Строительство в системе народного хозяйства является отраслью, которая создает продукцию для других отраслей и потребителем продукции более 70 отраслей промышленности, прежде всего промышленности строительных материалов, машиностроения, лесной, металлургической, химической, топливно-энергетической и других.
В строительстве расходуется 85-90% промышленности строительных материалов, 10% машиностроительной продукции, 20% проката черных металлов, 40% лесоматериалов. Почти 75% потребности строительства в материальных ресурсах обеспечивают промышленность строительных материалов, лесная, деревообрабатывающая, металлургическая отрасли. Большинство организаций принимающих участие в строительстве, имеют полную финансово-хозяйственную независимость, входят в состав разных министерств и ведомств. Такие многочисленные связи усложняют процесс строительства, требуют координации деятельности сторон (приложение №1).
Прямые и обратные экономические связи существуют и внутри самой строительной отрасли. Это связи между отдельными участниками строительного производства. Все они называются межотраслевыми и внутриотраслевыми и в рыночных условиях должны отображаться в межотраслевом и внутриотраслевом балансе производства и распределения продукции и работ в народном хозяйстве /3/.
05 Связи по колоннам
Формы воспроизводства основных фондов народного хозяйства строительной отраслью
К новому строительству (новостройка) относится строительство предприятий, зданий, сооружений на новых земельных участках (площадках) по первоначальному проекту, утвержденному в установленном порядке. Строительство считается новостройкой до завершения строительства и введения в эксплуатацию на полную проектную мощность. Если в период строительства пересматривается проект по введению в эксплуатацию мощностей, обеспечивающих выпуск основной конечной продукции, то продолжение этого строительства по измененным проектам также относится к новостройке /1/.
Новостройкой считается строительство объектов:
— предприятий на одной и той же или на новой площадке (земельном участке) вместо ликвидируемого предприятия, дальнейшее существование которого признанно нецелесообразным по техническим или экономическим условиям, а также по необходимости, которая возникла вследствие производственно-технических или санитарно-технических требований;
— филиала действующих предприятий или производственных объединений, которые осуществляются на новых земельных участках по утвержденным в установленном порядке отдельным проектам.
Если проектно-сметная документация на жилое и коммунальное строительство, объекты образования, культуры и здравоохранения разработана отдельно, независимо от документации на строительство предприятия, то новостройками являются: совокупность объектов непроизводственного назначения, сооружение которых предусмотрено проектом комплексной застройки; отдельные здания или сооружения (жилой дом, школа, театр и т.п.). Не относятся к новому строительству вторые и последующие очереди предприятий; дополнительные производственные комплексы и объекты.
TelecomDaily. Проектирование, строительство сетей и сооружений связи. Порядок ввода в эксплуатацию
К расширению действующих предприятий относится строительство второй и последующей очередей строительства; дополнительных производственных комплексов и производств на предприятии; дополнительных вспомогательных и обслуживающих производств на территории действующего предприятия; увеличение пропускной возможности действующих вспомогательных и обслуживающих производств, хозяйств и коммуникаций на территории действующего предприятия или на площадках, которые прилегают к ней.
Расширением действующего производства достигается увеличение производственной мощности (производительности, пропускной способности вместительности зданий и сооружений) в более короткий срок и с меньшими затратами материально-технических ресурсов, чем это было бы необходимо при новом строительстве. Расширение предприятия происходит по единой утвержденной в установленном порядке проектно-сметной документации /1/.
Реконструкция действующих предприятий — это обновление основных фондов на новой технической базе. К реконструкции предприятия относятся полное или частичное переоснащение и переоборудование производства, которое осуществляется по единому проекту (без строительства новых и расширения действующих цехов, основного производственного назначения, но при необходимости со строительством новых и расширением действующих объектов вспомогательного и обслуживающего назначения) с заменой морально устаревшего и физически изношенного оборудования, механизацией и автоматизацией производства, устранением диспропорций в технических и вспомогательных службах.
Цель реконструкции — увеличение объема производства на базе новой, усовершенствованной технологии, повышение качества продукции, а также улучшение других технико-экономических показателей с меньшими затратами и в менее короткие сроки, чем при строительстве новых предприятий. Реконструкция действующего предприятия может осуществляться также с целью изменения профиля предприятия.
В зависимости от объемов и степени обновления основных фондов реконструкция может быть трех видов: полная (коренная), частичная и малая.
Техническое перевооружение — это осуществление соответственно планам технического развития на действующем предприятии (без расширения имеющихся производственных площадей) мероприятий по повышению технического уровня, отдельных участков производства путем внедрения новой техники и технологии, механизации к автоматизации производственных процессов.
При техническом перевооружении модернизируется и заменяется устаревшее и физически изношенное оборудование новым, более продуктивным, улучшаются организация работы и структура производства, ликвидируются проблемные места.
Цель технического перевооружения — всесторонняя интенсификация производства, повышение производительности труда и других, технико-экономических показателей работы предприятия, улучшение условий и организации работы, снижение себестоимости продукции, которая выпускается.
Источник: studbooks.net
Химическая связь. Типы химической связи
Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь
Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными.
Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов, в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.
Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ . Именно она определяет тип химической связи между атомами и свойства этой связи.
Электроотрицательность χ – это способность атома притягивать (удерживать) внешние (валентные) электроны. Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.
Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4 .
Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль разность электроотрицательностей атомов, а она примерно одинакова в любой системе.
Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.
Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В) , то общая электронная пара не смещается ни к одному из атомов: А : В . Такая связь называется ковалентной неполярной.
Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4 ), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная .
Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2 ), то один из электронов практически полностью переходит к другому атому, с образованием ионов . Такая связь называется ионная .
Основные типы химических связей — ковалентная, ионная и металлическая связи. Рассмотрим их подробнее.
Ковалентная химическая связь
Ковалентная связь – это химическая связь , образованная за счет образования общей электронной пары А:В . При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами) или атомов одного элемента.
Основные свойства ковалентных связей
Эти свойства связи влияют на химические и физические свойства веществ.
Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45 о , поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 109 о 28′.
Насыщаемость — это способность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется валентностью.
Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.
Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.
Ковалентная неполярная химическая связь
Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ .
Пример . Рассмотрим строение молекулы водорода H2. Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Льюиса неплохо помогают при работе с элементами второго периода.
H . + . H = H:H
Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной .
Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.
Дипольный момент неполярных связей равен 0.
Ковалентная полярная химическая связь
Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).
Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).
Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент . Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.
Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.
Механизмы образования ковалентной связи
Ковалентная химическая связь может возникать по 2 механизмам:
1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:
А . + . В= А:В
2. Донорно-акцепторный механизм образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:
А: + B= А:В
При этом один из атомов предоставляет неподеленную электронную пару ( донор ), а другой атом предоставляет вакантную орбиталь для этой пары ( акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.
Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей статье.
Ковалентная связь по донорно-акцепторному механизму образуется:
– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;
– в ионе аммония NH4 + , в ионах органических аминов, например, в ионе метиламмония CH3-NH3 + ;
– в комплексных соединениях, химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na[Al(OH)4] связь между алюминием и гидроксид-ионами;
– в азотной кислоте и ее солях — нитратах: HNO3, NaNO3, в некоторых других соединениях азота;
– в молекуле озона O3.
Основные характеристики ковалентной связи
Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.
Кратность химической связи
Кратность химической связи — это число общих электронных пар между двумя атомами в соединении. Кратность связи достаточно легко можно определить из значения валентности атомов, образующих молекулу.
Например , в молекуле водорода H2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.
В молекуле кислорода O2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.
В молекуле азота N2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.
Длина ковалентной связи
Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А2 и В2:
Длину химической связи можно примерно оценить по радиусам атомов, образующих связь, или по кратности связи, если радиусы атомов не сильно отличаются.
