Что такое точка росы в строительстве дома из кирпича

Господа.
Вот задумался я.
На всем нам известном сайте многие не правильно забивают параметры и получают неверные результаты.
А тем временем задаю значения.
Температура снаружи = -25 гр.
Температура внутри + 24 гр.
Влажность снаружи 80%
Влажность внутри 40 % (40-60% минимально необходимая для комфортного самочувствия)

Теперь смотрим что получается:

1. Любимый конструктив частных застройщиков. Газобетон 375 мм со штукатуркой. Можно без штукатурки.
Посмотреть вложение 1900497
Конденсат = 20.17 гр/м2/час
Точка росы в газобетоне начинает образовываться начиная с 15% влажности внутри дома.
Точка росы находится преимущественно в зоне отрицательных температур.

2. Газобетон утепленный 100 мм пенопласта
Посмотреть вложение 1900526
Конденсат = 17.69 гр/м2/час
Точка росы находится также в зоне отрицательных температур

3. Газобетон утепленный 100 мм минеральной ватой

Для чего нужен вентиляционный зазор и что такое точка росы.


Посмотреть вложение 1900528
Конденсата и точки росы внутри стены нет. Неплохой конструктив.

4. Стена в 2,5 полнотелых кирпича толщиной 64 см. (Привет 90-е)
Посмотреть вложение 1900540
Конденсат = 17 гр/м2/час
Точка росы находится в зоне отрицательных температур.

5. Кирпичная стена в 1,5 пустотелых кирпича, утепленная минеральной ватой 100 мм.
Посмотреть вложение 1900546
Конденсата и точки росы внутри стены нет. Мой любимый конструктив. Конечно далее идет вент. зазор 3-4 см и декоративная отделка.

6. Кирпичная стена в 1,5 пустотелых кирпича, утепленная пенопластом 100 мм.
Посмотреть вложение 1900550
Конденсат = 0.56 гр/м2/час
Точка росы находится в пенопласте. Наверное это не очень хорошо. Ухудшится показатель теплопроводности и теоретически срок службы.

Выводы:
Любая однородная стена из строительных материалов таких как газо-пено блоки, керамзитобетонные блоки, теплая керамика, кирпич и пр. имеет точку росы зимой в своей толще. Это уменьшает срок службы стены, увеличивает вероятность появления высолов на облицовке, ухудшает теплопроводность. Из-за многократных циклов замораживания/оттаивания может материал стены со временем теряет прочность.
Таким образом, любая однородная стена требует утепления.
Утеплитель должен обладать хорошей паропроницаемостью, чтобы не задерживать пар в толще конструкции.
Самая плохая паропроницаемость у экструдированного пенополистирола. Он подходит для утепления бетонных фундаментов и стен, а также плоских кровель по бетонному перекрытию.
Более паропроницаем обычный пенопласт. Он при некоторых условиях подходит для утепления кирпичных стен.
Самый паропроницаемый утеплитель — это минеральная плита. Он подходит для утепления стен из любых материалов.
Естественно между утеплителем (пенопластом или минеральной плитой) и облицовкой должен быть предусмотрен вент. зазор для удаления пара с поверхности утеплителя. Организация вент. зазора в каждом конкретном случае делается по разному.

А зачем? Пусть она живет своей жизнью — «точка росы», вообще вещь сама в себе — не надо из неё делать фобию.
http://www.aeroc.ru/material/mifi/

Миф двенадцатый — «без наружного утепления точка росы оказывается в стене»

