроводов, проходящих в одном техническом коридоре и работающих с одинаковым рабочим давлением. Общую резервную нитку подключают автономно к каждому газопроводу.
При параллельной прокладке МГ следует предусматривать перемычки:
— для газопроводов с одинаковым давлением — с запорной арматурой;
— для газопроводов с различным давлением — с узлами редуцирования, предохранительными устройствами и запорной арматурой.
Перемычки располагают на расстоянии не менее 40 км и не более 60 км друг от друга у линейных кранов (до и после кранов), а также до и после КС, между охранными кранами. В районах с холодным климатом, а также в труднодоступных местах, следует предусматривать перемычки у каждого линейного крана. Минимальное допустимое отношение внутреннего диаметра перемычки к внутреннему диаметру наименьшей из параллельных ниток принимается не менее 0,7.
Узлы очистки газопровода совмещают с узлами подключения КС. Для контроля положения очистных устройств в газопроводе следует предусматривать установку сигнализаторов (датчиков) за 1000 м до и после узла приема и запуска очистных устройств. На узлах очистки предусматриваются узлы сбора продуктов очистки полости газопровода.
Объем коллектора-сборника принимают по расчету в зависимости от загрязненности газа и устанавливаемого цикла очистки, но не более:
300 м 3 — для газопровода диаметром 1020 и 1220 мм;
500 м 3 — для газопровода диаметром 1420 мм.
Коллектор- сборник изготавливается подземным из таких же труб, как и газопровод на участках I категории.
На запорной арматуре на перемычках, на подключениях и отводах, на нитках многониточных переходов следует предусматривать автоматы аварийного закрытия кранов. Они должны обеспечивать закрытие кранов при темпе падения давления в МГ на 10-15% в течение 1-3 минут. При отсутствии автоматов предусматривается телеуправление этими кранами.
Для каждого линейно-производственного управления (ЛПУ) МГ следует предусматривать телемеханизацию линейной части газопровода в границах данного управления. Телемеханизация линейных сооружений МГ должна предусматриваться в границах участков между КС. Предусматривается контроль температуры грунта на глубине оси заложения трубопровода в середине участка между КС с установкой датчиков с передачей (по требованию) данных в диспетчерский пункт КС.
Количество газа , которое может быть передано по газопроводу в сутки (млн.м3/сут при 293,15 К и 0,1013 МПа) при стационарном режиме, максимально возможном использовании располагаемой мощности газоперекачивающих агрегатов (ГПА) и принятых рабочих параметрах (рабочее давление, коэффициент гидравлической эффективности, температура грунта и воздуха, температура газа) называется пропускной способностью МГ.
Проектной пропускной способностью МГ называется пропускная способность, соответствующая оптимальному технологическому варианту.
Проектирование МГ производится по оценочной (расчетной) пропускной способности
, (1.1)
где QГ — заданная годовая производительность МГ (млрд. м 3 /год);
— оценочный коэффициент использования пропускной способности:
, (1.2)
где — коэффициент расчетной обеспеченности газоснабжения потребителей, = 0,95;
— коэффициент экстремальных температур, = 0,98;
— коэффициент надежности МГ (приложение 2 ).
Производительностью принято называть фактическое количество газа передаваемое по МГ.
При проектировании МГ в качестве расчетных используются среднегодовые значения температуры грунта (на глубине заложения оси трубопровода) и воздуха (приложение 1).
1.2. Магистральные нефтепроводы
К магистральным нефтепроводам (МН) [3] относятся трубопроводы протяженностью свыше 50 км диаметром от 219 до 1220 мм включительно, предназначенные для транспортирования товарной нефти из районов добычи до мест потребления.
МН проектируют в однониточном исполнении с развитием их пропускной способности по очередям за счет увеличения числа насосно-перекачивающих станция (НПС). В отдельных случаях допускается сооружение лупингов или вставок, при технико-экономическом их обосновании. Проектирование нефтепроводов в многониточном исполнении возможно в следующих случаях:
— заданная производительность не обеспечивается одной ниткой;
— увеличение производительности до пределов, указанных в задании на проектирование, намечается в сроки, превышающие 8 лет;
— упругость паров нефти, поступающей в резервуарные парки, при заданной производительности превышает 67 кПа.
При выборе параметров работы МН следует руководствоваться данными, приведенными в приложении 8 .
При последовательной перекачке нефтей число циклов определяется на основании технико-экономических расчетов, Рекомендуется для предварительных расчетов принимать от 52 до 72 циклов в год.
На трубопроводах, предназначенных для последовательной перекачки нефтей, сооружение лупингов не допускается.
Толщину стенок трубопроводов определяют в соответствии с расчетной эпюрой давления с учетом категории участков.
Расчетная эпюра давлений должна определяться по эксплуатационным участкам между соседними НПС с емкостью. Эпюра должна строиться из условия подачи нефти от каждой НПС на НПС с емкостью при максимальном рабочем давлении, соответствующем максимальной суточной производительности.
Для уменьшения расхода металла, особенно для нефтепроводов диаметром 1020 и 1220 мм, рекомендуется применять высокопрочные трубы — предел прочности не ниже 580 МПа.