При увеличении радиусов атомов, образующих связь, длина связи увеличится.
Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.
Длина связи, нм
При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.
Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.
Длина связи, нм
Энергия связи
Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.
Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.
Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.
Например , в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается, т.к. увеличивается длина связи.
Ионная химическая связь
Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов.
Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.
Пример. Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na + , с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:
+11 Na ) 2 ) 8 ) 1 — 1e = +11 Na + ) 2 ) 8
Пример. Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:
+17 Cl ) 2 ) 8 ) 7 + 1e = +17 Cl — ) 2 ) 8 ) 8
Обратите внимание:
- Свойства ионов отличаются от свойств атомов!
- Устойчивые ионы могут образовывать не только атомы, но и группы атомов. Например: ион аммония NH4 + , сульфат-ион SO4 2- и др. Химические связи, образованные такими ионами, также считаются ионными;
- Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);
Образовавшиеся ионы притягиваются за счет электрического притяжения: Na + Cl — , Na2 + SO4 2- .
Наглядно обобщим различие между ковалентными и ионным типами связи:
Металлическая химическая связь
Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов, образующих кристаллическую решетку.
У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов. Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями.
Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы . Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь, т.к. общие электроны удерживают катионы металлов, расположенные слоями, вместе , создавая таким образом достаточно прочную металлическую кристаллическую решетку . При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.
Межмолекулярные взаимодействия
Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия . Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами. Силы Ван-дер-Ваальса делятся на ориентационные , индукционные и дисперсионные . Энергия межмолекулярных взаимодействий намного меньше энергии химической связи.
Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.
Особый вид межмолекулярного взаимодействия — водородные связи. Водородные связи — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N . Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения.
Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость .
Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь. Она характерна прежде всего для соединений фтора с водородом , а также к ислорода с водородом , в меньшей степени азота с водородом .
Водородные связи возникают между следующими веществами:
— фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H2O (пар, лед, жидкая вода):
— раствор аммиака и органических аминов — между молекулами аммиака и воды;
— органические соединения, в которых связи O-H или N-H: спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.
Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение температуры кипения.
Например , как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H2O-H2S-H2Se-H2Te мы не наблюдаем линейное изменение температур кипения.
А именно, у воды температура кипения аномально высокая — не меньше -61 о С, как показывает нам прямая линия, а намного больше, +100 о С. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20 о С) вода является жидкостью по фазовому состоянию.
Тренировочный тест по теме «Химические связи» — 10 вопросов, при каждом прохождении новые.
Источник: chemege.ru
Что такое связи в строительстве. Связи по покрытию производственных зданий. Вертикальные связи между фермами
Связи по покрытию включают вертикальные связи между фермами, горизонтальные связи по верхним и по нижним поясам ферм. Связи по верхним поясам устраиваем для того, чтобы воспринять часть ветровой нагрузки и предотвратить от выпучивания сжатые стержни верхних поясов. Поперечные связевые фермы устраиваем в торцах и в середине здания.
Связи по нижним поясам устанавливаем для восприятия ветровых и крановых нагрузок продольного и поперечного направления. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм.
Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы. Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм.
Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Распорки соединяют колонны в горизонтальной плоскости.
Распорки представляют собой продольные балочные элементы. Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок.
Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.
Системы связи каркасов производственных зданий
Для соединения конструктивных элементов каркаса служат металлические связи. Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости.
Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам. Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн.
Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки.
Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.
Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм. Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы связи предотвращают от смещения распорки.
Прогоны сплошного сечения
Сплошные прогоны применяют при шаге ферм не более 6 м н в зависимости от назначения имеют различное расчетное сечение. Сплошные прогоны изготовляются по разрезной и неразрезной схемам. Чаще всего используют разрезные схемы из-за их свойства упрощать монтаж, однако неразрезная схема тоже обладает положительными отличительными свойствами, к примеру, при неразрезной схеме расходуется меньше стали на сами прогоны.
Прогоны, расположенные на скате, с учётом кровли с большим уклоном всегда работают на изгиб в двух плоскостях. Устойчивость прогонов достигается за счёт крепления кровельных плит или за счёт присоединения настила к прогонам, с учётом всех сил трения между ними. Прогоны принято крепить к поясам ферм, используя коротыши из уголков и гнутые элементы из листовой стали.
Решетчатые прогоны
В качестве прогонов применяют прокатные или холодногнутые швеллеры, при шаге ферм более 6 м — решетчатые прогоны. Простой и наиболее легкой конструкцией решетчатого прогона является прутково-шпренгельный прогон с решеткой и нижним поясом из круглой стали. Недостаток такого прогона в сложности контроля сварных швов в узлах сопряжения прутков решетки с нижним поясом, а также в необходимости аккуратной транспортировки и монтажа.
Верхний пояс решетчатых прогонов в случае его большой жесткости из плоскости прогона следует рассчитывать на совместное действие осевого усилия и изгиба только в плоскости прогона, а в случае малой жесткости верхнего пояса из плоскости прогона необходимо рассчитывать верхний пояс на совместное действие осевого усилия и изгиба как в плоскости прогона, так и в перпендикулярной к ней плоскости. Гибкость верхнего пояса решетчатых, прогонов не должна превышать 120, а элементов решетки-150. Верхний пояс этого прогона состоит из двух швеллеров, а элементы решётки – из одиночного гнутого швеллера. Обычно раскосы фиксируются к верхнему поясу с помощью дуговой или контактной сварки.
Решетчатые прогоны рассчитывают как фермы с неразрезным верхним поясом, который всегда работает на сжатие с изгибом в одной или в двух плоскостях, в то время как другие элементы испытывают продольные усилия.
Связи — важные элементы стального каркаса, которые необходимы для выполнения следующих требований:
– обеспечение неизменяемости пространственной системы каркаса и устойчивости его сжатых элементов;
– восприятие и передача на фундаменты некоторых нагрузок (ветровых, горизонтальных от кранов);
– обеспечение совместной работы поперечных рам при местных нагрузках (например, крановых);
– создание жесткости каркаса, необходимой для обеспечения нормальных условий эксплуатации;
– обеспечение условий высококачественного и удобного монтажа.
Связи подразделяются на связи между колоннами и связи между фермами (связи по покрытию).
Связи между колоннами.
Система связей между колоннами (9.8) обеспечивает во время эксплуатации и монтажа:
– геометрическую неизменяемость каркаса;
– несущую способность каркаса и его жесткость в продольном направлении;
– восприятие продольных нагрузок от ветра в торец здания и торможения моста крана;
– устойчивость колонн из плоскости поперечных рам.
Для выполнения этих функций необходим хотя бы один вертикальный жесткий диск по длине температурного блока и система продольных элементов, прикрепляющих колонны, не входящие в жесткий диск, к последнему. В жесткие диски (рис. 11.5) включены две колонны, подкрановая балка, горизонтальные распорки и решетка, обеспечивающая при шарнирном соединении всех элементов диска геометрическую неизменяемость.
Решетка проектируется крестовой (рис. 9.13, а), элементы которой принимаются гибкими [] = 220 и работают на растяжение при любом направлении сил, передаваемых на диск (сжатый раскос теряет устойчивость) и треугольной (рис. 9.13, б), элементы которой работают на растяжение и сжатие.
Схема решетки выбирается так, чтобы ее элементы было удобно крепить к колоннам (углы между вертикалью и элементами решетки близки к 45°). При больших шагах колонн в нижней части колонны целесообразно устройство диска в виде двухшарнирной решетчатой рамы, а в верхней — использование подстропильной фермы (рис. 9.13, в). Распорки и решетка при малых высотах сечения колонн (например, в верхней части) располагаются в одной плоскости, а при больших высотах (нижняя часть колонны) — в двух плоскостях.