«Точка росы», а если говорить более четко, то «плоскость возможной конденсации водяных паров», легко может оказаться внутри утепленной снаружи ограждающей конструкции и практически никогда не окажется в толще однослойной стены.
Наоборот, однослойная каменная стена менее подвержена увлажнению, чем стены со слоем наружного утеплителя в пределах 50 – 100 мм.
Дело в том, что плоскость возможной конденсации – это не тот слой стены, температура которого соответствует точке росы воздуха, находящегося в помещении. Плоскость конденсации – это слой, в котором фактическое парциальное давление водяного пара становится равным парциальному давлению насыщенного пара. При этом следует учитывать сопротивление паропроницанию слоев стены, предшествующих плоскости возможной конденсации. Учитывать сопротивление паропроницанию внутренней штукатурки, обоев и т. д.
Проиллюстрируем наши рассуждения примерами:
Исходные условия: температура внутреннего воздуха: +20°С, влажность 40%; температура наружного воздуха: -15°С, влажность 90%

[​IMG]

На первом изображении: Плотности реального и насыщенного водяного пара в толще стены
На втором изображении: Изменение температуры по толщине стены
——— плотность насыщенного водяного пара
——— плотность реального водяного пара

Следующие иллюстрации достаточно наглядно демонстрируют: конденсация становится возможной при уменьшении паропроницамости отделочных слоев или утеплителя по сравнению с предыдущими слоями.

Однослойная стена с паропроницаемой отделкой лишь в редкие особо морозные зимы может увлажняться конденсируемой влагой. В условиях климата Украины конденсацией паров в толще однослойных стен можно пренебречь.

Наружное утепление минеральной ватой: При «мокрой» отделке утеплителя конденсация возможна на границе [штукатурка/утеплитель], с поледующим намоканием утеплителя

[​IMG]

Наружное утепление пенополистиролом: Конденсация возможна на границе [несущая стена/утеплитель]

[​IMG]

Вывод. И он один.
Для проверки накапливает ли по ходу отопительного сезона стена влагу, если да, то сколько, и насколько это критично, нужно делать расчет, а не смотреть веселые картинки.

Э-э-э . даже комментировать не вижу смысла.
Ну как можно так вот нести совершенно безграмотную околесицу?

В зимнее время температура воздуха с внутренней стороны ограждения бывает значительно выше температуры наружного воздуха. Если при этом предположить, что относительные влажности внутреннего и наружного воздуха будут одинаковыми, то упругость водяного пара с внутренней стороны ограждения окажется значительно более высокой, чем с наружной его стороны. Таким образом, в зимнее время наружное ограждение отапливаемых зданий разделяет две воздушные среды с одинаковым барометрическим давлением, но с разными значениями упругости (парциальными давлениями) водяного пара. Разность величин упругости водяного пара в обычных условиях может достигать 1300 Па, а в зданиях с повышенной температурой и высокой относительной влажностью воздуха может быть и значительно выше.
Разность величин упругости водяного пара с одной и с другой стороны ограждения вызывает поток водяного пара через ограждение от внутренней его стороны к наружной стороне. Это явление носит название диффузии водяного пара через ограждение.

К. Ф. Фокин
Строительная теплотехника ограждающих частей зданий

Относительная влажность знаете, что такое?
Это максимум влаги в газообразном состоянии (пар), который может содержаться в воздухе при определенной температуре.
Если давление пара достигает максимального (100%-ная относительная влажность) для данной температуры значения, то излишки пара превращаются в воду. Но давление выше максимального не растет. И не может давление «накапливаться».

Ну вообще то для меня важнее тема точки россы в стене, а не то что вы нашли такой «большой» недостаток ошибки в калькуляторе. Вы принципиально не отвечаете на вопросы про -40 и конструкцию стены. Или вам интереснее писать не о чем подмигивая и улыбаясь?

Это не ошибка в калькуляторе. Это ошибка в выборе данных.
Теперь про -40 градусов и т. п.
Живу я недалеко от Рязанской области (чутка севернее), в Рязани пожил не мало, часто там гощу. -40 на моей памяти было только в год перед московской олимпиадой.
Ну да ладно. — 40, так -40. При -40 вода безусловно замерзает. Но дело в том что пористость ПБ плотностью 300 кг на куб больше 80%. Т. е. воздуха в этом пенобетоне больше 80%. Т. е. те несколько граммов, что при такой температуре выпадет в зоне конденсации, замерзнув, будут видны разве что через микроскоп.

