Что такое 3д строительство

3D-ПЕЧАТЬ / 3D-ПРИНТЕР / АДДИТИВНОЕ ПРОИЗВОДСТВО / СЕЛЕКТИВНОЕ СПЕКАНИЕ / КОМПОНЕНТНАЯ СКЛЕЙКА / МЕТОД ПОСЛОЙНОГО ЭКСТРУДИРОВАНИЯ / БЕТОННАЯ СМЕСЬ / ФИБРА / АРМИРОВАНИЕ / «КОНТУРНОЕ» СТРОИТЕЛЬСТВО / СИСТЕМА D-SHAPE / 3D-PRINTING / 3D-PRINTER / ADDITIVE MANUFACTURING / SELECTIVE SINTERING / BONDING COMPONENT / THE METHOD OF LAYERING EXTRUSION / CONCRETE MIX / FIBER / REINFORCEMENT / «CONTOUR» CRAFTING / D-SHAPE SYSTEM

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Лунева Д.А., Кожевникова Е.О., Калошина С.В.

Современные инновационные 3D-технологии развиваются достаточно быстро и все больше внедряются в различные сферы деятельности человека. В последнее время значительное внимание уделяется такой разновидности 3D-технологий, как печать объектов на 3D-принтере , в которой используется метод послойного создания физического объекта по цифровой 3D-модели.

3D-принтеры применяются во многих отраслях промышленности: медицине, машиностроении, литейном производстве, радиотехнике и электронике. Их основными преимуществами являются создание объектов с высокой точностью и скоростью без использования ручного труда, а также возможность создания предметов и конструкций по 3D-модели.

Процесс строительства дома. Часть 2. Компания «АМТ»

Строительная область не стала исключением в отношении применения 3D-печати. В настоящее время существуют технологии и устройства для печати как малых архитектурных форм, так и зданий в целом. В данной статье рассматриваются различные технологии, применяемые в 3D-печати, их преимущества и недостатки, а также области применения и перспективы развития в строительной области.

Дано краткое описание устройства и принципа работы 3D-принтера . Рассмотрены основные виды материалов и их комбинации, а также виды армирования конструкций, используемые при 3D-печати зданий и сооружений. Описаны разработки зарубежных компаний, в строительстве домов с помощью 3D-печати. Выявлены основные проблемы практического применения 3D-печати. Рассмотрены направления развития и совершенствования данной технологии.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Лунева Д.А., Кожевникова Е.О., Калошина С.В.

APPLICATION OF 3D PRINTING IN CONSTRUCTION ACTIVITIES AND ITS PROSPECTS

Modern innovative 3D-technologies are developing and improving extremely fast, they are used in various spheres of human life. Recently much attention is paid to printing objects using a 3D-printer , which entails a layerwise creation of physical objects according to a digital 3D-model. This device is used in many industries, in medicine, machine engineering, casting, radio engineering and electronics. The main advantages of 3D-printers are that they are able to create objects with a high accuracy and speed without manual labor, as well as the ability to create objects and structures according to a 3D-model. Civil engineering is also widely using the 3D-printing technology.

Now there are technologies and devices for printing both small architectural forms and buildings. The article considers various technologies of 3D-printing , their advantages and disadvantages, as well as their applications and prospects in construction activities. There is a brief description of the device and its operating principles of 3D-printers. The main types of materials and their combinations are examined and compared, as well as main types of structural reinforcements used in 3D-printing of buildings and structures. The article contains data about international companies implementing this technology for construction of houses using different materials.

The main problems of applying and implementing 3D-printing technologies are identified and discussed; some tendencies and developments of this technology are also described.

Текст научной работы на тему «Применение 3D-печати в строительстве и перспективы ее развития»

Лунева Д.А., Кожевникова Е.О., Калошина С.В. Применение 3Б-печати в строительстве и перспективы ее развития // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. — 2017. — Т. 8, № 1. — С. 90-101. DOI: 10.15593/2224-9826/2017.1.08

Luneva D.A., Kozhevnikova E.O., Kaloshina S.V. Application and prospects of 3D printing in construction activities. Bulletin of Perm National Research Polytechnic University. Construction and Architecture. 2017.

Vol. 8, no. 1. Pp. 90-101. DOI: 10.15593/2224-9826/2017.1.08

ВЕСТНИК ПНИПУ. СТРОИТЕЛЬСТВО И АРХИТЕКТУРА Т. 8, № 1, 2017 PNRPU BULLETIN. CONSTRUCTION AND ARCHITECTURE http://vestnik.pstu.ru/arhit/about/inf/

Б01: 10.15593/2224-9826/2017.1.08 УДК 624.05

ПРИМЕНЕНИЕ 3D-ПЕЧАТИ В СТРОИТЕЛЬСТВЕ И ПЕРСПЕКТИВЫ ЕЕ РАЗВИТИЯ

Д.А. Лунева, Е.О. Кожевникова, С.В. Калошина

Пермский национальный исследовательский политехнический университет, Пермь, Россия

Современные инновационные Эй-технологии развиваются достаточно быстро и все больше внедряются в различные сферы деятельности человека. В последнее время значительное внимание уделяется такой разновидности Эй-тех-нологий, как печать объектов на Эй-принтере, в которой используется метод послойного создания физического объекта по цифровой Эй-модели.

Эй-принтеры применяются во многих отраслях промышленности: медицине, машиностроении, литейном производстве, радиотехнике и электронике. Их основными преимуществами являются создание объектов с высокой точностью и скоростью без использования ручного труда, а также возможность создания предметов и конструкций по Эй-модели. Строительная область не стала исключением в отношении применения Эй-печати. В настоящее время существуют технологии и устройства для печати как малых архитектурных форм, так и зданий в целом.

В данной статье рассматриваются различные технологии, применяемые в Эй-печати, их преимущества и недостатки, а также области применения и перспективы развития в строительной области. Дано краткое описание устройства и принципа работы Эй-принтера.

Рассмотрены основные виды материалов и их комбинации, а также виды армирования конструкций, используемые при Эй-печати зданий и сооружений. Описаны разработки зарубежных компаний, в строительстве домов с помощью Эй-печати. Выявлены основные проблемы практического применения Эй-печати. Рассмотрены направления развития и совершенствования данной технологии.