Рис. 9.13. Схемы конструкций жестких дисков связей между колоннами:
а — при обеспечении устойчивости нижней части колонн из плоскости рамы; б — при необходимости установки промежуточных распорок; в — при необходимости использования подкранового габарита.
Рис. 9.14. Схемы температурных перемещений и усилий:
а — при расположении вертикальных связей
посередине каркаса; б — то же, в торцах каркаса
При размещении жестких дисков (связевых блоков) вдоль здания нужно учитывать возможность перемещений колонн при температурных деформациях продольных элементов (рис. 9.14, а). Если поставить диски по торцам здания (рис. 9.14, б), то во всех продольных элементах (подкрановые конструкции, подстропильные фермы, распорки связей) и в связях возникают значительные температурные усилия.
Поэтому при небольшой длине здания (температурного блока) ставится вертикальная связь в одной панели (рис. 9.15, а). При большой длине здания вертикальные связи ставятся в двух панелях (рис. 9.15, б), причем расстояние между их осями должно быть таким, чтобы усилия F t были невелики.
Предельные расстояния между дисками зависят от возможных перепадов температур и установлены нормами (табл. 9.3).
По торцам здания крайние колонны соединяют между собой гибкими верхними связями (см. рис. 9.15, а). Вследствие относительно малой жесткости надкрановой части колонны расположение верхних связей в торцевых панелях незначительно сказывается на температурных напряжениях.
Вертикальные связи между колоннами ставят по всем рядам колонн здания; располагать их следует между одними и теми же осями.
Рис. 9.15. Расположение связей между колоннами в зданиях:
а — коротких (или температурных отсеках); б — длинных; 1 — колонны; 2 — распорки; 3 — ось температурного шва; 4- подкрановые балки; 5 — связевый блок; 6- температурный блок; 7 -низ ферм; 8 — низ башмака
Таблица9.3. Предельные размеры между вертикальными связями, м
При проектировании связей по средним рядам колонн в подкрановой части следует иметь в виду, что довольно часто по условиям технологии необходимо иметь свободное пространство между колоннами. В этих случаях конструируют портальные связи (см. рис. 11.5, в).
Связи, устанавливаемые в пределах высоты ригелей в связевом и торцевом блоках, проектируют в виде самостоятельных ферм (монтажного элемента), в остальных местах ставят распорки.
Продольные элементы связей в точках крепления к колоннам обеспечивают несмещаемость этих точек из плоскости поперечной рамы. Эти точки в расчетной схеме колонны могут быть приняты шарнирными опорами. При большой высоте нижней части колонны бывает целесообразна установка дополнительной распорки, которая закрепляет нижнюю часть колонны посередине ее высоты и сокращает расчетную длину колонны.
Рис. 9.16. Работа связей между колоннами при воздействии: а — ветровой нагрузки на торец здания; б — мостовых кранов.
Передача нагрузок . В точке А (рис. 9.16, а) гибкий элемент связей 1 не может воспринимать сжимающую силу, поэтомуF w передается более короткой и достаточно жесткой распоркой 2 вточку Б. Здесь сила по элементу 3 передается в точку В. В этой точке усилие воспринимается подкрановыми балками 4, передающими силуF w на связевый блок в точку Г. Аналогично работают связи и на силы продольных воздействий крановF(рис. 9.16, б).
Элементы связей выполняются из уголков, швеллеров, прямоугольных и круглых труб. При большой длине элементов связи, воспринимающие небольшие усилия, рассчитываются по предельной гибкости, которая для сжатых элементов связей ниже подкрановой балки равна 210 — 60(-отношение фактического усилия в элементе связей к его несущей способности),выше — 200; для растянутых эти значения составляют соответственно 200 и 300.
Связи по покрытию (9.9).
Горизонтальные связи располагаются в плоскостях нижнего и верхнего поясов ферм и верхнего пояса фонаря. Горизонтальные связи состоят из поперечных и продольных (рис. 9.17 и 9.18).
Рис. 9.17. Связи между фермами: а — по верхним поясам ферм; б — по нижним поясам ферм; в — вертикальные; / — распорка в коньке; 2 — поперечные связевые фермы
Рис. 9.18. Связи между фонарями
Элементы верхнего пояса стропильных ферм сжаты, поэтому необходимо обеспечить их устойчивость из плоскости ферм. Ребра кровельных плит и прогоны могут рассматриваться как опоры, препятствующие смещению верхних узлов из плоскости фермы при условии, что они закреплены от продольных перемещений связями.
Необходимо обращать особое внимание на завязку узлов ферм в пределах фонаря, где нет кровельного настила. Здесь для раскрепления узлов верхнего пояса ферм из их плоскости предусматриваются распорки, причем такие распорки в коньковом узле фермы обязательны (рис. 9.19, б). Распорки прикрепляются к торцевым связям в плоскости верхних поясов ферм.
В процессе монтажа (до установки плит покрытия или прогонов) гибкость верхнего пояса из плоскости фермы не должка быть более 220. Если коньковая распорка не обеспечивает этого условия, между ней и распоркой в плоскости колонн ставится дополнительная распорка.
В зданиях с мостовыми кранами необходимо обеспечить горизонтальную жесткость каркаса как поперек, так и вдоль здания. При работе мостовых кранов возникают усилия, вызывающие поперечные и продольные деформации каркаса цеха. Если поперечная жесткость каркаса недостаточна, краны при движении могут заклиниваться, при этом нарушается нормальная их эксплуатация. Чрезмерные колебания каркаса создают неблагоприятные условия для работы кранов и сохранности ограждающих конструкций. Поэтому в однопролетных зданиях большой высоты (Н 0 > 18 м), в зданиях с мостовыми кранами грузоподъемностью (Q ≥ 10 т, с кранами тяжелого и весьма тяжелого режимов работы при любой грузоподъемности обязательна система продольных связей по нижним поясам ферм.
Рис. 9.19. Работа связей покрытия:
а — схема работы горизонтальных связей при действии внешних нагрузок; б и в»- то же, при условных силах от потери устойчивости поясов ферм; / — связи по нижним поясам ферм; 2 — то же, по верхним; 3 — распорка связей; 4 — растяжка связей; 5 — форма потери устойчивости или колебаний при отсутствии распорки (растяжки); 6 — то же, при наличии распорки.
Горизонтальные силы от мостовых кранов воздействуют в поперечном направлении на одну плоскую раму и две-три смежные. Продольные связи обеспечивают совместную работу системы плоских рам, вследствие чего поперечные деформации каркаса от действия сосредоточенной силы значительно уменьшаются (рис. 9.19, а).
Жесткость этих связей должна быть достаточной для того, чтобы вовлечь в работу соседние рамы, и их ширина назначается равной длине первой панели нижнего пояса фермы. Связи обычно устанавливают на болтах. Приварка связей увеличивает их жесткость в несколько раз.
Прилегающие к опорам панели нижнего пояса ферм, особенно при жестком сопряжении ригеля с колонной, могут быть сжатыми, в этом случае продольные связи обеспечивают устойчивость нижнего пояса из плоскости ферм. Поперечные связи закрепляют продольные, а в торцах здания они необходимы и для восприятия ветровой нагрузки, направленной на торец здания.
Стойки фахверка передают ветровую нагрузку F w в узлы поперечной горизонтальной торцевой фермы, поясами которой служат нижние пояса торцевой и смежной с ней стропильных ферм (см. рис. 9.19, а). Опорные реакции торцевой фермы воспринимаются вертикальными связями между колоннами и передаются на фундамент (см. рис. 9.19). В плоскости нижних поясов также устраиваются промежуточные поперечные связи, расположенные в тех же панелях, что и поперечные связи по верхним поясам ферм.