Читайте также:  Параллельный и последовательный методы строительства

Опасности не представляют от слова вообще.
Конструкция Ваша мне до фонаря. Я ее не комментировал. Я комментировал лишь расчет.
Ирония моя связана с тем, что в калькуляторе написано, что (при нормативных расчетных параметрах — они есть там, где выбирали город) в конструкции нет условий для образования конденсата. Она совершенно безопасна. Но Вам почему-то неймется и Вы рассуждаете о неком замерзании конденсата в — 40.
Ничего что я еще раз подмигну улыбаясь?
Удачи

Неа. Весь вопрос сводится к пористости. Если б Вы внимательно читали других, то узнали бы что пористость ячеистых бетонов (ЯБ — пено и газобетоны) крутится в районе 80%. Т. е. «в среднем по больнице» для того чтобы при переходе из жидкого состояния в твердое (лед) вода не разрушала стенки пор в кубе ЯБ есть аж 800 литров воздушного пространства. Это значит, что если Вы не будете принудительно замачивать ЯБ в емкости с водой, а потом засовывать его в холодильную камеру, то неоткуда взять такого количества влаги, чтобы она при замерзании начала что-то разрушать.
Даже у кирпича минимум 20% пористости. У самого плотного. 200 литров в кубе — воздух.
Не кошмарьте.

Я вам уже говорил, что про естественную влагу находящуюся в материалах наверно даже ребенку понятно. Мне же интересно, что означает зона конденсации в калькуляторе в моем случае? Ведь каждый материал имеет ограниченное количество циклов заморозки, разморозки, свою морозостойкость. Имея такую зону конденсации будет пенобетон в данном случии терять с годами морозостойкость? Вот что меня интересует, прямые ответы с объяснением, на прямые вопросы.

Кстати, к вопросу о росах, дыхании стен и прочем.
Статья о том, как вешать ЭППС правильно.

Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.
Влага приходящая из дома, влага абсорбируемая из воздуха, намокание из-за дождя?
Какую долю составляет каждый из источников? Что главная причина, а чем можно пренебречь?
Какой вообще механизм разрушения кирпича?
Может это где-то в литературе описано?

Нормируется морозостойкость наружных 12 см однослойной кладки.
Цитирую СП 15.13330 «Каменные и армокаменные конструкции»:

5.2 Проектные марки по морозостойкости каменных материалов для наружной части стен (на толщину 12 см) и для фундаментов (на всю толщину), возводимых во всех строительно-климатических зонах, в зависимости от предполагаемого срока службы конструкций, но не менее 100, 50 и 25 лет, приведены в 5.3 и таблице 1.

Полнотелый кирпич начинает разрушаться снаружи. Если сбить отслаивающиеся наружные слои, внутри однослойных стен мы обнаружим еще вполне бодренький материал. Это свидетельствует о том, что в однослойных стенах помещений с нормальным режимом эксплуатации влиянием конденсации в толще стен можно пренебречь. Нормативные требования это пренебрежение подтверждают.
В современных стенах из ГБ, ККК без наружной штукатурки тоже можно пренебрегать конденсацией, а при наличии штукатурки — тщательно проверять расчетную влажность слоя кладки толщиной 20 мм непосредственно под штукатуркой. Если проблемы и возникают при кривом выборе отделки, то именно там.

Кремлевская стена плохой пример, за ней следят.
Пренебречь точно можно, если стена за утеплителем, она просто не замерзает.
Но вопрос то был не совсем о том.
Замерзание «абсолютно сухого»(условность) кирпича, как я понимаю ему не вредит.
Вопрос какая именно влага, откуда, при замерзании разрушает кирпич.
Влага приходящая из дома, влага абсорбируемая из воздуха, намокание из-за дождя?
Какую долю составляет каждый из источников? Что главная причина, а чем можно пренебречь?
Какой вообще механизм разрушения кирпича?
Может это где-то в литературе описано?