Получена: 15 декабря 2016 Принята: Э0 декабря 2016 Опубликована: Э0 марта 2017

Ключевые слова: Эй-печать, Эй-принтер, аддитивное производство, селективное спекание, компонентная склейка, метод послойного экструдирова-ния, бетонная смесь, фибра, армирование, «контурное» строительство, система й-БИаре

APPLICATION OF 3D PRINTING IN CONSTRUCTION ACTIVITIES AND ITS PROSPECTS

D.A. Luneva, E.O. Kozhevnikova, S.V. Kaloshina

Perm National Research Polytechnic University, Perm, Russian Federation

Modern innovative 3D-technologies are developing and improving extremely fast, they are used in various spheres of human life. Recently much attention is paid to printing objects using a 3D-printer, which entails a layerwise creation of physical objects according to a digital 3D-model. This device is used in many industries, in medicine, machine engineering, casting, radio engineering and electronics. The main advantages of 3D-printers are that they are able to create objects with a high accuracy and speed without manual labor, as well as the ability to create objects and structures according to a 3D-model. Civil engineering is also widely using the 3D-printing technology.

Now there are technologies and devices for printing both small architectural forms and buildings.

The article considers various technologies of 3D-printing, their advantages and disadvantages, as well as their applications and prospects in construction activities. There is a brief description of the device and its operating principles of 3D-printers. The main types of materials and their combinations are examined and compared, as well as main types of structural reinforcements used in 3D-printing of buildings and structures. The article contains data about international companies implementing this technology for construction of houses using different materials. The main problems of applying and implementing 3D-printing technologies are identified and discussed; some tendencies and developments of this technology are also described.

На сегодняшний день строительные технологии непрерывно развиваются. В основном преобразования направлены на сокращение сроков строительства, увеличение периода эксплуатации конструкций, экономию трудовых затрат и рабочей силы, а также извлечение большей экономической выгоды. Немало внимания отводится обеспечению сохранности окружающей среды и повышению безопасности жизнедеятельности на самом производстве.

Новой в сфере строительства является технология 3D-печати. С ее помощью появилась возможность не только создания различных архитектурных конструкций, но и возведения целых зданий и сооружений.

3D-печать относится к аддитивному производству, иными словами, технология подразумевает создание объектов путем нанесения последовательных слоев материала [1]. Модели, изготовленные таким образом, могут применяться на любом производственном этапе — как для изготовления опытных образцов (быстрое прототипирование), так и в качестве готовых изделий (быстрое производство).

Существуют три основных метода 3D-печати [2], используемых при строительстве (рис. 1).

Метод спекания (селективного спекания) заключается в следующем: 3D-принтер расплавляет рабочую смесь (обыкновенный песок) с помощью сконцентрированного лазера или солнечного луча. На данный момент известно о существовании только одного образца такого устройства. Его изобрел инженер Маркус Кайзер — студент Королевского колледжа искусств (Royal College of Art). Установка включает в себя солнечный резак, оборудованный кулачковым механизмом, при помощи которого задаются траектории резания материала, горизонтальные и круговые разрезы (рис. 2). Механизм перемещения обрабатываемого материала приводится в движение небольшим двига-

3D-printing, 3D-printer, additive manufacturing, selective sintering, bonding component, the method of layering extrusion, concrete mix, fiber, reinforcement, «contour» crafting, D-Shape system

телем, запускающим движение зубчатого ремня привода распределительного вала. Одновременно сфокусированная шаровая линза насквозь прожигает материал, находящийся под ней.

Рис. 1. Основные методы 3Б-печати, используемые при строительстве Fig. 1. Main methods of 3D-printing used in the construction process

Рис. 2. Установка для реализации метода спекания Fig. 2. An example of equipment used using the sintering method

В работе [3] описан другой метод 3D-печати зданий и сооружений — лазерная стерео-литография. Для ее реализации используется лазерная установка с ванной, оборудованной специальным столом. Эту ванну заполняют жидкой фотополимеризующейся под воздействием лазерного луча композицией. Спекание материала выполняется послойно, путем перемещения лазерного луча по намеченной траектории. При завершении обработки первого слоя стол ванны опускается на шаг, и выполняется формирование следующего слоя.

На сегодняшний день известны рабочие образцы группы Каталонского института передовой архитектуры (IAAC) (группа Петра Новикова), полученные методом компонентной склейки, под названием Stone Spray Robot (рис. 3), а также система D-Shape, разработанная Энрико Дини для строительства зданий (Monolite UK).

Методы селективного спекания и напыления являются экологически безвредными, поскольку их реализация подразумевает использование солнечной энергии, а рабочей смесью является песок.

Рис. 3. Рабочие образцы, полученные способом компонентной склейки Fig. 3. Sample of the component bonding method

Метод послойного экструдирования является основным способом ЗБ-печати большинства строительных принтеров. Его суть заключается в том, что рабочее сопло, или экс-трудер, ЗБ-машины выдавливает быстротвердеющую бетонную смесь, в которую включены различные добавки, улучшающие характеристики будущей конструкции [4]. Каждый очередной слой выдавливается ЗБ-принтером поверх предыдущего, благодаря чему формируется определенная конструкция (рис. 4). Впервые о подобной технологии в строительстве было упомянуто в работах профессора Бехроха Хошневиса из Южно-Калифорнийского университета в августе 2012 г. Его научная группа выдвинула идею конструкции гигантского, собираемого на месте стройки ЗБ-принтера по типу мостового крана.

Читайте также:  Как оплачивать электроэнергию при строительстве

Рис. 4. Изготовление конструкции сооружения методом послойного экструдирования Fig. 4. Р1^исйоп of structural facilities using layering extrusion

Данный метод стал основой для ЗБ-принтеров китайской компании ‘^пБип, которая первой напечатала серию настоящих домов в начале 2014 г. [5]. Уникальность постройки заключается в использовании запатентованного материала, представляющего собой смесь строительного мусора, бетона и добавок. Такие дома относятся к классу недорогого быстровозводимого жилья.