Чтобы избежать вибрации нижнего пояса ферм вследствие динамического воздействия мостовых кранов, нужно ограничить гибкость растянутой части нижнего пояса из плоскости рамы. Для сокращения свободной длины растянутой части нижнего пояса приходится в некоторых случаях предусматривать растяжки, закрепляющие нижний пояс в боковом направлении. Эти растяжки воспринимают условную поперечную силу Q fic (рис. 9.19, в).
В длинных зданиях, состоящих из нескольких температурных блоков, поперечные связевые фермы по верхним и нижним поясам ставят у каждого температурного шва (как у торцов), имея в виду, что каждый температурный блок представляет собой законченный пространственный комплекс.
Вертикальные связи между фермами устанавливают в тех же осях, в которых размещают горизонтальные поперечные связи (см. рис. 9.20, в). Вертикальные связи располагают в плоскости стоек стропильных ферм в пролете и на опорах (при опирании стропильных ферм в уровне нижнего пояса). В пролете устанавливают одну-две вертикальные связи по ширине пролета (через 12- 15 м).
Вертикальные связи придают неизменяемость пространственному блоку, состоящему из двух стропильных ферм и горизонтальных поперечных связей по верхнему и нижнему поясам ферм. Стропильные фермы обладают незначительной боковой жесткостью, поэтому на монтаже их закрепляют к жесткому пространственному блоку распорками.
При отсутствии горизонтальных поперечных связей по верхним поясам для обеспечения жесткости пространственного блока и закрепления верхних поясов из плоскости вертикальные связи устанавливают через 6 м (рис. 9.20, д).
Рис. 9.20. Схемы систем связей по покрытию:
а — крестовые связи при 6-метровом шаге рам; б — связи с треугольной решеткой; в и г — то же, при 12-метровом шаге рамы; д — комбинация горизонтальных связей по нижним поясам ферм с вертикальными связями; I,II- связи соответственно по верхним и нижним поясам ферм
Сечения элементов связей зависят от их конструктивной схемы и шага стропильных ферм. Для горизонтальных связей при шаге ферм 6 м применяют крестовую или треугольную решетку (рис. 9.20, а, б). Раскосы крестовой решетки работают только на растяжение, а стойки — на сжатие. Поэтому стойки обычно проектируют из двух уголков крестового сечения, а раскосы — из одиночных уголков.
Элементы треугольной решетки могут быть как сжаты, так и растянуты, поэтому их проектируют обычно из гнутых профилей. Треугольные связи несколько тяжелее крестовых, но монтаж их проще.
При шаге стропильных ферм 12 м диагональные элементы связей, даже в крестовой решетке, получаются весьма тяжелыми. Поэтому систему связей проектируют так, чтобы наиболее длинный элемент был не более 12 м, этими элементами поддерживают диагонали (рис. 9.20, в). На рис.
9.20, г показана схема связей, где диагональные элементы вписываются в квадрат размером 6 м и опираются на продольные элементы длиной 12 м, служащие поясами связевых ферм. Эти элементы приходится делать составного сечения или из гнутых профилей.
Вертикальные связи между фермами и фонарями лучше всего выполнять в виде отдельных транспортабельных ферм, что возможно, если их высота будет менее 3900 мм. Различные схемы вертикальных связей показаны на рис. 9.20, е.
На рис. 9.19 показаны знаки усилий, возникающих в элементах связей покрытия при определенном направлении ветровой нагрузки, местных горизонтальных усилий и условных поперечных сил. Многие элементы связей могут быть сжаты или растянуты. В этом случае их сечение подбирается по худшему случаю — по гибкости для сжатых элементов связей.
Распорки в коньке верхнего пояса ферм (элемент 3 на рис. 9.19, б) обеспечивают устойчивость верхнего пояса из плоскости ферм как во время эксплуатации, так и при монтаже. В последнем случае они прикреплены только к одной поперечной связи, сечение их подбирается исходя из сжатия.
Связи каркаса обеспечивают геометрическую неизменяемость и устойчивость элементов в продольном направлении, совместную пространственную работу конструкций каркаса, жесткость здания и удобство монтажа и состоят из двух основных систем: связей между колоннами и связей покрытия.
Связи между колоннами. Связи между колоннами (рис. 6.4) обеспечивают во время эксплуатации и монтажа геометрическую неизменяемость каркаса и его несущую способность в продольном направлении, воспринимают и передают на фундамент ветровые нагрузки, действующие на торец здания, и воздействия от продольного торможения мостовых кранов, а также обеспечивают устойчивость колонн из плоскости поперечных рам.
Система связей по колоннам состоит из надкрановых одноплоскостных связей V-образной схемы, располагаемых в плоскости продольных осей здания, и подкрановых двухплоскостных крестовой схемы, располагаемых в плоскостях ветвей колонны.
Подкрановые связи в каждом ряду колонн располагаются ближе к середине блока здания, чтобы обеспечить свободу температурных деформаций в обе стороны и снизить температурные напряжения в элементах каркаса. Количество связей (одна или две по длине блока) определяется их несущей способностью, длиной температурного отсека и наибольшим расстоянием L с от торца здания (температурного шва) до оси ближайшей вертикальной связи (см. табл. 6.1). При наличии двух вертикальных связей расстояние между ними в осях не должно превышать 40 – 50 м.
Надкрановые связи устанавливаются в крайних шагах колонн у торца здания или температурного блока, а также в местах, где предусматриваются вертикальные связи в плоскости опорных стоек стропильных ферм.
Промежуточные колонны (вне блоков связей) в уровне стропильных ферм раскрепляются распорками.
При большой высоте подкрановой части колонны целесообразна установка дополнительных горизонтальных распорок между колоннами, уменьшающих их расчетную длину из плоскости рамы (на рис. 6.4 показаны пунктиром).
Вертикальные связи по колоннам рассчитываются на крановые и ветровые нагрузки W , исходя из предположения работы на растяжение одного из раскосов крестовых подкрановых связей. При большой длине элементов, воспринимающих небольшие усилия, связи принимаются по предельной гибкости λ u = 200.
Элементы связей выполняются из горячекатанных уголков, распорки – из гнутых прямоугольных профилей.
Связи покрытия. Система связей покрытия состоит из горизонтальных и вертикальных связей, образующих жесткие блоки в торцах здания или температурного блока и при необходимости промежуточные блоки по длине отсека (рис. 6.5).
Горизонтальные связи в плоскости нижних поясов стропильных ферм проектируются двух типов. Связи первого типа состоят из поперечных и продольных связевых ферм и растяжек (см. рис. 6.5, в г – при шаге 12 м). Связи второго типа состоят из поперечных связевых ферм и растяжек (см. рис. 6.5, д – при шаге ферм 6 м; см. рис.
6.5, е – при шаге ферм 12 м).
Рис. 6.4. Схема связей по колоннам
6.5. Связи покрытия
Рис. 6.5 (продолжение)
Поперечные связевые фермы по нижним поясам стропильных ферм предусматриваются в торцах здания или температурного (сейсмического) отсека (см. рис. 6.5, д , е ). Предусматривается также дополнительно одна связевая горизонтальная ферма в середине здания или отсека при их длине более 144 м в зданиях, возводимых в районах с расчетной температурой наружного воздуха –40 о С и выше, и при длине здания более 120 м в зданиях, возводимых в районах с расчетной температурой ниже –40 о С (см. рис. 6.5, в , г ). Тем самым уменьшаются поперечные перемещения пояса фермы, возникающие вследствие податливости связей. Поперечные горизонтальные связи в уровне нижних поясов ферм воспринимают ветровую нагрузку на торец здания, передаваемую верхними частями стоек фахверка, и вместе с поперечными горизонтальными связями по верхним поясам ферм и вертикальными связями между фермами обеспечивают пространственную жесткость покрытия.