В общем случае долговечность материалов определяется их физическими свойствами (пористость, «гидрофобность», теплопроводность, радиационная стойкость); физико-механическими (прочность каркаса (структуры) материала) и химическими свойствами (стойкость к разрушающим химическим реакциям).

1. Пористость влияет на многие свойства материала. Для большинства материалов напрямую влияет на влагопроницаемость (паропроницаемость) и максимальное влагонакопление. Более легкий (менее плотный) кирпич как правило более влагопроницаем и имеет меньшую морозостойкость. Пористость зависит от состава глин и способа изготовления (формовки, сушки и обжига). Силикатный или прессованный кирпич отличается по процессу изготовления, их пористость так же зависит исходных материалов и технологии изготовления.

Для керамического кирпича важнейшим этапом является термообработка. Из одного и того же состава можно получить существенно отличающийся по прочности и морозостойкости кирпич.

2. «Гидрофобность» не рассматривается как отдельное свойство в долговечности, обычно исследуют сорбционную и эксплуатационную влажности, скорость влагонакопления и сушки материала, максимальное водопоглощение. Так или иначе эти свойства связаны с пористостью и строением «порового материала».

Если грубо, то чем меньше и медленнее воды набирает материал, и чем быстрее он ее отдает, тем выше будет его долговечность. Например, сорбционная влажность качественного керамического кирпича при относительной влажности 97% не превышает 2%. Высоленный, пористый кирпич может насосать из атмосферы до 15%! Естественно, что разрушение такого материала произойдет гораздо быстрее.

Для защиты старых кладок используют специальные краски, гидрофобные покрытия (если нужно сохранить естественный вид) или если эстетика потеряна, закрывают их штукатуркой или плиткой. Если погулять по центру Москвы, можно увидеть все три варианта защиты. Но некоторые довольно старые кирпичные стены, по моему, стоят «как есть».

3. Низкая теплопроводность в определенных конструктивных решениях является источником дополнительных механических нагрузок, связанных с тепловым расширением материала. Это наведенное свойство, т. е. не свойство, присущее самому материалу, но мир несовершенен. Если взять, например, стену кирпич-утеплитель-кирпич, то фактически в такой стене будет разрушаться только утеплитель.

К сожалению, не только долговечность полимерного утеплителя несопоставима с долговечностью кирпича. Минеральная вата, теплоизоляционный газобетон — все придет в негодность гораздо раньше несущей стены из кирпича и клинкерной облицовки. Любой материал, кроме быть может пеностекла, в такой конструкции уступит кирпичу. Если взять однородную стену из кирпича или газобетона, то она разрушится гораздо быстрее, по сравнению со стеной с меньшим перепадом температур. Тонкая однородная кирпичная стена наружного ограждения проживет меньше, чем толстая.

4. Радиационная стойкость — как правило подразумевается защита от солнечного излучения. Разрушению от солнца подвержены в первую очередь органические материалы. Также следует помнить, что южные стороны домов в большей степени подвержены разрушению. Большее количество переходов через 0, нагрев до более высоких температур летом. Если кирпич имеет имеет высокую сорбционную влажность, это будет иметь значение.

5. Механическая прочность является одним из ключевых факторов долговечности наряду с морозостойкостью. Способность материала противостоять как краткосрочным так и долгосрочным нагрузкам существенно увеличивает долговечность материала. Кирпич более высокой марки, полученный по близкому техпроцессу и из близких материалов, более долговечен.

6. Химическая стойкость подразумевает возможность сопротивлению процессам окисления, выщелачивания, карбонизации и т. п. Качественный кирпич практически инертен к атмосферным химическим воздействиям и поэтому обладает очень большой долговечностью (сотни лет). Однако нужно не забывать, что кирпич кладется на раствор. При кладке здания с проектной долговечностью
более 100 лет, кладочный раствор должен также отвечать определенным требованиям по прочности, пористости и химической стойкости.