В настоящее время известно о существовании двух видов конструкций ЗБ-принте-ров — в виде мостового крана и в виде стрелы-манипулятора [6]. Строительный ЗБ-прин-тер имеет сопло, или экструдер, и выдавливает из него рабочую смесь. Поверхность, на которой создается объемное изделие, называется рабочей зоной и имеет размеры, задаваемые величиной хода сопла, причем опалубки не требуется. Другими словами, строи-

тельная машина объемной печати — самодостаточный механизм, который способен создать готовое здание, используя электроэнергию. Основными составляющими 3D-машины являются рама, на которой смонтировано устройство, перемещающееся линейно в плане по направляющим, установленным вдоль здания, а также устройства для передвижения сопла и поднятия конструкции принтера. Таким образом, движение осуществляется в трех взаимно перпендикулярных направлениях — по осями x, y, z.

Сама система для печати с помощью 3D-принтера (рис. 5) содержит следующие элементы:

— систему движения (козловые краны или роботизированный манипулятор);

— систему экструзии (печатающая головка с насадкой);

— портативную смесительную установку (просеивание и смешивание компонентов);

— систему накачки (контролируется электроникой);

— блок управления (электроника, позиционирование и система управления);

— систему мониторинга (камеры/мониторы слежения за процессом печати);

— систему безопасности (автоматически выключает систему при необходимости).

Рис. 5. Система для печати зданий с помощью 3D-принтера: 1 — сопло (экструдер);

2 — рама; 3 — направляющие вдоль здания; 4 — механизм передвижения сопла;

5 — устройство для поднятия конструкции принтера; 6 — автобетоносмеситель для подачи цементного состава Fig. 5. The system for printing houses with the help of a 3D-printer, 1 — is the nozzle (extruder);

2 — is the frame; 3 — are the rails along the building; 4 — is the nozzle movement mechanism; 5 — is a device for lifting the printer design; 6 — is the mixer truck for supplying cement mixture

Немаловажную роль в технологии строительной 3D-печати играет состав рабочей смеси. Ее основой является быстротвердеющий бетон, который может включать в свой состав различные добавки для повышения тех или иных характеристик несущих элементов конструкции (стен, перекрытий) [7], а также может комбинироваться либо с различными видами фибр, либо со стальной арматурой (рис. 6).

Бетонная смесь представляет собой высокопрочный бетон класса В50, необходимый для создания «органической структуры стен», прочность которого достигает 650-700 кгс/см2. В первые сутки конструкция на основе бетонной смеси обретает до 25 % проектной прочности, но такие высокие темпы набора прочности не оказывают негативного влияния на конечные свойства бетона. Схватывание смеси происходит в течение 3-120 мин,

при этом достаточно хорошо сохраняется форма, что необходимо при ЗБ-печати. Для бетонной смеси характерны малая усадка (0,6 мм/м в возрасте 28 сут) и минимальное во-доцементное отношение.

Рис. 6. Материалы, используемые при послойном экструдировании Fig. 6. Materials used for the layering extrusion

Быстротвердеющие составы, в основу которых входит бетонная смесь, предполагают:

— применение жесткой бетонной смеси с низкими значениями водоцементного отношения;

— использование добавок — ускорителей твердения (СаС12), глиноземистого цемента и др.;

— сухое или мокрое домалывание цемента с добавкой гипса (2-5 % от массы цемента) или с применением комплексных специальных добавок;

— активацию цементного раствора.

Из добавок — ускорителей твердения наиболее распространен хлористый кальций, обеспечивающий лучшие результаты по сравнению с другими добавками. В бетонных конструкциях количество такой добавки не должно превышать 3 %. Основные достоинства данного материала:

— малое время сохранения подвижности смеси позволяет печатать элементы большой высоты без промежуточного подсушивания;

— небольшая прочность: на сжатие в возрасте 28 сут — 1,6 МПа, на растяжение при изгибе — 1 МПа;

— хлористый кальций позволяет ускорить твердение бетона в раннем возрасте, несколько снизить расход цемента и улучшить удобоукладываемость смеси;

— готовый материал обеспечивает быстрое нарастание прочности, обладает высокой водонепроницаемостью и морозостойкостью.

Одной из добавок к бетонной смеси для печати на 3Б-принтере также является фибра, которая представляет собой материал, применяемый в качестве армирующего компонента для улучшения свойств бетона [9]. Она добавляется в сухие строительные смеси

и растворы, выполняя роль микроармирующего компонента, модифицирующего (оптимизирующего) структуру вяжущих веществ строительных конгломератов на микроуровне, поэтому позволяет обойтись без армирования бетона стальной арматурой, так как в достаточной мере обеспечивает прочность и жесткость конструкции, вследствие чего уменьшаются ее вес, а также затраты на армирование (таблица).

Виды фибр, используемые в комбинации с бетонной смесью при 3D-печати зданий и сооружений

Types of fibers used in a combination with a concrete mix by 3D-printing of buildings

Вид фибры Общие свойства Преимущества

Стеклянная — Увеличивается прочность — Повышает ударопрочность;

при сжатии (растяжении) и — достигаются высокая плотность и равномерность

на изгиб; армирования

Полипропиленовая — повышается термическая — Повышает пластичность цементного раствора;

устойчивость; — уменьшает удельный вес смеси;

— сокращаются сроки воз- — повышает износостойкость бетонных конструкций;

ведения сооружений; — повышаются водонепроницаемость и морозо-

— снижается расход мате- стойкость

Базальтовая риалов; — Обладает электроизоляционными свойствами;

— увеличивается степень — не поддерживает горение;

сопротивления трещино- — экологичность

Стальная образованию — Снижает толщину бетонирования и массу без потери несущей способности; — повышает устойчивость к динамическим нагрузкам; — улучшает гидроизоляционные характеристики сооружений

Кроме того, известно использование быстротвердеющей бетонной смеси в качестве строительного материала, армированного стальной или полимерной микрофиброй. Для увеличения несущей способности и прочности стены могут также применяться различные виды армирования при помощи стальной арматуры.

Армирование при помощи металлической (стальной) арматуры может производиться как в горизонтальном, так и вертикальном направлении. Вертикальная арматура устанавливается в технологические пустоты стен после печати с последующей заливкой бетоном нужной марки. Горизонтальное армирование проводится между слоями конструкции в процессе печати с использованием стальных прутов или плоских армокаркасов. Данный вид армирования достаточно прост в применении, однако имеет существенный недостаток: применение ручного труда может вызвать неточности установки, а также требует дополнительного времени на устройство арматуры.

Конструкция стены, выполненная с помощью ЭБ-принтера, представляет собой пространственную ферму с параллельными поясами, т.е. внутренняя и наружная части стены связаны между собой пространственной конструкцией в виде треугольников (простейших геометрически не изменяемых систем), что обеспечивает достаточную жесткость конструкции (рис. 7).