Запорную арматуру следует устанавливать через 15-20 км. Установку следует производить из условия минимального розлива нефти в случае возможной аварии МН.
Для удобства испытаний и повторных испытаний МН расстановку запорной арматуры следует, как правило, производить на границах смены толщины стенок участков МН большой протяженности.
С обеих сторон запорной арматуры должна быть предусмотрена установка манометров.
При проектировании нефтепровода, трасса которого проходит параллельно существующему МН, допускается использовать в качестве резервной нитки резервную нитку существующего нефтепроводу, при условии, что диаметр и допустимое рабочее давление в ней не меньше, чем для проектируемого МН.
Устройства приема и пуска скребков размещаются на расстоянии до 300 км друг от друга. Устройства приема и пуска предусматриваются также на лупингах протяженностью более 3 км и отводах протяженностью более 5 км. Остальные НПС оборудуют устройствами для пропуска скребка.
МН оборудуется головными НПС и промежуточными НПС. В свою очередь, промежуточные НПС могут быть без резервуарного парка (РП) и с РП.
Головная НПС, находящаяся в начале МН, должна располагать РП емкостью от двух до трехсуточной производительности нефтепровода.
МН большой протяженности разбиваются на эксплуатационные участки длиной 400-600 км. Первая станция эксплуатационного участка оборудуется РП емкостью 0,3-0,5 суточной производительности нефтепровода.
РП устанавливаются также на НПС, где намечается осуществлять прием нефти с попутных промыслов или перераспределение грузопотоков в системе нефтепроводов. В этом случае объем РП предусматривается в размере 1,0-1,5 суточной производительности.
Суммарный полезный объем РП МН должен быть не менее величин, указанных в приложении 11 .
НПС размещают, как правило, после переходов через большие реки и на площадках с благоприятными топогеологическими условиями, а также возможно ближе к населенным пунктам, дорогам, источникам электроснабжения и водоснабжения.
При параллельной прокладке проектируемого МН со строящимися или действующими нефтепроводами НПС этих нефтепроводов должны совмещаться.
Подключения других нефтепроводов и месторождений должны выполняться только на НПС.
Для перекачки нефти по МН, как правило, применяются специальные насосы по ГОСТ 12124-87 “Насосы центробежные нефтяные для магистральных трубопроводов”.
Число НПС и их расстановка по трассе производится на основании гидравлического расчета нефтепровода. Гидравлический расчет выполняется с использованием расчетной пропускной способности нефтепровода, физических характеристик перекачиваемой нефти при расчетной температуре и расчетного диаметра.
Расчетная суточная пропускная способности (QC) определяется зависимостью
, (1.3)
где GГ — заданная годовая производительность, млн.т/год;
— число рабочих дней в году;
— плотность нефти при расчетной температуре, кг/м3;
— коэффициент, учитывающий возможность перераспределения потоков.
Значение коэффициента принимается равным:
1,05 — для трубопроводов, идущих параллельно с другими нефтепроводами и образующих систему;
1,07 — для одиночных нефтепроводов, по которым нефть от системы трубопроводов подается к нефтеперерабатывающему заводу, а также для одиночных нефтепроводов, соединяющих системы;
1,10 — для одиночных трубопроводов, подающих нефть от пунктов добычи к системе трубопроводов.
Расчетное число рабочих дней МГ в году приведено в приложении 4.
Внутренний расчетный диаметр нефтепровода Dp , с учетом возможных загрязнений и переменной толщины стенок труб, определяется по формуле
, (1.4)
где — коэффициент, учитывающий засорение трубопровода при оптимальной периодичности очистки и телескопичность раскладки труб (приложение 12);
— внутренний диаметр труб.
В качестве расчетной температуры принимается минимальная температура нефти в трубопроводе, определенная с учетом тепловыделения, обусловленного трением потока и теплоотдачи в грунт при минимальной температуре грунта на глубине заложения оси трубопровода.
1.3. Особенности проектирования трубопроводов для транспорта сжиженных углеводородов
Углеводороды с упругостью насыщенных паров при температуре плюс 200 С свыше 0,2 МПа относятся к нестабильным жидкостям. Снижение давления в трубопроводе ниже упругости насыщенных паров продукта, а также истечение этих жидкостей через неплотности в трубопроводе сопровождаются переходом жидкости в газообразное состояние. Испарение сопровождается снижением температуры. Эти и другие причины предопределяют необходимость повышенных требований к трубопроводам для транспорта нестабильных углеводородов.
Минимальное давление в любой точке таких трубопроводов должно превышать упругость насыщенных паров при температуре перекачки на 0,5 МПа.
Упругость паров продукта при расчетной температуре принимается, исходя из максимально возможной температуры при эксплуатации.
Рабочее давление при расчете трубопроводов определяется как сумма максимального давления, развиваемого насосами, и упругости насыщенных паров продукта.
Расстояние между запорной линейной арматурой должно быть не более 10 км.