Читайте также:  Поправочные коэффициенты к нормам продолжительности строительства

Я специально не пишу о конструктивных особенностях наружных ограждений из кирпича, которые снижают срок их службы. Пока вроде бы речь идет только об особенностях самого материла «керамический кирпич».

Извините за длинный пост, но по сравнению с книжками по направлению, это просто коротенькая записочка.

9.3 Не требуется проверять на выполнение данных норм по паропроницанию следующие ограждающие конструкции:

б) двухслойные наружные стены помещений с сухим и нормальным режимами, если внутренний слой стены имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг.»

Правильно ли я понимаю, что если стена из ГБ имеет сопротивление паропроницанию более 1,6 м2·ч·Па/мг, то практически невозможно сделать «кривой выбор» наружной отделки?

Нет, Константин, ситуация иная. Газобетон со штукатуркой уже не однослойная конструкция.
Тезис про 1,6 м2·ч·Па/мг был условно верен при материалах плотностью от 1000 кг/куб.м. Сейчас надо все таки проверять влагонакопление за слоем отделки.
Здесь какая ситуация: в среднем по толще стены недопустимого влагонакопления не произойдет, но слой за отделкой легко может переувлажниться и намерзающим льдом разрушиться.
Оговорюсь, не встречал таких проблем на стенах, которые отделывались после начального подсыхания хотя бы в полгода.

Детали. Жилой дом с кухней стиралкой унитазами мойкой иногда гостями и тд. В этом году было -35 в Нижнем.

Непонимание принципа зачастую приводит к ошибочным выводам. В стене не так страшна точка росы, как страшно влагонакопление за отопительный период. Берется не максимально низкая температура, а средняя за отопительный период, то есть, из справочника. В средней полосе России она порядка -7 градусов.

Даже если температура кратковременно, в течении нескольких дней опустится до -35 градусов, через стену не успеет пройти такое количество пара, чтобы даже при наличии точки росы в стене она успела с конденсироваться, превратиться в лед, заполнить все поры в стене и порвать материал стены. Так же нужно понимать, что чем ниже температура, то тем меньше в воздухе содержится паров воды, то есть вероятность конденсации пара в воду становится еще ниже.

Смарткалк достаточно неплохой тепло калькулятор, там конечно есть возможность изменения температуры и влажности, но при расчетах не нужно трогать эти цифры. Достаточно выбрать регион, и вставить конструкцию стены, послойно. И открыть вкладку «влагонакопление». Если там написано, что не создается условий для влагонакопления, то все, расчет закончен. Если же хочется вынести мозг себе и окружающим, то начинаем играться с цифрами влажности и температуры, но это уже вне рамок форума.

Тоже ниже. Кондиционер ее понижает. Т. е., действительно, в отдельные дни лета в стене, влагоперенос идет снаружи во внутрь.

А чаще всего из конструкции и внутрь помещений и наружу. Причем в большей степени внутрь. Т. о. выходит накопленная за зимний сезон влага.

Источник: www.forumhouse.ru

Точка Росы В Кирпичном Доме — Зачем Рассчитывается, Инструкция, Советы Каменщиков

Точка Росы В Кирпичном Доме - Зачем Рассчитывается, Инструкция, Советы Каменщиков

Для увеличения времени эксплуатации кирпичного дома, а также для комфортабельного проживания в нем, необходимо знать о процессах, происходящих внутри стен. Например, точка росы помогает рассчитать температуру, при которой пар конденсируется, что поможет избежать появление сырости в доме. Срок службы зданий с постоянной сыростью становится намного короче, а вот образование плесени со множеством патогенных микроорганизмов, наоборот, увеличивается. Жить комфортно в помещении с затхлым запахом и постоянной повышенной влажностью чревато проблемами со здоровьем.

Что означает термин «точка росы»?

Находящийся в воздухе пар при понижении температуры воздуха начинает постепенно менять агрегатное состояние, то есть становится водой. Именно температура, когда взвешенный пар превращается в жидкость, и есть точка росы. Это влага (конденсат), оседающая на более холодных, по сравнению с окружающей температурой, поверхностях.