В настоящее время развитие различных технологий строительной ЭБ-печати, в основе которых лежит метод послойного экструдирования, происходит в основном за рубежом.

Рис. 7. Пример использования армирования бетонной смеси при 3Б-печати Fig. 7. Example of reinforcing a concrete mixture with 3D-printing

В 2012 г. профессор Университета Южной Калифорнии Бехор Кошевис представил свой инновационный проект 3Б-принтера для строительства домов, а также технологию Contour Crafting [10]. Технология «контурного» строительства (Contour Crafting) заключается в экструзии (выдавливании) слой за слоем специального быстротвердеющего реакционно-порошкового бетона по заложенному программой контуру.

Могут использоваться более дешевые виды бетонов, такие как мелкозернистый и песчаный бетон, модифицированный добавками (гиперпластификаторы, ускорители твердения, фибра). Особенность технологии заключается в подключении дополнительного инструмента машины — манипулятора, устанавливающего в проектное положение несущие и поддерживающие элементы конструкции, инженерные коммуникации (перемычки, балки перекрытия-покрытия, элементы стропильной конструкции, лотки, дымоходы, вентиляционные каналы и т. д.). Преимущество технологии заключается в скорости строительства. Машина может построить за 24 ч жилой дом площадью 150 м . Недостатками являются сложность, а в некоторых случаях и невозможность строительства зданий с открытой планировкой и сложных архитектурных форм из-за необходимости создания поддерживающих конструкций.

Исследователи из Института передовой архитектуры Каталонии (Испания) разработали группу из трех роботических 3Б-принтеров, которые благодаря своей мобильности способны печатать объекты неограниченного размера [11]. Все три принтера Minibuilders, работают в команде, но каждый из них предназначен для выполнения отдельной конструкторской задачи.

На первой стадии Foundation Robot закладывает основу будущего объекта, «выращивая» первые 20 слоев. Затем на вершине структуры помещается Grip Robot, который двигается вдоль объекта на своих четырех колесах, нанося новые слои. Vacuum Robot присасывается к любой поверхности на уже существующей конструкции, выравнивая ее и нанося дополнительные слои материала, двигаясь в любом направлении. Все три робота могут работать одновременно, управляются дистанционно, через мобильный командный пункт, а также умеют самостоятельно регулировать подачу материала и переключать насадки.

Компания WASP (Италия) продемонстрировала свой большой ЭБ-принтер, способный производить дешевое жилье из глины. Глина в новом принтере выдавливается подобно глазури и затем застывает. Высота устройства составляет около 6 м, притом оно способно производить печатные структуры до Э м в высоту. Принтер может быть установлен двумя людьми всего за два часа.

Наиболее передовой на сегодняшний день в сфере печати быстровозводимых зданий можно считать систему D-Shape, разработанную Энрико Дини [12]. Этот новый механизм делает возможным создание полноразмерного здания из песчаника без человеческого вмешательства с использованием стереолитографического печатного процесса, для которого требуются только песок и специальное неорганическое связующее вещество. Эта составляющая трансформирует песок в минерал с микрокристаллическими характеристиками, работающий на сжатие и растяжение значительно лучше портландцемента, что делает излишним использование арматуры для усиления конструкций. Такой материал не отличим от искусственного мрамора и на 100 % безопасен для окружающей среды. Отмечается, что система D-Shape позволяет ускорить процесс строительства до четырех раз по сравнению с традиционными методами. В 2009 г. с ее помощью уже было возведено здание высотой Э м.

Приведенные выше примеры различных зарубежных технологий ЭБ-печати в строительстве говорят о заинтересованности ученых всех стран в развитии данного метода строительства. Технология ЭБ-печати зданий и сооружений, несомненно, является инновационной и весьма перспективной, однако при ее применении приходится сталкиваться с рядом проблем:

1. Отсутствие нормативной и законодательной базы для строительства зданий с помощью ЭБ-принтера ограничивает его применение для массовой застройки, поэтому крупные строительные компании не приобретают строительные принтеры [1Э]. На сегодняшний день данные устройства применяются в основном для малоэтажного и малогабаритного индивидуального строительства, а также для изготовления малых архитектурных форм.

2. Высокая стоимость оборудования для ЭБ-печати. По-настоящему инновационные технологии первоначально имеют достаточно высокую цену; через длительный промежуток времени, если технология доказывает свою практичность, она получает дальнейшее распространение и становится общедоступной с более приемлемой стоимостью [14].

3. Технология строительства с применением ЭБ-принтера требует особых характеристик строительной площадки (в частности, для укладки направляющих рельсов необходимы ровная площадка, а также непрерывный контроль за соблюдением их параллельности для обеспечения высокой точности печати).

4. Поскольку размеры принтера ограничены, ограничены и габариты строящегося здания.

5. Отсутствует универсальная смесь для печати по причине того, что разные производители применяют различные бетонные смеси, экспериментируя с составом компонентов и их соотношением.

6. Требования к составу бетонной смеси достаточно высокие, так как конструкция стены должна соответствовать условиям прочности и жесткости. Возникает противоречие: с одной стороны, для того, чтобы рабочая смесь не застаивалась и не застывала в печатающей головке, применяют добавку-пластификатор, которая увеличивает сроки твердения, с другой стороны, необходимо обеспечить быстрое схватывание и твердение смеси для непрерывного нанесения последующих слоев.

Читайте также:  Кто может проверить участок земли для строительства дома

7. Строительство с помощью данной технологии ограничивается теплым временем года, что затрудняет возведение зданий в северных областях. Для строительства в зимний период сооружают большие отапливаемые временные шатры.

Несмотря на такое количество проблем, существующих на сегодняшний день, использование SD-технологий в строительной сфере имеет ряд достоинств, основными из которых являются:

— высокая скорость и точность строительства;

— относительно невысокая стоимость зданий и сооружений;

— минимизация использования ручного труда;

— повышение безопасности труда рабочих.

Прогресс в строительной сфере не стоит на месте, постоянно внедряются все более высокотехнологичные методики, к числу которых можно отнести SD-печать зданий и сооружений [15]. За короткий промежуток времени данная технология заинтересовала большое количество крупных строительных предприятий. Однако следует отметить, что перспектива развития SD-печати в строительстве, а также ее внедрение в массовое производство возможны только при решении ряда существующих проблем, указанных в данной статье.