На обоих концах каждого участка трубопровода между запорной арматурой устанавливают специальные ответвления. Диаметры ответвлений определяются из условия опорожнения участка за 1,5-2,0 часа.
Трубопроводы диаметром 150 мм и более оснащаются узлами приема и пуска очистных устройств на расстоянии не более 50 км друг от друга.
В составе НПС для приема продукта при срабатывании предохранительных клапанов, а также для создания на входе насосов противокавитационного напора необходимо предусматривать резервуары общей емкостью, равной 0,03-0,06 суточной производительности МТ. Емкость подпорных резервуаров должна составлять 10% от часовой производительности НПС.
На головной НПС, кроме подпорных резервуаров, предусматриваются резервуары для приема нефтепродуктов при аварийной обстановке на трубопроводе, если у предприятия- поставщика они отсутствуют. Суммарная емкость резервуаров на головной НПС и на предприятии- поставщике должна равняться трехсуточной производительности МТ.
Подпорные резервуары располагаются таким образом, чтобы удовлетворялось условие
где Н — превышение нижней образующей резервуара над осью всасывающего трубопровода насоса;
hд — допустимый подпор насоса;
hтр — потери напора на трение в трубопроводе от резервуара до насоса.
ВНИМАНИЕ: Данная информация получена путем сканирования, цифровой обработки физических носителей или обмена с неравнодушными пользователями. Она не имеет отметок грифа секретности и тайны, если вы считаете, что эта информация нарушает Ваши авторские или другие права. Незамедлительно сообщите администратору для удаления ее из портала.
Источник: www.turbinist.ru
8. Трубопроводы и арматура СП 41-104-2000
8.1.1 В автономных котельных трубопроводы пара от котлов, подающие и обратные трубопроводы системы теплоснабжения, соединительные трубопроводы между оборудованием и другие должны предусматриваться одинарными.
8.1.2 Трубопроводы в автономных котельных следует предусматривать из стальных труб, рекомендуемых в таблице 2.
Т а б л и ц а 2 — Трубы, рекомендуемые к применению при проектировании автономных котельных
Трубы электросварные прямошовные | ||||
15-400 | Технические требования по ГОСТ 10705 (группа В, термообработанные). Сортамент по ГОСТ 10704 | ВСтЗсп5; 10,20 |
300 300 |
1.6(16) 1,6(16) |
150-400 | ГОСТ 20295 (тип 1) | 20 | 350 | 2,5(25) |
Трубы электросварные спирально-шовные | ||||
150-350 | ГОСТ 20295 (тип 2) | 20 | 350 | 2,5(25) |
Трубы бесшовные | ||||
40-400 | Технические требования по ГОСТ 8731 (группа В). Сортамент по ГОСТ 8732 | 10, 20 10Г2 |
300 350 |
1,6(16) 2,5(25) |
15-100 | Технические требования по ГОСТ 8733 (группа В).Сортамент по ГОСТ 8734 | 10,20 10Г2 09Г2С |
300 350 425 |
1,6(16) 4,0(40) 5,0(50) 5,0(50) |
Кроме того, для систем горячего водоснабжения следует применять оцинкованные трубы по ГОСТ 3262 с толщиной цинкового покрытия не менее 30 мкм или эмалированные.
8.1.3 Уклоны трубопроводов воды и конденсата следует предусматривать не менее 0,002, а уклон паропроводов — против движения пара — не менее 0,006.
8.1.4 Минимальные расстояния в свету от строительных конструкций до трубопроводов, оборудования, арматуры, между поверхностями теплоизоляционных конструкций смежных трубопроводов следует принимать по таблицам 3 и 4.
Т а б л и ц а 3 — Минимальные расстояния в свету от трубопроводов до строительных конструкций и до смежных трубопроводов
Т а б л и ц а 4 — Минимальное расстояние в свету между арматурой, оборудованием и строительными конструкциями
От выступающих частей арматуры или оборудования (с учетом теплоизоляционной конструкции) до стены | 200 | ||
От выступающих частей насосов с электродвигателями напряжением до 1000 В с диаметром напорного патрубка не более 100 мм (при установке у стены без прохода) до стены |
300 | ||
Между выступающими частями насосов и электродвигателей при установке двух насосов с электродвигателями на одном фундаменте у стены без прохода |
300 | ||
От фланца задвижки на ответвлении до поверхности теплоизоляционной конструкции основных труб |
100 | ||
От выдвинутого шпинделя задвижки (или штурвала) до стены или перекрытия при Ду = 400 мм | 100 | ||
От пола до низа теплоизоляционной конструкции арматуры | 100 | ||
От стены или от фланца задвижки до штуцеров для выпуска воды или воздуха |
100 |
8.1.5 Минимальное расстояние от края подвижных опор до края опорных конструкций (траверс, кронштейнов, опорных подушек) трубопроводов должно обеспечивать максимально возможное смещение опоры в боковом направлении с запасом не менее 50 мм. Кроме того, минимальное расстояние от края траверсы или кронштейна до оси трубы должно быть не менее одного условного диаметра трубы.