Продольные горизонтальные связи в плоскости нижних поясов стропильных ферм предусматриваются вдоль крайних рядов колонн в зданиях:
– с мостовыми опорными кранами групп режимов работы 7К и 8К, требующими устройства галерей для прохода вдоль крановых путей;
– с подстропильными фермами;
– с расчетной сейсмичностью 7, 8 и 9 баллов;
– с отметкой низа стропильных ферм свыше 18 м независимо от грузоподъемности кранов;
– в зданиях с кровлей по железобетонным плитам, оборудованных мостовыми опорными кранами общего назначения грузоподъемностью свыше 50 т при шаге стропильных ферм 6 м и свыше 20 т при шаге ферм 12 м;
– в однопролетных зданиях с кровлей по стальному профилированному настилу, оборудованных кранами грузоподъемностью свыше 16 т;
– при шаге стропильных ферм 12 м с применением стоек продольного фахверка.
Поперечные горизонтальные связи в уровне верхних поясов стропильных ферм предусматриваются для обеспечения устойчивости поясов из плоскости ферм. Из-за решетки поперечных связей по верхним поясам ферм затрудняется использование решетчатых прогонов и поэтому поперечные связи, как правило, не применяются. В этом случае развязка ферм обеспечивается системой вертикальных связей между фермами.
В зданиях с кровлей по железобетонным плитам в уровне верхних поясов стропильных ферм предусматриваются распорки (см. рис. 6.5, а ). В зданиях с кровлей по стальному профилированному настилу распорки располагаются только в подфонарном пространстве, раскрепление ферм между собой осуществляется прогонами (см. рис. 6.5, б ); при расчетной сейсмичности 7, 8 и 9 баллов предусматриваются также поперечные связевые фермы или диафрагмы жесткости, устанавливаемые в торцах сейсмического отсека (см. рис. 6.5, ж – при шаге ферм 6 м; см. рис. 6.5, к – при шаге ферм 12 м), и дополнительно не менее одной при длине отсека более 96 м в зданиях с расчетной сейсмичностью 7 баллов и при длине отсека более 60 м в зданиях с расчетной сейсмичностью 8 и 9 баллов.
В диафрагмах жесткости профилированный настил, кроме основных функций ограждающих конструкций, выполняет функцию горизонтальных связей по верхним поясам стропильных ферм. Поперечные диафрагмы жесткости и горизонтальные связевые фермы воспринимают продольные расчетные горизонтальные нагрузки от покрытия.
В зданиях с фонарем в случае устройства промежуточной диафрагмы жесткости фонарь над диафрагмой должен быть прерван. Диафрагмы жесткости выполняются из профилированного настила марок H60-845-0,9 или H75-750-0,9 по ГОСТ 24045-94 с усиленным креплением его к прогонам.
Стропильные фермы, не примыкающие непосредственно к поперечным связям, раскрепляются в плоскости расположения этих связей распорками и растяжками. Распорки обеспечивают необходимую боковую жесткость ферм при монтаже (предельная гибкость верхнего пояса фермы из ее плоскости при монтаже λ u = 220). Растяжки предусматриваются для уменьшения гибкости нижнего пояса с целью предотвращения вибрации и случайных погнутостей при перевозке. Предельная гибкость нижнего пояса из плоскости фермы принимается: λ u = 400 – при статической нагрузке и λ u = 250 – при кранах режимов работы 7К и 8К или при воздействии динамических нагрузок, приложенных непосредственно к ферме.
Для горизонтальных связей обычно принимается связевая ферма с треугольной решеткой. При шаге стропильных ферм 12 м стойки-распорки связевых ферм проектируются с достаточно большой вертикальной жесткостью (как правило, из гнутых прямоугольных профилей) для опирания на них длинных диагональных раскосов, выполненных из уголков с незначительной вертикальной жесткостью.
Вертикальные связи между фермами предусматриваются по длине здания или температурного отсека в местах размещения поперечных связевых ферм по нижним поясам ферм. В зданиях с расчетной сейсмичностью 7, 8 и 9 баллов и кровлей по стальному профилированному настилу по рядам колонн вертикальные связи устанавливаются в местах размещения связевых ферм или диафрагм жесткости по верхним поясам стропильных ферм.
Основное назначение вертикальных связей – обеспечить проектное положение ферм при монтаже и увеличить их боковую жесткость. Обычно устраивается одна-две вертикальные связи по ширине пролета (через 12 – 15 м).
При опирании нижнего узла стропильных ферм на оголовок колонны сверху вертикальные связи располагаются также в плоскости опорных стоек ферм. При примыкании стропильных ферм сбоку к колонне эти связи располагаются в плоскости, совмещенной с плоскостью устройства вертикальных связей надкрановой части колонны.
В покрытиях зданий, эксплуатируемых в климатических районах с расчетной температурой ниже –40 о С, следует, как правило, предусматривать (дополнительно к обычно применяемым связям) вертикальные связи, расположенные по середине каждого пролета вдоль всего здания.
При наличии жесткого диска кровли в уровне верхних поясов ферм следует предусматривать инвентарные съемные связи для выверки проектного положения конструкций и обеспечения их устойчивости в процессе монтажа.
СВЯЗИ в конструкциях — легкие конструктивные элементы в виде отдельных стержней или систем (ферм); предназначены для обеспечения пространственной устойчивости основных несущих систем (ферм, балок, рам и т. п.) и отдельных стержней; пространственной работы конструкции путем распределения нагрузки, приложенной к одному или нескольким элементам, на все сооружение; придания сооружению жесткости, необходимой для нормальных условий эксплуатации; для восприятия в отдельных случаях ветровых и инерционных (например, от кранов, поездов и т. п.) нагрузок, действующих на сооружения. Системы связей компонуются так, чтобы каждая из них выполняла несколько из перечисленных функций.
Для создания пространственной жесткости и устойчивости конструкций, состоящих из плоских элементов (ферм, балок), которые легко теряют устойчивость из своей плоскости, они соединяются по верхним и нижним поясам горизонтальными связями. Кроме того, по торцам, а при больших пролетах и в промежуточных сечениях ставятся вертикальные связи — диафрагмы. В результате образуется пространственная система, обладающая большой жесткостью при кручении и изгибе в поперечном направлении. Этот принцип обеспечения пространственной жесткости используется при проектировании многих сооружений.
В пролетных строениях балочных или арочных мостов две главные фермы соединяются горизонтальными системами связей по нижним и верхним поясам ферм. Эти системы связи образуют горизонтальные фермы, которые, помимо обеспечения жесткости, принимают участие в передаче ветровых нагрузок на опоры. Для получения необходимой жесткости при кручении ставятся поперечные связи, обеспечивающие неизменяемость поперечного сечения мостового бруса. В башнях квадратного или многоугольного сечения с этой же целью устраиваются горизонтальные диафрагмы.В покрытиях промышленных и общественных зданий с помощью горизонтальных и вертикальных связей две стропильные фермы соединяются в жесткий пространственный блок, с которым прогонами или тяжами (связями) соединяются остальные фермы покрытия. Такой блок обеспечивает жесткость и устойчивость всей системы покрытия.Наиболее развитую систему связей имеют стальные каркасы одноэтажных промышленных зданий.
