Вопрос этот особенно актуален в связи с повышением цен на энергоресурсы, и потому остро воспринимается двумя лагерями: сторонниками энергоэффективного строительства и их оппонентами. Причем, как правило, приверженцы классики соглашаются с тем, что можно возвести энергоэффективный дом, жить в нем с комфортом и платить значительно меньше за отопление. Спор возникает в вопросе окупаемости вложенных инвестиций на возведение такого дома, а именно в их объемах и сроках.
Предлагаем для начала дать определение термину энергоэффективность, изучить ее базовые принципы, а также какие бывают классы энергоэффективности, а по итогам поговорить об энергоэффективных технологиях и экономической целесообразности различных мер при строительстве энергоэффективного дома.
Современные энергосберегающие технологии в строительстве
Например, энергоэффективность зданий и сооружений заключается в минимальном расходовании энергии для функционирования полноценного энергетического обеспечения зданий. Достигнуть энергоэффективности и энергосбережения помогает комплекс мер, от замены ламп накаливания на энергосберегающие, до качественной теплоизоляции дома, ведущей к рациональному потреблению энергии на обогрев и охлаждение помещений. Так, например, с ISOVER Теплый Дом Плита экономия на коммунальных затратах до 67% по сравнению с неутепленным домом*.
Базовые принципы энергоэффективности. На что обратить внимание при строительстве дома
Не секрет, что основная задача энергоэффективного дома заключается в снижении расходов на электроэнергию и природный газ при сохранении комфортного микроклимата в помещениях. К базовым принципам энергоэффективного дома относятся:
- простая форма здания и кровли,
- ориентации на южное направление при строительстве дома,
- небольшая площадь остекления с акцентом на южное расположение,
- применение массивного слоя эффективной теплоизоляции по всему контуру (в зависимости от региона толщина утепления стен достигает 500 мм),
- отсутствие мостиков холода,
- герметичный контур здания,
- грамотная система вентиляции помещений,
- применение природной энергии (солнечные батареи и т.д.).
Куда уходит тепло и чем утеплять
Основные теплопотери в доме происходят через:
- Ограждающие конструкции, т.е. крышу, стены, подвал — до 62%
- Окна и двери — до 13%
- Вентиляцию — до 25%
Самые современные инновации в строительстве
Возглавляет этот список кровля. В неутепленном малоэтажном здании теплопотери через нее достигают до 30 % от общего количества потерь тепла всего дома. Эффективная теплоизоляция крыши современными материалами на основе кварца обеспечит как снижение теплопотерь здания, так и долговечность конструкции. При этом применение минеральной ваты для кровли создаст дополнительную защиту от шума.
На российском рынке строительных материалов есть продукты, специально разработанные для утепления кровли. Например, ISOVER Теплая Крыша на основе кварца эффективно защитит от холода и шума. Материал удобен в работе, позволяет избежать мостиков холода и отличается усиленной влагостойкостью, что особенно актуально для крыш.
Смотрите видео: как утеплить крышу в доме
Утепление стен тоже играет важную роль в сохранении тепла в доме и сокращении затрат на отопление. Не допустить до 25% теплопотерь и обеспечить дому энергоэффективность и энергосбережение поможет грамотная установка теплоизоляционных материалов, например, минеральная вата ISOVER Теплые Стены Стронг. Повышенная упругость плит и их формостабильность позволяет надежно зафиксировать утеплитель в каркасе без дополнительных крепежей и простоять в нем до 50 лет не сползая и сохраняя все эксплуатационные характеристики. Так заявлено в заключении Научно-исследовательского Института Строительной Физики Российской академии архитектуры и строительных наук.
Если говорить об экономии на коммунальных затратах, то применение таких материалов как ISOVER Теплый Дом Плита позволит сэкономить до 67% по сравнению с неутепленным домом*.
Классы энергоэффективности зданий. Как их определить и к чему стремиться
Эксперты ISOVER разработали удобную и информативную таблицу с описанием классов энергоэффективности зданий и сооружений, примерами и рекомендациями.