8.1.6 Для компенсации тепловых удлинений трубопроводов в автономных котельных рекомендуется использовать углы поворотов трубопроводов (самокомпенсация). При невозможности компенсации тепловых удлинений за счет самокомпенсации следует предусматривать установку сильфонных компенсаторов.
8.1.7 Соединения трубопроводов должны предусматриваться на сварке. На фланцах допускается присоединение трубопроводов к арматуре и оборудованию. Применение муфтовых соединений допускается на трубопроводах воды и пара с условным проходом не более 100 мм.
8.1.8 Количество запорной арматуры на трубопроводах должно быть минимально необходимым, обеспечивающим надежную и безаварийную работу. Установка дублирующей запорной арматуры допускается при соответствующем обосновании.
8 .1.9 В пределах котельной допускается применение арматуры из ковкого, высокопрочного и серого чугуна в соответствии с ПБ 03-75 Госгортехнадзора России.
Допускается также применение арматуры из бронзы и латуни.
8.1.10 На спускных, продувочных и дренажных линиях трубопроводов следует предусматривать установку одного запорного вентиля. При этом применять арматуру из серого чугуна не допускается.
8.1.11 Применять запорную арматуру в качестве регулирующей не допускается.
8.1.12 Не допускается размещение арматуры, дренажных устройств, фланцевых и резьбовых соединений в местах прокладки трубопроводов над дверными и оконными проемами, а также над воротами.
8.1.13 Для периодического спуска воды из котла или для периодической продувки котла следует предусматривать общие сборные спускные и продувочные трубопроводы.
8.1.14 Трубы от предохранительных клапанов должны выводиться за пределы котельной и иметь устройства для отвода воды. Эти трубопроводы должны быть защищены от замерзания и оборудованы дренажами для слива скапливающегося в них конденсата. Установка запорных органов на них не допускается.
8.1.15 На трубопроводах следует предусматривать устройство штуцеров с запорной арматурой:
- в высших точках всех трубопроводов — условным диаметром не менее 15 мм для выпуска воздуха;
- в низших точках всех трубопроводов воды и конденсата — условным диаметром не менее 25 мм для спуска воды.
8.2 Газопроводы
8.2.1 Соединения газопроводов следует предусматривать, как правило, на сварке. Разъемные (фланцевые и резьбовые) соединения следует предусматривать в местах установки запорной арматуры, контрольно-измерительных приборов и устройств электрозащиты.
Установку разъемных соединений газопроводов следует предусматривать в местах, доступных для осмотра и ремонта.
8.2.2 Газопроводы в местах прохода через наружные стены зданий следует заключать в футляры.
Пространство между стеной и футляром следует тщательно заделывать на всю толщину пересекаемой конструкции.
Концы футляра следует уплотнять герметиком.
8.2.3 Расстояние от газопроводов, прокладываемых открыто и в полу внутри помещений, до строительных конструкций, технологического оборудования и трубопроводов другого назначения следует принимать из условия обеспечения возможности монтажа, осмотра и ремонта газопроводов и устанавливаемой на них арматуры, при этом газопроводы не должны пересекать вентиляционные решетки, оконные и дверные проемы. В производственных помещениях допускаются пересечение световых проемов, заполненных стеклоблоками, а также прокладка газопроводов вдоль переплетов неоткрывающихся окон.
8.2.4 Расстояние между газопроводами и инженерными коммуникациями электроснабжения, расположенными внутри помещений, в местах сближения и пересечения следует принимать в соответствии с ПУЭ.
8.2.5 Прокладку газопроводов в местах прохода людей следует предусматривать на высоте не менее 2,2 м от пола до низа газопровода, а при наличии тепловой изоляции — до низа изоляции.
8.2.6 Крепление открыто прокладываемых газопроводов к стенам, колоннам и перекрытиям внутри зданий, каркасам котлов и других производственных агрегатов следует предусматривать при помощи кронштейнов, хомутов или подвесок
и т.п. на расстоянии, обеспечивающем возможность осмотра и ремонта газопровода и установленной на нем арматуры.
Расстояние между опорными креплениями газопроводов следует определять в соответствии с требованиями СНиП 2.04.12.
8.2.7 Вертикальные газопроводы в местах пересечения строительных конструкций следует прокладывать в футлярах. Пространство между газопроводом и футляром необходимо заделывать эластичным материалом. Конец футляра должен выступать над полом не менее чем на 3 см, а диаметр его следует принимать из условия, чтобы кольцевой зазор между газопроводом и футляром был не менее 5 мм для газопроводов номинальным диаметром до 32 мм и не менее 10 мм для газопроводов большего диаметра.
8.2.8 На газопроводах котельных следует предусматривать продувочные трубопроводы от наиболее удаленных от места ввода участков газопровода, а также от отводов к каждому котлу перед последним по ходу газа отключающим устройством.
Допускается объединение продувочных трубопроводов от газопроводов с одинаковым давлением газа, за исключением продувочных трубопроводов для газов, имеющих плотность больше плотности воздуха.
Диаметр продувочного трубопровода следует принимать не менее 20 мм. После отключающего устройства на продувочном трубопроводе следует предусматривать штуцер с краном для отбора пробы, если для этого не может быть использован штуцер для присоединения запальника.