1. Ракитин С.Ю., Илькубаев А. А. Формирование послойных контуров SD-моделей для аддитивного производства // Университетский комплекс как региональный центр образования, науки и культуры: материалы Всерос. науч.-метод. конф. — Оренбург, 2016. -С.22S-2S0.

2. Обзорная статья по SD-строительным технологиям [Электронный ресурс]. — URL: http://geektimes.ru/post/224299 (дата обращения: 14.12.2016).

S. Малышева В.Л., Красимирова С.С. Лазерная стереолитография — новый подход к строительству сооружений // Журнал магистров. — 201S. — № 2. — С. 202-208.

4. Рудяк К.А., Чернышев Ю.О. Возведение зданий методом послойного экструдиро-вания // Современные концепции развития науки: материалы Междунар. науч.-практ. конф. — Казань, 2016. — С. 147-151.

5. Компания Winsun. SD-проектирование домов [Электронный ресурс]. — URL: http://www. yhbm.com/index.php?a=listscatid=67c=indexm=content (accessed 14 December 2016).

6. Mustafin N.Sh., Baryshnikov A.A. Novejshie tehnologii v stroitel’stve. 3D printer [The latest technology in construction. 3D printer]. Regional’noe razvitie: jelektronnyj nauchno-prakticheskij zhurnal. 2015. № 8 (12).

URL: https://regrazvitie.ru/novejshie-tehnologii-v-stroitelstve-3d-printer.

7. Austin S.A., Lim S., Buswell R.A., Gibb A.G.F., Thorpe T. Mix design and fresh properties for high-performance printing concrete. Materials and Structures, 2012, no. 8-45, pp. 1221-12Э2.

8. Lysych M.N., Shabanov M.L., Voroncov R.V. Materialy, dostupnye v ramkah razlichnyh tehnologij 3d pechati [The materials available within the different 3d printing technologies]. Sovremennye naukoemkie tehnologii, 2015, no. 5, pp. 20-25.

9. Youjiang Wang, Wu H.C., Victor C. Li. Concrete reinforcement with recycled fibers. Journal of Materials in Civil Engineering, 2000, no. 4-12, pp. 314-319.

10. Brooks H., Lupeanu M.E., Piorkowski B. Research towards high speed extrusion free-forming. International Journal of Rapid Manufacturing, 2013, vol. 3, no. 2-3, pp. 154-171.

11. Pechat’ domov na 3D printerev [Print houses on a 3D printer], available at: http://make-3d.ru/articles/3d-printer-dlya-pechati-domov/ (accessed 14 December 2016).

12. Zotov S.P., Menzulov L.A., Vartanov O.S. Tehnologija 3d-pechati zdanij i otdel’nyh arhitekturnyh form [The technology of 3d printing buildings and private architectural forms], available at: http://evo7day.ru/post.php (accessed 10 December 2016).

13. «Specavia». Pervyj opyt pechati zdanij na 3D printere [The first experience of printing buildings on a 3D printer], available at: http://3dtoday.ru/blogs/specavia/first-experience-printing-on-building-a-3d-printer/ (accessed 10 December 2016).

14. Petreneva O.V., Pikuleva V.O., Jushmanov A.V. Problemy vnedrenija innovacionnyh tehnologij i materialov v stroitel’stve [Problems of introduction of innovative technologies and materials in construction]. Stroitel’stvo i arhitektura. Opyt i sovremennye tehnologii, 2015, no. 5-2. 7 p.

15. Kulebjakin A.A. Novye tehnologii. Razvitie 3d-pechati: perspektivy i posledstvija [New technology. The development of 3d printing: opportunities and consequences]. Molodezhnyj nauchno-tehnicheskij vestnik, 2015, no.

3, p. 48.

Источник: cyberleninka.ru

3D-принтер в строительстве будущего

3D-принтер в строительстве будущего - фото 1

Если изучить последние мировые новости, становится все более очевидным постепенное внедрение 3D печати в самые различные сферы. Не является исключением и строительная отрасль. Возможно, что очень скоро именно эта технология позволит не только обеспечить население недорогим собственным жильем, но также сделает возможным строительство зданий в труднодоступных местах планеты.

Этот технический метод изобрел североамериканский инженер Чак Халл, запатентовав собственное открытие в 1986 году. Новый процесс предполагает объединение молекул с помощью лазера для трансформации полимеров в разные жесткие структуры. Вначале 3D-печать была использована в автомобилестроении с целью формирования «быстрых прототипов». Далее область применения увеличилась и была адаптирована под строительство.

Печать здания на 3D-принтере

3D-принтер в строительстве будущего - фото 2

На фото показано 3D-печатающее устройство. С его помощью впервые в истории России было распечатано жилье. При этом применялся бетонный раствор.
Строение площадью 38 кв. м, находится в городке Ступино Московской области. На изготовление стен и перегородок ушло менее 24 часов. Затем печатающее устройство было извлечено из построенного дома краном-манипулятором.

Как строил дом 3D-принтер

На фото — готовое жилище, выстроенное с помощью 3D-технологий в Подмосковье. Поскольку работы велись в зимнее время, потребовалось закрыть печатающее устройство и строительную площадку тентом. Такие меры были необходимы, чтобы гарантировать комфортные температурные условия для использовавшейся бетонной смеси. Однако в будущем разработчики намерены решить вопрос с помощью новых морозоустойчивых материалов. К слову, 3D-печатающее устройство фирмы Apis Cor способно работать при температуре — 35ºС.

3D-принтер в строительстве будущего - фото 3

Метод 3-D печати

Нужно отметить, что 3D- принтер позволяет печатать конструкции послойно. Принцип тот же, что и с печатью текста на бумаге, только чернила заменены на другой материал. Особенно популярно использование бетона, пластика, стали, синтетических смол и прочих материалов.

3D-принтер в строительстве будущего - фото 4

Недавно стало известно о намерении датской компании Printhuset напечатать офисное здание в Компенгагине. Сделать это планируется с помощью трехмерного принтера, изготовленного на ярославском предприятии «Спецавиа». Российское 3D-устройство способно распечатывать слои, толщиной до двух сантиметров при объезде вокруг сооружения.