Чем влажнее воздух внутри теплого помещения и холоднее внешние стенки, тем выше точка росы, а значит больше образуется конденсата. Этот показатель напрямую зависит от относительной влажности и температуры. Теплый воздух, идущий в холодное время года наружу, остывает и оседает на поверхностях в виде капель.

Зачем рассчитывается?

Этот важный физический параметр следует учитывать как при первоначальном строительстве, так и на этапе выбора и при расчете количества утеплителя. Он поможет определить где именно будет локализоваться конденсат:

  • в утеплителе,
  • внутри кирпичной кладки,
  • непосредственно в комнате, на внутренней стене.

Если конденсат оседает постоянно в неправильно выбранном месте, то из-за сырости появляется плесень, теплопроводность дома становится хуже, внутренние помещения перемерзают и портятся. При неверно рассчитанном показателе, кирпичная кладка не будет теплой, надежной и не прослужит долго. Определив точное место образования конденсата и выбрав правильный материал и способ утепления, можно продлить срок службы здания, а также обеспечить комфортный микроклимат в нем и сэкономить немалые средства.

Утепление считается правильным, если конденсированная влага большую часть времени находится в утеплителе и не смещается в стену.

Как вычислить место возникновения?

Расположение места конденсата может быть как на внешней поверхности дома, так и на внутренней, но чаще — внутри. Зависит это от таких параметров:

  • теплоизоляционные свойства стены и ее толщина,
  • относительная влажность и температура воздуха внутри и снаружи дома.

Строители для расчета показателя используют сложную логарифмическую формулу, для которой помимо специфической информации о климатических особенностях региона, нужен ряд изыскательских сведений. А для их измерения понадобятся специальные приборы, такие как бесконтактный термометр и гигрометр.

Для самостоятельного вычисления точки росы рекомендуется пользоваться готовыми таблицами примерных значений. Они действительно примерные, поскольку учитывают только относительную влажность и температуру окружающей среды. В расчет не берутся многие показатели, такие как давление и скорость движения воздуха, плотность кирпича и утеплителя и другие. Однако эти таблицы все же надежнее самодельных интернет-калькуляторов, иногда работающих по принципу случайных чисел.

Точка росы в неутепленном кирпичном доме

В этой ситуации показатель точки росы будет зависеть от внешних погодных условий. При стабильном климате, без значительных перепадов температур, влага будет образовываться ближе к внешней стороне и это почти идеальный вариант. Но при похолодании ситуация кардинально меняется и местом накопления конденсата становится уже сама стена, то есть точка смещается внутрь. Такое развитие событий чревато последствиями и, в крайнем случае, весь холодный период года внутренние поверхности дома будут влажными.

Дом, утепленный внутри

Если климат переменчив и колебания дневных и ночных температур существенны, вариант внутреннего утепления не лучший выбор. При стабильной умеренной погоде конденсат будет собираться между центром стены и утеплителем, при похолодании — будет смещаться на их границу. Таким образом, обращенная в дом поверхность частично будет мокрой. Если же разница температур внутри и снаружи будет увеличиваться, то граница конденсата сместится уже внутрь утеплителя и поверхности будут сырыми постоянно. Применять такое утепление при влажном климате можно, но только в том случае, когда есть возможность поддерживать регулярно равномерную температуру во всем доме.

Дом, утепленный снаружи

При правильном расчете количества и качества материала для утепления, точка росы всегда будет только внутри или сместится на границу со стенкой. При таком способе защиты, внутренние поверхности останутся сухими при любых колебаниях влажности и температуры, а внешние, закрытые от прямого воздействия негативных факторов окружающей среды, прослужат намного дольше и качественнее.

Читайте также:  Объект строительства в 1с относятся

Источник: stroycata1og.ru

Точка росы. Правила паропроницаемости стен

Хатунь ПОКАЗАТЬ ВСЕ(84)

  • При строительстве дома под ключ, финский септик Коломаки в подарок
  • При заказе строительства дома под ключ – готовый проект в подарок!