8.2.9 Для строительства систем газоснабжения следует применять стальные прямошовные и спиральношовные сварные и бесшовные трубы, изготовленные из хорошо сваривающейся стали, содержащей не более 0,25 % углерода, 0,056 % серы и 0,046 % фосфора. Толщину стенок труб следует определять расчетом в соответствии с требованиями СНиП 2.04.12 и принимать ее ближайшей большей по стандартам или техническим условиям на трубы, допускаемые настоящими нормами к применению.
8.2.10 Стальные трубы для строительства наружных и внутренних газопроводов следует предусматривать группы В и Г, изготовленные из спокойной малоуглеродистой стали группы В по ГОСТ 380 не ниже второй категории, марок Ст2, СтЗ, а также Ст4 при содержании в ней углерода не более 0,25 %; стали марок 08,10,15, 20 по ГОСТ 1050; низколегированной стали марок 09Г2С, 17ГС, 17Г1С ГОСТ 19281 не ниже шестой категории: стали 10Г2 ГОСТ 4543.
8.2.11 Допускается применять стальные трубы, указанные в 8.2.10, но изготовленные из полуспокойной и кипящей стали, для внутренних газопроводов с толщиной стенки не более 8 мм, если температура стенок труб в процессе эксплуатации не будет понижаться ниже 0 °С для труб из кипящей стали и ниже 10 °С для труб из полуспокойной стали.
8.2.12 Для наружных и внутренних газопроводов низкого давления, в том числе для гнутых отводов и соединительных частей, допускается применять трубы групп А, Б, В, изготовленные из спокойной, полуспокойной и кипящей стали марок Ст1, Ст2, СтЗ, Ст4 категорий 1,2,3 групп А, Б и В по ГОСТ 380 и 08,10,15, 29 по ГОСТ 1050. Сталь марок 08 допускается применять при техникоэкономическом обосновании, марки Ст4 — при содержании в ней углерода не более 0,25 %.
8.2.13 Вентили, краны, задвижки и затворы поворотные, предусматриваемые для систем газоснабжения в качестве запорной арматуры (отключающих устройств), должны быть предназначены для газовой среды. Герметичность затворов должна соответствовать I классу по ГОСТ 9544.
Электрооборудование приводов и других элементов трубопроводной арматуры по требованиям взрывобезопасности следует принимать в соответствии с ПУЭ.
Краны и поворотные затворы должны иметь ограничители поворота и указатели положения «открыто — закрыто», а задвижки с невыдвижным шпинделем — указатели степени открытия.
8.3 Трубопроводы жидкого топлива
8.3.1 Подача жидкого топлива топливными насосами от склада топлива до расходной емкости в котельной должна предусматриваться по одной магистрали.
Подача теплоносителя к установкам для топливоснабжения котельных предусматривается по одному трубопроводу в соответствии с количеством магистралей подачи топлива к расходному складу топлива в котельной.
Для котельных, работающих на легком нефтяном топливе, на топливопроводах следует предусматривать:
- отключающее устройство с изолирующим фланцем и быстродействующим запорным клапаном с электроприводом на вводе топлива в котельную;
- запорную арматуру на отводе к каждому котлу или горелке;
- запорную арматуру на отводе к сливной магистрали.
8.3.2 Прокладку топливопроводов следует предусматривать надземной. Допускается подземная прокладка в непроходных каналах со съемными перекрытиями с минимальным заглублением каналов без засыпки. В местах примыкания каналов к наружной стене здания каналы должны быть засыпаны или иметь несгораемые диафрагмы.
Топливопроводы должны прокладываться с уклоном не менее 0,003 %. Запрещается прокладка топливопроводов непосредственно через газоходы, воздуховоды и вентиляционные шахты.
8.3.3 Для трубопроводов жидкого топлива должны предусматриваться электросварные трубопроводы и стальная арматура.
Источник: sargs.ru
Магистральные трубопроводы для нефти, газа и нефтепродуктов
Большинство людей ассоциируют понятие «трубопровод» исключительно с системой водоснабжения, которую они видят в своих домах. Кроме того, большинство из нас, видели также трубы, по которым бытовой газ подводится к квартирам.
Но многие люди не знают, что существуют сотни и тысячи километров очень больших «трубопроводов», транспортирующих огромное количество сырой нефти, нефтепродуктов и газа. Не знают они этого потому, что большинство из них надежно скрыто от глаз человечества под землей или под водой.
Нефть, газ, и продукты их переработки перевозятся между континентами в огромных танкерах, а на земле транспортируются по трубопроводам. Эти трубопроводы бывают просто огромными (в России диаметр трубы может доходить до 1422 мм) и достигают более 1000 км в длину.
Трубопроводы являются основными рабочими «артериями» в нефтяной и газовой промышленности. Подобно кровеносной системе, они работают 24 часа в день, семь дней в неделю, 365 дней в году, непрерывно обеспечивая наши энергетические потребности. Системы трубопроводов жизненно важны для экономики большинства стран мира.