Цена вопроса

3D-принтер в строительстве будущего - фото 5

Стоимость трехмерного печатающего агрегата зависит от комплектации и может составить от 960 000 рублей до пяти миллионов.

Лидеры 3D-строительства

Лидером в сферы строительства зданий с помощью 3D-принтеров пока остаётся Поднебесная. Именно в Китае отпечатан многоэтажный дом общей площадью 1 100 квадратных метров. Безусловно, чтобы строительство такого здания стало возможным, пришлось печатать детали по отдельности, а затем транспортировать и собирать их непосредственно на стройплощадке.

3D-принтер в строительстве будущего - фото 6

Офисное здание в Дубае

Пойти на рекорд решили и в крупнейшем городе Объединенных Арабских Эмиратов — Дубае. Здесь было распечатано офисное здание, цена которого не превысила 140 000 $ — экономия 50%. Площадь сооружения составила 250 кв.м. Всего на стройплощадке было задействовано 19 человек.

3D-принтер в строительстве будущего - фото 7

Что сдерживает развитие 3D-печати в строительной отрасли

По мнению экспертов, развитие 3D-печати сдерживают масштабы. Так, для строительства дома высотой порядка двух-трех этажей, нужен поистине гигантский принтер, цена которого будет соответствующей. Либо, трехмерное печатное устройство придется снабдить функцией перемещения по строительным лесам, разработав специальную программу. Именно по этой причине все отпечатанные строения либо невелики по своим размерам, либо строятся из отдельных составляющих.

Источник: www.domostroynn.ru

Технологии 3D-печати в строительстве

Технологии 3D-печати завоевывают мир и это настоящая научно-техническая революция, происходящая на наших глазах. Глядя на скорость претворения в обыденную жизнь идей, еще недавно фантастических, таких, как изготовление способом объемной печати протезов кистей рук человека, уже не только футурологи, но и специалисты уверенно говорят о грядущих значительных изменениях в жизни человеческого общества. И если в некоторых отраслях народного хозяйства практическая применимость 3D-печати уже не вызывает сомнений, это медицина, машиностроение, радиотехника и электроника, то в такой весомой отрасли как строительство, роботы объемной печати выглядят дорогими игрушками. Способны ли 3D принтеры на настоящую работу в строительстве?

Как известно, главное отличие 3D-принтера от любого другого промышленного робота в способе создания продукции. В частности, строительный 3D-принтер имеет сопло или экструдер и выдавливает из него быстротвердеющую рабочую смесь. Поверхность, на которой создается объемное изделие, называется рабочей зоной и имеет размеры, задаваемые величиной хода сопла. Причем опалубки не требуется. То есть, строительная машина объемной печати декларируется как самодостаточный механизм, способный, при подключении электроэнергии, буквально на голом месте создать готовое здание.

Известно о трех способах создания объемной конструкции:

1. Послойное эктрудирование вязкой рабочей смеси.

В этом случае из рабочего «сопла» выдавливается, подобно зубной пасте из тюбика, сметанообразная смесь бетона с добавками.

Первым сделал публичную презентацию о подобной технологии в строительстве, по видимому, профессор Барух Кошневиц из Южно-Калифорнийского Университета (University of Southern California) в августе 2012 года. Его же группа выдвинула концепт гигантского, собираемого на месте стройки принтера по типу мостового крана.

Группа учёных под руководством доктора Сунгву Лима из британского Университета Лафборо (Loughborough University), напечатали первую в мире пустотелую панель с двойными закруглёнными контурами.

На таком же принципе построены 3D-принтеры китайской компании Shanghai WinSun Decoration Design Engineering Co, которая первой напечатала серию настоящих домов в начале 2014 года.

2. Метод спекания/селективное спекание.

При этой технологии в рабочей зоне 3Д машины происходит расплавление рабочей смеси, причем плавление достигается, применительно к строительству, сконцентрированным лазером или солнечным лучом, а рабочей смесью выступает обычный песок. Известно, на момент написания статьи, о единственном существующем образце подобного устройства изобретателя Маркуса Кайзера, студента королевского Колледжа искусств (Royal College of Art).

3. Метод напыления/ компонентной склейки (стереолитография)

Известен, в частности, рабочий образец группы Каталонского Института передовой архитектуры (IAAC) (группа Петра Новикова) под названием Stone Spray Robot, а так же система D-Shape, разработанная Энрико Дини (Monolite UK, (частная компания)) для строительства зданий. При этом из рабочего сопла выходит струя песка, которая тут же смешивается с клеящим составом/катализатором, образуя объем в программно заданной точке.

Методы спекания и напыления, изящны по идее задумки, так как используется солнечная энергия, экологически безвредны (по крайней мере, пока песка на планете много), на движение песчаных струек можно смотреть часами и изделия выходят очень непривычных форм. Что ж, уже сейчас вполне возможно соорудить таким способом малые архитектурные формы, цветочницу, например, или собачью будку. Пока же сложно даже представить, каков будет получаемый эксплуатационный эффект при создании настоящего, пусть и небольшого, домика из расплавленного и превратившегося в стекловидную массу песка.

Из перечисленных способов формирования объема, внимание строителей привлекает в первую очередь, метод послойного экструдирования во многом потому, что уже сейчас созданы достаточно большие несущие поверхности и даже настоящие дома.

И если Европейские архитекторы демонстрируют в первую очередь, эстетическую и экологическую направленность, то Китайцы в своих разработках предельно прагматичны.

Многих романтиков 3D откровенно разачаровала серия простых и грубовато выглядящих домиков китайской фирмы. Между тем, упускается из виду, что эти прямоугольные простецкие сооружения являются звеном четко обозначенной технологической цепочки.

Планируется массово построить фабрики по переработке строительных отходов и мусора, полученный материал будет использоваться при подготовке рабочей смеси для 3D принтера. Учитывая большие достижения Китая в области биоэнергетики, а именно распространенность ветровых, солнечных и биоэлектростанций, можно предположить, что на свалках строительного мусора будут установлены гигантские измельчители строительного мусора, питаемые электроэнергией от ближайшей биоэлектростанции.

Читайте также:  Элит строительство бухгалтерский учет включает платформу 1с предприятие 8 электронная поставка

Построенные из запатентованного материала ( представляющего собой смесь строительного мусора, бетона и добавок), дома, сегментируются в классе недорогого быстровозводимого жилья. Этим и объясняется их неказистый вид.