30-05-2019

Температура, при которой содержащийся в атмосфере водяной пар становится более насыщенным, называется «точка росы». Такая температура означает, что относительная влажность достигла максимально возможного показателя (100%).

Исходя из этого, достоинство современных дышащих стен приобретает спорный характер. Вероятно, в первую очередь требуется, чтобы стены дома были достаточно крепкими, надежно сохраняли тепло, а пар из помещения может выходить через искусственную вентиляцию.

В жилых помещениях воздушные массы значительно теплее, чем на улице, поэтому появляется водяной пар в доме. Вода постоянно льется в ванной или используется на кухне, также происходит поливка домашних растений, регулярно проводится влажная уборка, в дождливую погоду часть влаги приносится в дом с улицы.

Разница температур с уличной стороны и внутри дома создает воздушные потоки, содержащие в себе пар. Чем выше это различие, тем активнее движется воздух. Данная зависимость не имеет линейный характер, поскольку имеется вторая важная переменная – влажность, этот показатель имеет разные значения на улице и в доме. Если внешняя и внутренняя среда характеризуются низкими показателями влажности, то риск образования конденсата минимален.

Если через стену проходит водяной пар, то это плохо. Вода отличается своей высокой теплопроводностью, ее мелкие частички – пар, также способны проводить тепло, а значит и материал стен, содержащий в себе жидкость, будет участвовать в ускоренных процессах теплообмена. Неметаллические стеновые материалы обладают свойством влагоемкости, они способны не только пропускать воздух и пар, но и накапливать влагу.

Пар, проходящий сквозь современные дышащие стены, оказывает на них разрушительное воздействие. Он не только медленно разрушает их материал, но и увеличивает теплоотдачу, уменьшая температуру в помещении. В холодный период времени накопление влаги в стенах дома должно быть ниже установленного нормативного значения, это позволит снизить вред, которому подвергается стеновой материал.

Точка росы

Расположение точки росы не всегда должно находиться непосредственно на стене, в некоторых случаях она может располагаться на внутреннем слое.

Это зависит от следующих показателей:

  • относительная влажность;
  • величина разницы температур по обе стороны стены;
  • паропроницаемость используемых материалов;
  • толщина каждого слоя стены.

Варианты утепления стен

Современные строительные фирмы предлагают несколько вариантов сырья для утепления. Каждый из них имеет свои отличительные особенности, а также явные различия.

Стена без утепления

При экономных способах строительства, а также для возведения нежилых помещений применяют материал без использования утепления. Ему присущи следующие особенности:

  1. Значительные показатели теплопроводности, означающие большую потерю тепла.
  2. Точка росы располагается внутри стены, что создает благоприятную среду для грибковой плесени.
  3. Сильные перепады температуры по разным сторонам перегородки разрушительно влияют на саму стену.

Тип размещения. Особенности

В зависимости от основного материала точка росы может иметь три типа локализации.

  1. Ближе к грани, расположенной на улице. Надежная стена, влага не проникает внутрь помещения.
  2. Точка росы располагается не по центру, смещена к внутренней поверхности. Стенки мокрые некоторое время после значительного понижения температуры во внешней среде.
  3. Точка росы располагается на внутренней поверхности стены. Если влага оседает в помещении, то требуется дополнительная вентиляция, иначе поверхность будет собирать конденсат.

Этот вариант наиболее неразумный с точки зрения экономии. Могут потребоваться дополнительные расходы на вентиляцию, а также обогрев помещений.

Стены с внутренним утеплением

В данном случае поверхность, на которой оседает конденсат, смещена внутрь. Характерные особенности таких стен:

  • полное промерзание и последующее разрушение несущих частей конструкции;
  • отсыревшее утепление, как правило, заражено грибком;
  • большие потери тепла.