Эти системы имеют долгую историю: первые трубопроводы использовались для транспортировки жидкостей и газов столетия и даже тысячелетия назад. Так, например, китайцы применяли бамбуковые трубки для передачи природного газа, который освещал их столицу Пекин, еще в 400 г. до н.э.
При помощи трубопроводов нефть и газ транспортируются на огромные расстояния, и преобразуются в различные формы энергии, такие как бензин для наших автомобилей, и электричество для наших домов.
Нефть и газ обеспечивают большую часть мировых потребностей в энергии, и топливе. Лучше всего это показывают цифры. Согласно мировой статистике, нефть дает 34% от всего производства энергии в мире, уголь — 24%, 21% приходиться на газ, ядерная энергия составляет 7%, энергия воды — 2%, и всего 1% — это остальные энергетические мощности, такие как энергия солнца, ветра, и т.д
Сырая нефть – это нефть, только что полученная из подземного месторождения, не подвергшаяся обработке, и переработке в продукты, пригодные для дальнейшего использования, такие как бензин, мазут или керосин.
Газ бывает природным и искусственным. Природный газ – это в основном метан, полученный «естественным образом» из природных подземных «хранилищ», в отличие от искусственного газ, который вырабатывается из каменного угля. Искусственный газ (его еще называют синтетическим) был основным видом топлива, которое использовали для освещения и обогрева до середины 20-го века.
Во второй половине этого столетия в качестве основного источника энергии стал выступать уже природный газ. Но газ мало просто добыть из-под земли, его надо еще каким-то образом доставить потребителю. И вот тут в дело вступают промышленные трубопроводы, без которых мы были бы не в состоянии удовлетворить огромные потребности всего человечества в энергии.
Почему же трубы, а не, например, автомобильные, или железнодорожные цистерны? Ответ прост. Основное достоинство трубопроводов — это их безопасность. Трубопроводы в 40 раз безопаснее, чем железнодорожные цистерны, и в 100 раз безопаснее, чем автоцистерны, применяющиеся для транспортировки энергоносителей.
Разливы нефти из нефтепроводов составляют около 1 галлона на миллион баррелей миль, в соответствии с данными американской Ассоциации нефтепроводов. Один баррель, транспортируемый в одной миле (1609 метров), равен одному баррелю мили, а баррель составляет 42 галлона (159 литров).
С бытовой точки зрения, это меньше, чем одна чайная ложка нефти, пролитая за тысячу баррелей миль.
Магистральные трубопроводы транспортируют очень взрывоопасные продукты нефтедобычи под большим давлением. Следовательно, они спроектированы, изготовлены и работают с использованием единых стандартов безопасности.
Кроме того, магистральные трубопроводы должны удовлетворять нормам безопасности в большинстве стран, через чью территорию они проходят. Единые нормы, стандарты и правила обеспечивают безопасную и стабильную работу трубопроводов.
Промышленные трубопроводы. Экскурс в историю.
Многие из трубопроводов, которые мы используем сегодня для транспортировки нефти и газа были построены много лет назад, и надо воздать должное их строителям и проектировщикам, за то, что они продолжают работать исправно и бесперебойно, даже спустя длительное время.
Но для того, чтобы проследить этапы возникновения и развития трубопроводных систем, мы должны вернуться на целые тысячелетия вглубь истории.
Прообразы первых трубопроводов возникли в разных частях мира. Первые трубопроводы использовались в основном для снабжения городов питьевой водой, а также для орошения земель в сельском хозяйстве. Трубы в те времена изготавливались или из обожженной глины, либо из полых стеблей бамбука.
Древние китайцы использовали бамбуковые трубы для транспортировки воды. Есть данные о том, что древние египтяне, использовали для той же цели медные трубы. Жители древнего Крита транспортировали воду при помощи глиняных труб, а вот греки использовали уже фаянсовые, свинцовые, и бронзовые трубы.
В ту эпоху, как мы понимаем, не было электросварки, и трубы из металлов стыковались между собой при помощи горячей ковки, в обычной кузнице, при помощи молота и наковальни. Металлическая труба известна с 500 г. до н.э., когда римляне стали использовать свинцовые трубы, чтобы доставлять воду в крупные города.
Кстати, римские трубопроводы – акведуки, и сегодня можно наблюдать в разных частях Европы. Некоторые из них и по сей день исполняют свои функции по доставке воды, что не может не вызывать восхищения мастерством древних инженеров и строителей.
А вот первый опыт использовании трубы для транспортировки углеводорода принадлежит Китаю: уже около 2500 лет назад, китайцы использовали бамбуковые трубы для передачи природного газа из неглубоких скважин: они использовали его для кипячения морской воды в целях ее опреснения.
Также, как уже говорилось выше, в китайских источниках можно найти указания, что китайцы использовали бамбуковые трубы, смазанные воском для освещения своей столицы еще в 400 г. до н.э.
Трубопроводы для нефти
Сегодняшние промышленные трубопроводы обязаны своим появлением развитию нефтяной промышленности. Нефть, и ее горючие свойства уже давно были известны человечеству, но промышленной добычи не было до 19 века – ее лишь собирали в тех местах, где она выходила на поверхность естественным путем.