Системы горизонтальных и вертикальных связей решетчатых ригелей рам (ферм) и фонарей обеспечивают общую жесткость шатра, закрепляют от потери устойчивости сжатые элементы конструкции (например, верхние пояса ферм), обеспечивают устойчивость плоских элементов в процессе монтажа и эксплуатации.Учет пространственной работы, обеспечиваемой соединением основных несущих конструкций системами связей, при расчете сооружений дает снижение веса конструкций. Так, например, учет пространственной работы поперечных рам каркасов одноэтажных промышленных зданий дает снижение расчетных величин моментов в колоннах на 25-30%. Разработана методика расчета пространственных систем пролетных строений балочных мостов. В обычных случаях связи не рассчитываются, а их сечения назначаются по предельной гибкости, устанавливаемой нормами.
Поперечная устойчивость каркаса деревянных зданий достигается путем защемления основных стоек в фундаментах при шарнирном соединении конструкции покрытия с этими стойками; применения рамных или арочных конструкций с шарнирным опиранием; создания жесткого диска покрытия, что используется в небольших зданиях.Продольная устойчивость здания обеспечивается постановкой (примерно через 20 м) специальной связи в плоскости каркасных стен и среднего ряда стоек. В качестве связей могут быть использованы и стеновые щиты (панели), соответствующим образом скрепленные с элементами каркаса.
Для обеспечения пространственной устойчивости плоскостных несущих деревянных конструкций ставятся соответствующие связи, принципиально аналогичные связи в металлических или железобетонных конструкциях.В арочных и рамных конструкциях, помимо обычного (как в балочных фермах) раскрепления сжатого верхнего пояса, предусматривается раскрепление нижнего пояса, имеющего, как правило, при односторонних нагрузках, сжатые участки. Это раскрепление осуществляется вертикальными связями, попарно соединяющими конструкции. Таким же образом обеспечивается устойчивость из плоскости нижних поясов в шпренгельных конструкциях. В качестве горизонтальных связей могут быть использованы полосы косого настила и щиты кровли. Пространственные деревянные конструкции в специальных связях не нуждаются.
Металлический каркас промышленного здания состоит из ряда «плоских» элементов жестких и хорошо воспринимающих нагрузки в своей плоскости, но гибких в перпендикулярном направлении (рамы, подстропильные и промежуточные стропильный фермы и др.). Основное назначение связей — объединять плоские элементы в пространственную систему, способную воспринимать нагрузки действующие на здание в любом направлении.
Во-вторых, связи служат, чтобы обеспечивать устойчивость сжатых и сжато-изогнутых стержней верхних поясов ферм, колонн и др. Опасность потери устойчивости таких элементов объясняется тем, что стержни металлического каркаса имеют большие длины и относительно небольшие компактные поперечные размеры. Связи раскрепляют сжатые элементы в промежуточных точках, уменьшая расчетные длины элементов в направлении этих раскреплений.
Различают следующие основные виды связей, применяемых в металлическом каркасе промышленного здания
1) поперечные связи между верхними поясами ферм (сквозные ригели рам в дальнейшем будут называться «фермами»)(рис. 1) 2) вертикальные связи между фермами (рис.9); 3) продольные и поперечные связи, расположенные в плоскости нижних поясов ферм (рис.II); 4) вертикальные связи между колоннами (рис. 22). Рассмотрим компоновку, назначение и конструктивные решения узлов связей на примерах зданий с различными покрытиями.
I. ПОПЕРЕЧНЫЕ СВЯЗИ МЕЖДУ ВЕРХНИМИ ПОЯСАМИ ФЕРМ
1.1. Верхний пояс фермы, как любой сжатый стержень, может потерять устойчивость, если усилие в нем достигнет критического значения. Потеря устойчивости в таком случае произойдет в одной из двух плоскостей:
Рис.1. Поперечные связи между верхними поясами ферм, По 2-2 — вертикальные связи a) в плоскости фермы — стержень, потерявший устойчивость, останется в плоскости фермы. Это значит, что при взгляде на ферму сверху потери устойчивости не будет заметна. Как видно из рис.2, расчетная длина при проверке устойчивости верхнего пояса «и плоскости» фермы соответствует расстоянию — между узлами, то есть длине одной панели;
Рис.2. Расчетная длина верхнего пояса в плоскости фермы, (пунктир)
б) потери устойчивости верхнего пояса с выходом его из плоскости фермы показать лишь в плане. Предположим, что связи не поставлены. Тогда потеря устойчивости произойдет по схеме, приведенной на рис.За. Прогоны, которые обычно крепятся к верхнему, поясу фермы шарнирно (с помощью болтов), сами по себе, без связей, не будут препятствовать потери устойчивости ферм, так как после потери устойчивости верхние пояса ферм выпучатся, а прогоны свободно переместятся в новое положение. При этом расстояние между фермами (пролет прогонов) сохранится.
Иная картина устойчивости будет наблюдаться, если поставить связи. Связи могут быть крестовые — с двумя диагоналями (рис. 3,6) и облегченные, треугольные (рис. 3, в), т.е. с одной диагональю. Сжатые диагонали, очевидно, выключаются из работы, потеряв устойчивость, а растянутые будут препятствовать искажению прямоугольников, не дадут им превратиться в параллелограммы.
Следовательно, в точках крепления диагоналей пояс фермы сохранит свое первоначальное положение и расчетная длинй его «из плоскости» будет равна участку «Л-В» (рис,3, в), т.е. двум панелям. Верхние пояса всех ферм, связанных с этими точками с помощью прогонов (или распорок по фонарям), будут иметь такие же расчетные длины, как и пояса двух ферм, непосредственно закрепленных связями, т.е. участки А» -В», A»»-B»» имеют расчетные длины, равные двум панелям.
Рис.3. Потеря устойчивости верхних поясов ферм; а) в покрытии без связей; б) схема натяжения и выключения раскосов связей; в) обеспечение устойчивости веря поясов с помощью стержневых связей
Обратим внимание на ошибку, которая может быть допущена при определении расчетной длины верхнего пояса из плоскости фермы. На рис.3в прогон пересекает диагональ связей в точке «f». Создается впечатление, что прогон прикреплен к диагонали связей, и расчетную длину верхнего пояса из плоскости фермы казалось бы, можно брать равной панели. Однако это неверно: прогоны и связи расположены в разных уровнях, между ними «f» имеется зазор (рис. 7)
1.2. В зданиях с фонарем (рис.4) верхний пояс не раскреплен из плоскости ферма на большом участке, т.к. под фонарем нет прогонов. Если считать, что конструкций стенового ограждения фонаря вместе с прогоном фиксируют точку «Б», то расчётная длина верхнего пояса из плоскости «Б~Б». Введение распорки в середине пролета фонаря уменьшает расчетную длину из плоскости фермы (рис.4б) до трех панелей.
Рис.4. Расчетные длины верхнего пояса под фонарем:
а) без распорок — 6 панелей;
б) с одной распоркой — 3 панели;
в) при шаге ферм 12 м вводится промежуточный связевой пояс ПП
В качестве распорки используется верхний пояс вертикальных связей (раздел 2), но могут быть применены специально предназначенные для этой,цели парные уголки или другие профили,
1.3. В последнее время с целью экономии металла принято функции связей по верхним поясам возлагать на кровельный настил, который при его надежном прикреплении к фермам может обеспечивать устойчивость верхних поясов из плоскости ферм.
Так в беспрогонных покрытиях с железобетонным настилом устойчивость верхних поясов из плоскости ферм обеспечивается приваркой закладных частей настила к верхним поясам. В таком случае расчетная длина верхнего пояса из. плоскости фермы может быть принята равной длине одной панели фермы. 0 приварке настила к поясам ферм должна быть сделаны указания, в примечании на чертеже.