При внутреннем расположении утеплительного слоя точка росы смещена внутрь, а значит и конденсат накапливается непосредственно в стеновой конструкции. В данном случае точка росы имеет три варианта расположения:

  1. Между слоем утеплителя и центром стеновой плиты: стена будет сухой даже при резком похолодании.
  2. За утеплительным слоем: поверхность будет влажной на протяжении всего зимнего периода.
  3. Внутри утеплителя: образующийся конденсат будет впитываться утепляющим материалом зимой, а летом высыхать.

Такое утепление считается оптимальным для теплых регионов с непродолжительной зимой.

Стена с наружным утеплением

Наиболее удобным решением станет стена с наружным расположением утеплителя. Она ценится за следующие качества:

  • надежно защищает стеновые плиты от различных атмосферных явлений (снег, дождь, град);
  • сохраняет тепло внутри помещений;
  • постоянно сухие и теплые внутренние поверхности дома;
  • эффект дополнительной шумоизоляции.

Точка росы достигается внутри утеплителя, за счёт чего влага не может проникнуть в дом. Если поверхность утеплителя будет нарушена в значительной мере, то последствия будут как в стене без использования какого-либо утеплителя.

Наиболее оптимальным вариантом стен считаются те, которые изготовлены с применением технологии, названной «мокрый фасад». Она включает в себя грамотное утепление и комплексную внешнюю отделку.

Паропроницаемость строительных материалов

Большое значение в формировании внутренней температуры воздуха играет паропроницаемость строительного материала. В приведенной ниже таблице указаны значения данного показателя для самых популярных стройматериалов.

Для нормального микроклимата в доме следует приобрести правильные стеновые плиты. Для каждого слоя так называемого «пирога» должны быть учтены следующие показатели:

  • толщина;
  • показатели по паропроницаемости;
  • способность материала впитывать влагу.

Паропроницаемость должна увеличиваться изнутри к внешней поверхности. Данное правило следует строго соблюдать. Если этого не учесть, то возможные последствия могут произойти по двум сценариям.

  1. Высокая влажность в доме и недостаточная вентиляция приведут к росту плесневых грибков на поверхностях, расположенных внутри помещения. Если не принять меры, то конструкция дома будет разрушена.
  2. Налаженная вентиляция и невысокие показатели влажности помогут сохранить дом в желаемом состоянии.

Но это не решающий фактор при выборе строительных материалов. Самым важным будет правильно высчитать и учесть расположение точки росы. Благодаря этому можно избежать разрушения стен. Различные материалы имеют свои параметры «точки росы». Хорошим примером являются построенные в шестидесятых годах кирпичные «хрущевки».

Важно! Согласно расчетам по основным теплотехническим показателям они давно должны были быть разрушены за счет накопившегося конденсата. Но материал этих строений легко отдает накопленную влагу в атмосферу. Кирпич из керамики обладает очень высокими показателями устойчивости к морозам. Однако нельзя не учитывать, что стены «хрущевок» весьма широкие – около полуметра.

Расчет точки росы

Для расчета точного значения точки росы не обязательно погружаться в тонкости науки теплотехники, для этого есть много различных автоматизированных онлайн-калькуляторов. Поэтому при планировании постройки жилого дома для верных и надежных расчетов рекомендуется обратиться к специалистам. Для примерного расчета можно руководствоваться нижеприведенной таблицей.

Дышащие стены

Способность стен «дышать» не является критичной и принципиальной при строительстве. Это скорее дело личных предпочтений и идеологических соображений. Было время, когда ценились щелястые окна и паропроницаемые стены, но в то время за энергосбережение не приходилось много платить. Сейчас же многих заботит экология.

В наше время частный дом должен быть построен с учетом эффективного энергосбережения. Возможно фразы о инновационных дышащих стенах – это уловка умелых маркетологов? Стены должны в первую очередь сохранять тепло, а движение воздушных потоков должно обеспечиваться продуманной вентиляцией?

Источник: agropromstroj.ru

Рейтинг
Загрузка ...