В 19 веке нефть часто обнаруживали при бурении водяных скважин. Парадокс — в те времена наткнуться на нефть вместо воды считалось большой неприятностью.
Тем не менее, люди быстро поняли, что это «земляное масло» может использоваться для смазки и освещения. Первые нефтяные скважины были пробурены в Баку, в Азербайджане в 1848 году, и в Польше в 1854 году, но первый крупный опыт именно промышленной эксплуатации скважин и широкого использования трубопроводов был получен более 150 лет назад в США.
Он, этот опыт, как правило, связывается с именем «полковника» Эдвина Дрейка. («Полковник» в кавычках, потому что Э. Дрейк в армии никогда не служил, но носил мундир железнодорожного ведомства, и гордо именовал себя полковником. Так делали многие в то время)
В 1859 году Дрейк пробурил две нефтяные скважины, в штате Пенсильвания рядом с местом, где имелись естественные выходы нефти на поверхность земли. Стоило это ему около 40 000 долларов. Скважины произвели 2000 баррелей «сырой» нефти, но от сырой нефти было мало пользы до 1860 года, когда были введены в эксплуатацию первые нефтеперерабатывающие заводы.
На этих заводах происходило отделение легких фракций нефти от тяжелых. Впрочем, из всего спектра продуктов нефтепереработки в те времена использовался один лишь керосин. Керосин был дешевой заменой китового жира, который применялся тогда для освящения, что и позволило нефти, добытой Дрейком, быть проданной по цене 20 долларов за баррель.
Именно керосин лег в основу богатства компании «Standard Oil», основанной Д.Д.Рокфеллером, и являющейся далекой прародительницей таких современных монстров нефтегазовой индустрии, как «Chevron» и «Exxon Mobil». Эта преемственность компаний отражена в их символике и логотипах.
На заре нефтедобычи, бензин и другие продукты нефтепереработки просто выбрасывались за ненадобностью, поскольку для них в те времена не находили применения. Изобретение в 1892 году, «безлошадных повозок» — первых автомобилей, решило эту проблему, так как их двигатели требовали бензин в большом количестве.
От гужевого транспорта и бочек — к стальным магистралям
В начале 1860-х годов, нефть перевозили в бочках по рекам в баржах на конной тяге. Это было опасным и трудным делом: капризы природы и недостаток рабочих и лошадей могли сорвать всю транспортировку. Железная дорога тогда была не так совершенна, как сейчас. Трубопроводы были очевидным решением этой транспортной проблемы.
Рабочие были давно знакомы с трубами: чугунные и кованые железные трубы различных диаметров, а также все то, что впоследствии получило название «трубопроводная арматура» используется вокруг добывающих скважин с начала развития отрасли.
В 1865 году первая линия промышленного нефтепровода диаметром 6 дюймов (152 мм) была построена в штате Пенсильвания. Она позволяла транспортировать 7000 баррелей нефти в день, от нефтяного месторождения до реки Аллегейни, по которой добытую нефть перемещали уже водным путем.
(Первый в России нефтепровод Балаханы – Черный город)
В других регионах мира трубопроводные системы также получили значительное распространение, особенно в тех частях света, где расстояния традиционно велики, например в России. В 1878 году, в Баку, братья Нобель построили нефтепровод, длиной 10 км, и 76 мм в диаметре. Нефтепровод сразу позволил снизить транспортные расходов на 95%, а полностью окупился уже через год.
«Длинные» трубопроводы начали строить еще в начале 20-го века. Например, в 1906 был построен трубопровод из Оклахомы в Техас. Длина его составляла 472 мили (755 км), а диаметр труб был 8 дюймов (203 мм). Нефтепровод похожей длины и диаметра был построен в Баку примерно в это же время. В 1912 году, за 86 дней был построен газопровод в Боу-Айленд, (Канада).
Длина его была 170 миль (272 км), а диаметр — 16 дюймов (406 мм), что позволило ему войти в число самых длинных трубопроводов Северной Америки.
Уже к концу 1920-х годов крупные нефтеперерабатывающие заводы были способны обработать от 80 000 до 125 000 баррелей нефти в день, для того чтобы удовлетворить резко выросший спрос на бензин, образовавшийся в результате взрывного развития автомобильной промышленности. (С 1910 по 1920 г. количество легковых и грузовых автомобилей на американских дорогах выросло с менее чем 500 000 до более чем 9 млн.)
В 1920е годы, движимая этим ростом автомобильной промышленности, общая длина трубопроводов в США выросла до более чем 115 000 миль (184 000 км).
Следующим большим изменением в трубопроводном строительстве, стало строительство трубопроводов большого диаметра. Такие трубопроводы впервые были построены в США в 1940-х годах в связи с началом Второй мировой войны, и возросшими энергетическими потребностями промышленности.
Вторая мировая война также вызвала к жизни инновационные для того времени технологии в строительстве трубопроводов: в 1944 году был начато строительство «Плутона» — первого трубопровода, проходящего по дну океана. В рамках этого проекта было задумано построить подводный нефтепровод по дну пролива Ла-Манш между Англией и Францией, для того, чтобы обеспечить бесперебойные поставки топлива из Британии для союзных войск во Франции.