Если говорить о технологиях 3D-строительства. то я бы поставил на первое место отнюдь не сам 3D-аппарат. Строительный принтер является звеном новой технологии, причем не самым, возможно, технически сложным.

Ведь конструкция строительного робота достаточно отработана. а домов пока – только китайская серия. Уже существуют во многих экземплярах два вида конструкций –в виде козлового крана и в виде стрелы-манипулятора.

Гораздо больше вопросов вызывают состав рабочей смеси и концептуальные архитектурные формы. Вообще, при составлении рабочего вопросника по теме с ходу образовалось более 30 пунктов, ответ на некоторые из них, по шутливому замечанию инженера Зотова, требует написания приличной монографии. Группа Зотова уже разработала состав рабочей смеси и 3D-принтер в варианте «мостового крана».

Так же, интересную концепцию, основанную на идее подачи рабочей смеси под высоким давлением в 3D-принтер, имеющий довольно изящную мостовую конструкцию, предложил промышленный дизайнер Себастьян Бернар.

Подача густого бетона под высоким давлением, переводит технологию объемной печати в достаточно реальные рамки. Далее, ведутся разработки материалов специально под применение данной технологии. В России известны исследования в Пензе, на кафедре ТБКиВ Пензенского ГУАС разрабатываются новые виды бетонов. Новые высокопрочные реакционно порошковые бетоны (РПБ) вполне подходят для строительных роботов.

Для выстраивания технологического процесса, помимо рабочей смеси, важным моментом является архитектура самого здания и группы зданий как единого строительного объекта. Самым перспективным направлением для России, по видимому, является строительство поселка из двухэтажных таунхаусов арочных форм. Примерно таких, как куполообразный дом архитектора Гребнева.

Формат арочного дома в два этажа позволит использовать сравнительно небольшие и недорогие 3D-принтеры, решит проблему перекрытий и позволит строить, действительно, быстро, массово и недорого. И красиво. В масштабе поселка, можно будет использовать и мостовые принтеры, так как рельсовый путь (не обязательно из металлических рельс) будет перемещаться по мере продвижения строительства.

Много вопросов вызывает непосредственно технология строительства. Во первых, как на прочность конструкции будут влиять швы, идущие через каждые три-пять сантиметров. Во вторых, существующий (из известных) процесс укладки арматуры достаточно спорен. Китайцы армируют стеклопластиковой сеткой. По крайней мере, она видна на видеозаписи процесса.

Есть мнение о применимости фибробетона и возможно, такой купол в один –два этажа выдержит сертификационную процедуру. Предлагается так же соединять арматуру на штивтах, свинчивать и пр. Конечно, пока это обходные меры. Возможно, проблема онлайн-армирования будет решена применением двух роботов сразу: один монтирует арматуру, другой укладывает смесь. Ситуация автоматизации упрощается тем, что опалубка отсутствует как «класс».

С монтажом инженерных систем в плане вентиляции, канализации и отопления дело решается проще. 3Д принтеры – это роботы с достаточно точной повторяемостью операций и состыковка элементов труб в заданной последовательности вполне осуществима. Естественно, промышленным дизайнерам придется поломать голову над новыми конструкциями элементов инженерных систем.

В целом, большинство подобных технических проблем характерны для переходного периода, в который вступают 3D-принтеры. Какое то время будут сосуществовать старые и новые технологии, время необходимое, в первую очередь, для психологического привыкания. Когда некоторые строители критикуют 3Д процесс, они критикуют эволюцию – «вот, мол, принтер большой, дорогой, шумит и потребляет электричество, а дом ваш развалится. И вообще, связка — панель плюс «таджикстрой» –дешевле не бывает».

Так вот, строительный 3D-принтер — это не эволюция. У многих в голове еще не укладывается именно этот момент, потому как это революция, и ее надо осознать.

Действительно, сегодня сложно представить, насколько изменится структура строительной фирмы, или ее подразделения, специализирующейся на коттеджных поселках. По видимому, не будет приписок и «допников» у прорабов, не будет сменных молдавских, белорусских и прочих бригад.

Лицом фирмы станет небольшая команда специалистов и пара роботов; инженер-оператор 3D-робота ( 3 человека при трех сменах), диспетчер-логист (нынешний снабженец) и далее –смежники –возят рабочую смесь, монтируют ИТ системы. Еще несколько специалистов в ходе процесса монтируют арматуру, закладные и окна с дверьми. В штате строительного подразделения — 12 человек, с фондом зарплаты миллион рублей в месяц. За этот месяц такая команда поселок целиком сдает в эксплуатацию. Фантастически короткие сроки строительства, помимо прочего- это и отсутствие финансовых разрывов в строительном цикле, и снятие проблемы сезонных природных циклов.

3D-принтер в строительстве –это роботизация производства, своего рода конвейер. естественно, все смежные отрасли в этой цепочке соответствуют стандартам эпохи роботов. Где будет производиться рабочая смесь, как будет решаться транспортная логистика (если раствор готовится рядом с возводимым объектом, то доставка не нужна), формат склада комплектующих ( создается общий на весь поселок или смежник подвозит партию на конкретный домик), на эти и многие другие вопросы решение, несомненно, будет предложено. Специалисты, ведущие разработки технологий объемной печати, действуют очень активно, 3D методы внедряются в жизнь общества с небывалой со времен первой НТР скоростью. Если во время презентации Баруха Кошневица, состоявшейся в 2012году, осторожно назывались 2017-2020 годы как порог начала эксплуатации строительных роботов, то в реальности, уже в феврале 2014 года была демонстративно напечатана серия настоящих домов в Китае.

Помимо возможности строить по настоящему недорогое массовое жилье, скажем так, стандартного класса, появляются оригинальные концепты, предлагающие возможность снять остроту нехватки жилья в мегаполисах. В Германии Петер Эбнер и его студенты напечатали дом-ракушку.




Использование в этом, в общем-то известном, концептуальном направлении, 3D технологий, позволяет массово и сравнительно недорого строить и эксплуатировать теплые «домики-раковины» и в «северной» Москве. Очень многие жители ближайшего Подмосковья приобрели бы такие скорлупки на территории внутри МКАДа, для проживания в них с вечера понедельника по утро пятницы.