Во время возведения здания эти прикрепления плит к поясам должны контролироваться. При этом требуется составлять акт на скрытые работы. Профилированный настил также может выполнять роль связей по верхним поясам, если его прикрепить е помощью дюбелей к прогонам.
Лучшим конструктивным решением при использовании профилированного настила в качестве связей будет такое, при котором прогоны крепятся к ферме так, что верхняя полка прогона находится в одним уровне с верхней полкой пояса фермы. В этом случае настил пристреливается дюбелями по четырем своим сторонам — к прогонам и верхним поясам ферм. Для удобства крепления прогонов к фермам в этом случае можно использовать фермы покрытия не с треугольной решеткой, а с нисходящими раскосами (рис.5).
Рис.5. Использование профилированного настила в качестве связей по верхнему поясу:
а) ферма покрытия с нисходящими раскосами;
б) вариант решения узла опирания прогона в одном уровне с верхним поясом фермы
При экономических преимуществах замены связей настилом, прикрепленным к поясам, покрытия оказываются лишенными одной немаловажной функции, выполняемой связями. Связи по верхним поясам кроме того, что обеспечивают устойчивость ферм, являются также фиксаторами правильного взаимного положения ферм во время монтажа. Поэтому при монтаже покрытия без связей рекомендуется предусматривать использование временных (съемных) инвентарных связей, т.е. монтажных кондукторов.
При наличии фонарей в покрытиях, где настил служит в качества связей по верхнему поясу, под фонарем для обеспечения устойчивости пояса устраиваются связи в виде диагоналей при шаге ферм 6 м или в виде неполных диагоналей при шаге ферм 12 м (рис.6). При этом расчетная длина верхнего пояса ферм при проверке устойчивости из плоскости принимается равной двум панелям.
Рис.6. Обеспечение устойчивости верхних поясов ферм под фонарями в покрытиях, где функции связей выполняет; настил t а) шаг ферм б м, б) шаг ферм 12 м
1.4. В покрытиях с шагом ферм 12 м и с прогонами пролетом 12 м связевая ферма принимается шириной 6 м. В этом случае вводится дополнительный промежуточный пояс из соответствующих профилей (рис.4, в) и конструируются связи так же, как, если бы шаг ферм был 6 м.
1.5. Расстояние по длина здания между стержневыми связями по верхнему поясу ферм не должно превышать 144 м. Поэтому в длинных зданиях связи ставятся не только в крайних панелях блока каркаса но и в середине или третях длины блока (рис. I).
Эти требования объясняются тем, что устойчивость ферм, рай-положенных далеко о,т связей, не всегда может быть надежно обеспечена, т.к, прогоны или распорки, прикрепляющие фермы к связевым блокам, допускают в узлах известную смещаемость вследствие разности диаметров болтов и отверстий. С увеличением числа узлов, т.е. с удаленнем связей, эта смешаемость суммируется и увеличивается, что уменьшает надежность обеспечения устойчивости ферм, расположенных далеко от связей.
Конструкции некоторых узлов связей, выполненных из уголковых и гнутосварных профилей, и их прикрепление к фермам показано на рис, 7, 8.
Итак, связи, расположенные в плоскости верхних поясов ферм, имеют следующее основное назначение: при загружении покрытия предотвращают потерю устойчивости этих поясов из плоскости ферм, то есть уменьшают расчетную длину верхних поясов при проверке устойчивости их из плоскости ферм.
2. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ ФЕРМАМИ
Эти связи называют также монтажными, так как их главное назначение — удерживать в проектном положении поставленные на опоры фермы, не дать одиночным фермам опрокинуться во время монтажа от ветровых и случайных воздействий, т.к. центр тяжести фермы находится выше уровня, опор (рис. 9, а).
Вертикальные связи в виде цепочки распорок и ферм ставят по длине здания между стойками стропильных ферм. Связевые фермы для экономии металла соединяют между собой верхними и нижними распорками (рис.10). Таким образом, фермы вертикальных связей являются дисками, а прикрепленные к ним стержни-распорки обеспечивают промежуточные стропильные фермы или ригели рам от опрокидывания (рис.9б). Решетка связевых ферм, как правило, может быть произвольной (рис.9в) и выполняется из одиночных уголков или из прямоугольных гнуто-сварных труб. В покрытиях с шагом ферм 12 м, со шпренгельными прогонами или с настилом, усиленным шпренгелями, верхний пояс фермы вертикальных связей может иметь вид, показанный на рис.9г.
Вертикальные связи по ширине пролета располагаются на опорах (между колоннами) и в пролете между стойками.ферм не реже, чем через 15 м, т.е. при пролете здания 36 м они будут расположены в плоскостях двух стоек.
Рис.7. Прикрепление связей к верхним поясам ферм
Рис.8. Узлы покрытия и связей при шаге ферм 12 м (см. рис. 6);
а) Прикрепление связей, выполненных из замкнутых профилей к фермам с поясами из широкополочных двутавров
б) Узел Б
Рис.9. Вертикальные связи между фермами:
а) положение центра тяжести,
б) фермы-диски и распорки,
в) схемы решеток ферм,
г) связи в покрытиях с шагом ферм 12 м и со шпренгельыми прогонами
Фермы — диски вертикальных связей ставятся с шагом 30-36 м по длине здания. Стойки уголковых ферм, к которым крепятся связи в верхнем и нижнем узлах, принимаются крестового сечения (рис.10).
Связи могут прикрепляться также к специальныо предусмотренным для этогй цели вертикальным фасонкам . В составе блока при крупноблочном монтаже вертикальные связи являются необходимыми элементами, обеспечивающими неизменяемость блока.
Рис.10. Узел прикрепления верхнего пояса фермы вертикальных связей к стойке стропильной фермы. Аналогично выполняется нижний узел
ПРОДОЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ СВЯЗИ ПО НИЖНИМ ПОЯСАМ РИГЕЛЕЙ
Контур связей, расположенных в плоскости нижних сквозных ригелей, можно расчленить на продольные и поперечные связи (рис.11). Назначение продольных связей сводится к следующему:
3.1. Продольные связи воспринимают поперечные горизонтальные крановые воздействия, т.е воспринимают внецентренное приложение вертикального давления крана на колонну, вызывающее горизонтальное смещение рамы, а также поперечное торможение крана, приложенное к одной раме (рис.12а) и передает эти воздействия на соседние рамы, менее нагруженные (рис.12б). Таким образом обеспечивается пространственность каркаса при работе его на местные нагрузки, вызывающие горизонтальные смещения ригеля рамы.
Рис.11. Связи по нижним поясам ригелей рам
Рис.12. Схема воспринятая поперечных горизонтальных нагрузок продольными связями по нижним поясам:
а) смешение рам от вертикального внецентренного приложения крановой нагрузки и от торможения;
б) передача поперечных нагрузок на связи
3.2. Отметим, что боковая нагрузка от ветра передается одинаково на все рамы, вызывая одинаковое смешение их. Поперечных сил между рамами в этом случае не возникает и поэтому в каркасах с шагом рам 6 м продольные связи не воспринимают ветровой нагрузки,
При шаге колонн 12 м и более в каркасах, имеющих стойки фахверка (стенового каркаса), продольные связи работают на эту нагрузи; Они являются верхними горизонтальными опорами стоек фахверка. Таким образом, в этом случае продольные связи передают усилия от ветровых нагрузок со стоек фахверка на соседние рамы (рис.13) и связи нагружены усилиями от ветровой нагрузки по длине шага рам.
Рис.13. Передача ветровой нагрузки со стоек фахверка на продольные связи
3.3. В крайних, панелях ригеля вследствие того, что жестко защемленный ригель на опоре испытывает изгибающие моменты противоположного знака по отношению к знаку момента в пролете, дается сжатие нижнего пояса (рис.14).