Длина этого трубопровода в конечном итоге составила 500 миль (800 км), и с помощью него через пролив ежедневно перекачивалось 1 000 000 галлонов (4 000 000 литров) топлива.
В послевоенное время, в 1950 — 1960-х годов, на территории Соединенных Штатов, были построены тысячи километров газопроводов, так как спрос на газ после войны увеличился. И, поскольку, война закончилась, были высвобождены значительные ресурсы, для постройки еще более длинных нефте-и газопроводов, могущих перекачивать продукты нефтепереработки под значительным давлением.
Трубопроводные системы сегодня.
Нефтегазовый сектор в сегодняшнем мире постоянно демонстрирует тенденции к расширению. Об этом свидетельствуют следующие факторы.
Агентство энергетической информации США прогнозирует, что ископаемое топливо останется основным источником энергии и в будущем. При этом, спрос на энергию увеличится более чем на 90%.
Мировой спрос на нефть вырастет на 1,6% в год, С 75 миллионов баррелей нефти в день в 2000 году, до 120 миллионов баррелей в день в 2030 г.
Спрос на природный газ будет расти сильнее, чем на любой другой вид ископаемого топлива: первичное потребление газа удвоится до 2030 года. Это увеличение отразится также на промышленности: «Exxon Mobil», одна из крупнейших нефтяных компаний в США, в январе 2006 года, заявила о прибыли в 36 млрд. долларов, — крупнейшей за всю историю компании.
В феврале того же года компания «Shell» также объявила о рекордной прибыли: 23 миллиарда долларов. Эта прибыль, как ожидается, сохранится и в обозримом будущем , так как цены на нефть продолжают сохраняться на рекордно высоком уровне.
Для поддержки такого роста спроса на электроэнергию, трубопроводная инфраструктура выросла почти в 100 раз примерно за 50 лет. Было подсчитано, что увеличение длины мирового трубопровода может составить до 7% в год в течение следующих 15 лет. Это означает, что примерно по 8000 км трубопроводной сети ежегодно будет прибавляться к существующей только в США.
На международном уровне, как ожидается, будут построены 32 000 км. новых трубопроводов; 50% из них придется на Северную и Южную Америку. Кроме того, в год строится свыше 8000 км морских трубопроводов, в Северо-Западной Европе, Азиатско-Тихоокеанском регионе, и в Мексиканском заливе.
Общая протяженность магистральных трубопроводов высокого давления по всему миру, увеличится по оценкам на 3 500 000 км. Из них 64% будут составлять системы для транспортировки газа, 19% — для перекачки нефтепродуктов, и 17% — для перевозки сырой нефти
Почему трубопроводы так важны для человечества?
Надежды на удовлетворение наших потребностей в энергии, мы возлагаем в основном на промышленные магистральные трубопроводы. Сегодня почти каждый человек в мире является потребителем газа и бензина, и поэтому так или иначе зависит от нефтепроводов и газопроводов. Причем, трубопроводы, так или иначе, соответствуют ожиданиям и требованиям самых различных групп.
Операторы и владельцы трубопроводных систем хотят получить от трубопроводов в первую очередь надежность, оперативность доставки и разумную прибыль.
Широкий пласт потребителей хотел бы получить дешевый бензин, керосин и природный газ, поставки которых были бы своевременными и не требовали больших затрат, а также сопровождались минимальным нанесением ущерба окружающей среде. Производители и транспортные компании хотят обеспечить дешевые и надежные поставки и транспортировку и также получить разумную прибыль.
Регуляторы правительства хотят справедливого и конкурентного рынка. Активисты экологических организаций хотят остановить загрязнение окружающей среды.
Все эти заинтересованные группы имеют большие разногласия и между собой, и внутри себя, но именно использование трубопроводов позволяет им прийти к консенсусу.
Трубопроводные системы сегодня стали стратегическими транспортными инфраструктурами в большинстве стран. Например в США, Департаментом внутренней безопасности, газопроводы определены как важнейшие объекты инфраструктуры, поскольку как они обеспечивают около двух третей энергетических потребностей Америки, и имеют важное значение для обеспечения жизнедеятельности населения, функционирования обороны, экономики и промышленности.
А для такой страны как Россия, с ее суровым климатом и гигантскими расстояниями, нефте- и газопроводы являются ключевым элементом в обеспечении внутренней и внешней безопасности.
Будущее трубопроводных систем представляется одновременно ярким и сложным. Они будут продолжать нести на себе основной груз по обеспечению растущего населения энергией, но к требованиям надежности прибавятся все увеличивающиеся требования безопасности.
Разрастание международной угрозы делает трубопроводные системы идеальной мишенью для террористических групп, в их деле дестабилизации мира. Инженеры и проектировщики должны будут все больше работать с оглядкой на безопасность, чтобы защитить эти сложные, дорогостоящие и жизненно важные для человечества объекты от любой угрозы.
Источник: rgk-palur.ru