Эра автоматического строительства

Можно сказать, что сейчас уже сформировались условия и определенные рамки, когда архитектор, инженер ПГС и технолог-строитель в состоянии выдать реально осуществимый, социально направленный проект в прибыльном бизнес — формате. Естественно, при помощи специалистов- материаловедов, логистов, профильных инженеров проектировщиков. Только комплексное решение вопросов: социально востребованных архитектурных форм и формата поселения, удобно монтируемых инженерных компонентов и специального строительного материала, плюс автоматизированная транспортно-складская логистика, позволят говорить о революции в строительстве.

Источник: scientifically.info

3D-принтер — будущее строительства и архитектуры?

Вообще, с учётом последних новостей со всего мира, знак вопроса в нашем заголовке можно было бы убрать. Становится понятно, что у 3D-печати есть широкие перспективы в области строительства зданий. Кто знает, возможно, именно 3D-принтер в будущем позволит окончательно решить «квартирный вопрос».

3D-принтер — будущее строительства и архитектуры?

Данный технологический процесс был изобретён американским инженером Чаком Халлом, который запатентовал своё изобретение в 1986 году. Придуманный метод подразумевает соединение молекул с использованием лазера с целью трансформации полимеров в различные твёрдые формы. Сначала 3D-печать начали применять в автомобилестроении для создания «быстрых прототипов». Затем сфера применения существенно расширилась и распространилась в том числе на создание архитектурных объектов. Теперь 3D-печать — отнюдь не прерогатива красивых натяжных потолков и стеновых панелей.

Печать дома на 3D-принтере

На фотографии представлен 3D-принтер, на котором впервые в России напечатали дом. Площадь строения всего 38 квадратных метров, находится дом в столичном регионе, в городе Ступино, на территории местного завода по выпуску ячеистого бетона. На печать самонесущих стен, ограждающих конструкций и перегородок ушло меньше суток, а чистое машинное время печати здания составило 24 часа. Принтер из уже построенного, вернее, отпечатанного здания пришлось извлекать с помощью крана-манипулятора. Использовалась бетонная смесь.

Дом, напечатанный на 3D принтере

Это уже готовый дом, созданный путём 3D-печати в Подмосковье. Так как работы проводились зимой, то пришлось накрывать принтер и всю стройплощадку навесом, чтобы обеспечить более высокую температуру для использовавшейся бетонной смеси. Впрочем, производители обещают решить эту проблему путём использования новых материалов, с которыми можно будет работать даже в морозы. Кстати, сам 3D-принтер компании Apis Cor был рассчитан на работу при температуре до минус 35 градусов.

3D-печать бетоном

Отметим, что на 3D-принтере все объекты печатаются послойно. Чем-то это напоминает процесс обычной печати на бумаге. Но вместо привычных чернил применяется твёрдый материал, а процесс приходится повторять несколько раз. Материал, кстати, можно использовать различный, чаще всего в 3D-печати применяется пластик, но можно взять и синтетические смолы, и бетон, и сталь.

Совсем недавно появилась новость о том, что компания 3D Printhuset (Дания) решила использовать трёхмерный принтер производства российского предприятия «Спецавиа» (Ярославль), чтобы напечатать офисное здание в Копенгагене. Строение станет первым подобным в Европе. 3D-принтер ярославской компании печатает дома слоями толщиной 2 сантиметра, объезжая здание по кругу.

3D-печать в строительстве зданий

Применяется бетон. Цена печатающего трёхмерного устройства, в зависимости от комплектации, составляет до 960 тысяч до 5 миллионов рублей.

Сборка дома из бетонных блоков, напечанных на 3d-принтере

Лидером в области возведения домов путём 3D-печати пока остаётся Китай. Именно здесь было напечатано-построено самое большое здание — целый пятиэтажный дом, общая площадь которого составила 1,1 тысячи квадратных метров. Конечно, для такого большого строения все части пришлось печатать отдельно, а собирать уже на месте, после перевозки.

Первый в мире офис, напечатанный на 3D-принтере

В Дубае (ОАЭ) тоже пошли на рекорд, напечатав офисное здание площадью 250 квадратных метров. Использовался 3D-принтер длиной 37 метров, шириной 12 метров и высотой 6 метров. Здание обошлось всего в 140 тысяч долларов, экономия составила 50%, а рабочих пришлось задействовать всего 19 человек.

3D-печатный дом в Китае

Специалисты отмечают, что пока развитие 3D-печати зданий сдерживается именно масштабами. Чтобы построить большой дом, высотой хотя бы два-три этажа, потребуется принтер действительно гигантских размеров. И стоить он будет соответственно. Или следует «научить» трёхмерный принтер перемещаться по специальным строительным лесам, возводя стены по заданной программе. Именно поэтому пока все отпечатанные здания или очень небольшие, или состоят из отдельных модулей, или собираются из готовых деталей.

Строительство дома с помощью 3d-принтера

По словам экспертов, массовое строительство многоквартирных домов путём 3D-печати в России также будет сдерживаться требованиями норм и государственных стандартов. Российское законодательство пока просто не готово к такому способу возведения зданий. Однако в малоэтажном строительстве у трёхмерной печати больше перспектив.

3D-печать дома

3D-печать, чтобы завоевать популярность, должна доказать, что является более экономичным и быстрым способом строительства зданий, чем привычные каркасные технологии, дома из пеноблоков, газобетона и других материалов.

Мнения специалистов по поводу будущего трёхмерной печати зданий расходятся. Многие уверены, что целиком здания таким способом строиться никогда не будут, это нерентабельно. Можно печатать отдельные части и узлы домов, но полностью — вряд ли, считают эксперты. Они предлагают сосредоточиться на 3D-печати из металла, которая оказывается менее трудоёмким и затратным процессом, чем обычное литьё.

Модель средневекового замка на 3d-принтере

Модель средневекового замка на 3d-принтере

Пока печать домов на 3D-принтерах, скорее, напоминает гонку за рекордами, чем начало действительно массового и дешёвого строительства зданий. Однако, уверены, эта технология действительно может стать новым словом в архитектуре, ведь уже существующие трёхмерные принтеры, в том числе российского производства, могут создавать детали длиной до 12,3 метра. Пусть это будет не целое здание, а стена или просто водосток, но технологии не стоят на месте, так что в будущем нас точно ждут новинки из области 3D-печати зданий.

Источник: www.rmnt.ru

Рейтинг
Загрузка ...