Рис.14. Сжатие в нижнем поясе ригеля вблизи опор
Закрепить нижний пояс от потери устойчивости из плоскости ригеля здесь можно лишь с помощью продольных связей (точка «f» рис.14). Устойчивость нижнего пояса в плоскости ригеля обеспечивается либо развитием момента инерции сечения пояса (в этой панели он может быть принят из двух неравнобоких уголков, составленных большими полками), либо введением дополнительной подвески.
3.4. В многопролетных зданиях с кранами тяжелого режима работы (7К, 8К) продольные связи в виде горизонтальных ферм ставятся друг от друга на расстояние не более двух пролетов (рис.15)
Рис.15. Связи по нижним поясам ригелей в многопролетном каркасе с кранами тяжелого режима работы (7К, 8К)
В многопролетных зданиях с кранами среднего режима работы при грузоподъемности до 50 т, при пролетах не более 36 м и с высотой до 25 м, а также с шагом рам 6 м, допускается не делать продольных связей по нижнему поясу. Однако распорки и тяжи, обеспечивающие устойчивость нижних поясов из плоскости ферм, должны быть поставлены в каждом пролете (рис.16).
Рис.16. Связи по нижним поясам Б каркасе с кранами среднего режима работы (4К — 6К)
4. ПОПЕРЕЧНЫЕ СВЯЗИ В ПЛОСКОСТИ НИЖНИХ ПОЯСОВ РИГЕЛЕЙ
4.1. Эти связи служат для передачи усилий от ветровых нагрузок, направленных в торец здания, со стоек торцевого фахверка на вертикальные связи между колоннами (рис.17) (передача давления показана стрелками).
Рис.17. Схема передачи ветровых нагрузок с торца здания на связи
4.2. Вместе с продольными связями они образуют замкнутый контур, увеличивающий общую жесткость каркаса здания.
Поперечные связи, как правило, ставятся под связями по верхним поясам, создавая с ними пространственные поперечные блоки, к которым с помощью прогонов, распорок вертикальных связей и продольных связей крепятся промежуточные фермы (ригели).
На рис.18, 19 показаны узлы крепления горизонтальных связей, выполненных из уголков и прямоугольных гнуто-сварных труб к поясам ферм. Следует отметить, что в каркасах с тяжелым режимом работы кранов 7К, 8К и при больших крановых нагрузках связи прикрепляются к фермам с помощью сварки (т.е. болтовые узлы должны быть обварены) либо с помощью высокопрочных болтов.
Рис.18. Конструкции уголковых связей по нижним пояс
5. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ КОЛОННАМИ
Различают верхний ярус вертикальных связей между колоннами (связи, расположенные выше подкрановых балок) и нижний я ниже балок (рис.20).
Рис.19. Узел связей по нижнему поясу из прямоугольных гнуто-сварных профилей
Рис.20. Схема вертикальных связей между колоннами
5.1. Связи верхнего яруса имеют следующее назначение:
а) усилия от ветра, направленного в торец здания, передаются на связи верхнего яруса с торцевых поперечных связей, расположенных в плоскости нижних поясов, а затем, по растянутым подкосам, эти усилия передаются на подкрановые балки»,
б) связи верхнего яруса обеспечивают -устойчивость колонн «из плоскости» рам. Таким образом, расчётная длина надкрановой части колонны (рис.20, пунктир) из плоскости рамы равна высоте этой части колонны;
в) вместе о нижним ярусом связей при монтаже удерживают крепленные анкерами колонны oт опрокидывания.
5.2. Вертикальные связи нижнего яруса
На связи нижнего яруса возлагается функции:
а) передавать ветровые усилия от связей верхнего яруса и от продольного торможения кранов (рис.20);
б) обеспечивать устойчивость подкрановой части колонии из плоскости рамы;
в) служить в качестве монтажных связей при установке колонн. В зданиях большой высоты связи нижнего яруса имеют дополнительную распорку между колоннами — (рис.21,
a). Ее назначение — уменьшить расчетную длину подкрановой части колонны из плоскости рамы. К этому компоновочному приему прибегают в том случае, когда при расчете проверю устойчивости колонны «из плоскости «не дает удовлетворительных результатов вследствие большой гибкости колонны (из плоскости рамы.).
Схемы вертикальных связей могут быть различными в зависимости от шага колонн, от необходимости использования проема между колоннами и т.п. (рис.21б).
Рис.21. Схемы вертикальных связей нижнего яруса:
а) дополнительная распорка для уменьшения расчетной длины колонны из плоскости рамы;
б) варианты связей между колоннами
Прикреплять связи нижнего яруса к подкрановым балкам в пролете не следует, так как при движении крана может возникнуть сжатие раскосов связей, а следовательно, их выключение. Связи верхнего яруса могут прикрепляться к тормозным балкам болтами с овальными отверстиями в вертикальном направлении.
Рис.22. Конструкции вертикальных связей между колоннами при шаге колонн 6 м
Рис. 23. Вертикальные связи между колоннами при шаге колонн 12 м: С- овальные отверстия в узле В, допускающие прогибы подкрановой балки без нагружения связей верхнего яруса; t — тормозная балка
В вертикальной плоскости верхний ярус связей обычно располагается, по оси надкрановой части колонны, а нижние связи должны быть двойными и их следует располагать в плоскостях как наружной, так и внутренней ветвей подкрановой части колонны (рис.22). Если имеется фахверк, то связи устанавливаются в плоскости фахверка и стыкуются со стойкой фахверка в среднем узле. По длине здания связи нижнего яруса размещаются в середине температурного блока (рис.22), но ни в крем случае не по концам, Размещение связей в середине здания обеспечивает свободную деформацию продольных элементов при колебаниях температуры (удлинение или укорочение подкрановых балок, продольных связей и др.).
Рис.24. Средний узел вертикальных связей (см.рис.23):
Г- крепление связей и стойке фахверка f на монтажной сварке, Д- на высокопрочных болтах, Q- ребра жесткости, 4-4 — расчетное сечениее фасонки. Болты рассчитывается на осевое усилие в диагонали связей и момент от эксцентриситета «а»
6. РАСЧЕТ СВЯЗЕЙ
В большинстве видов связей затруднительно точно определить величины усилий, которые будут ими восприниматься. Поэтому сечения элементов связей, как правило, подбираются по предельной гибкости . Для элементов, о которых заранее известно, что они будут испытывать сжатие, рекомендуется принимать предельную гибкость 200.
По известным усилиям рассчитывается вертикальные, связи между колоннами, а также поперечные связи по нижнему поясу ригеля и продольные горизонтальные связи (в случае учета пространственной работы каркаса).
- СНиП II-23-81*. Стальные конструкции,- М., Стройиздат, 1988, — 96 с.
- Беленя Е.И. и др. Металлические конструкции.- М., Стройиздат, 1989.- С.272-279.
- СНиП 2.01.07.-85. Нагрузки и воздействия.- М., Стройиздат, 1989.
- ЦНИИ Проектстальконструкция им. Мельникова, Типовые строительные конструкции, изделия и узлы. Серия 2.440-2, Узлы конструкций производственных зданий промышленных предприятий: Выпуск 4. Узлы тормозных конструкций и вертикальных связей. Чертежи КМ. Москва, 1989. 49 с.
- Пособие по проектированию стальных конструций (к СНиП 23-81*) — М., Центральный институт типового проектирования, 1989 -148с.
Самой тяжелой травмой не без оснований считается перелом. Первая помощь, оказанная вовремя и в необходимом объеме, может снизить риск осложнений, уменьшить время нетрудоспособности, а иногда и спасти.
Оказание первой помощи при переломах
Источник: tabloid40.ru