Класс энергоэффективности
Критерий теплового сопротивления (диапазон Rd, м2К/Вт)
Описание класса
Класс энергоэффективности зданий В позволяет достичь комфортных условий в доме в межсезонье, а также защищает здание от перегрева летом. Однако уровень энергоэффективности класса В рекомендован для дополнительного утепления зданий из бруса, кирпича, ячеистого блока, которые используются для временного проживания и не отапливаются зимой.
Уровень энергоэффективности зданий В+ также рекомендован для доутепления зданий, которые используются для временного проживания и не отапливаются зимой. Повышенные теплотехнические характеристики теплоизоляции ISOVER на основе кварца позволяют при базовой толщине утеплителя 50 мм получить 25% выгоды в теплозащите по сравнению с классом энергоэффективности В.
Класс энергоэффективности A позволяет на 60% улучшить теплозащиту здания относительно класса В+ и существенно снизить траты на отопление зимой и кондиционирование воздуха летом. Каркасная конструкция с таким слоем утепления обеспечивает теплозащиту по нормативам СП «Тепловая защита» для большинства городов южного региона Российской Федерации
Класс энергоэффективности зданий А+ позволяет обеспечить нормируемый уровень теплозащиты (согласно своду правил «Тепловая защита зданий») в большинстве городов России (кроме Сибири, Дальнего Востока, Северного Урала и Северо-Запада). Класс А+ рекомендован для утепления каркасного здания, рассчитанного на постоянное проживание.
Класс энергоэффективности зданий А++ позволяет достичь комфортных условий в здании как летом, так и зимой и снизить платежи на отопление до 67%. Такие результаты возможны при утеплении дома или квартиры минеральной ватой ISOVER на основе кварца.
Наивысший уровень энергоэффективности А+++ обеспечивает соответствующий уровень теплового комфорта в здании для постоянного проживания и соответствует нормам теплозащиты, принятым в Финляндии и Норвегии.
Энергоэффективность в цифрах. Как посчитать экономию на использовании энергоэффективных материалов
С помощью онлайн калькулятора энергоэффективности Isover каждый без труда сможет сделать профессиональный расчет теплоизоляции для своего дома, оценить насколько удастся сократить теплопотери и как быстро окупятся затраты на утепление.
Возьмем в качестве примера небольшой каркасный дом общей площадью 61 м 2 , расположенный в Подмосковье. Выбираем тип утепляемого объекта и задаем параметры длины, ширины, этажности и высоты потолков. В нашем случае длина 7 м, ширина 11,6 м, высота этажа 2,5 м, высота до конька 2,5 м, этаж один с эксплуатируемой мансардой.
Выбираем, что необходимо утеплить с учетом конструктивных особенностей. В рассматриваемом нами доме необходимо утеплить полы по лагам на деревянных балках, каркасные стены, чердачное перекрытие по деревянным балкам и мансарду. При заполнении каждой конструкции калькулятор предлагает рекомендуемые производителем варианты материалов.
Результат представлен в удобной форме, а расчеты демонстрируют, что при желаемой температуре в помещении 20 градусов с использованием для отопления природного газа, стоимость которого составляет 6 руб/куб.м, благодаря утеплению дома удастся сократить потери тепла в среднем на 95%. Экономия на отоплении жилья по сравнению с неутепленным домом составит 17 647 руб в месяц, а это 211 767 руб в год. Применяя специализированные материалы ISOVER на основе кварца: для утепления стен это ISOVER Теплые Стены Стронг , для изоляции от холода и шума на крыше — Isover Теплая Крыша Стронг , а для утепления полов – это ISOVER Шумка , можно повысить класс энергоэффективности своего дома до А+++. Затраты на весь объем утеплителя составят 45 101 руб, что окупится всего за 3 месяца. Расчеты сделаны на основе стоимости теплоизоляции ISOVER в онлайн агрегаторе ISOVER MARKET .
Источник: www.isover.ru
Энергосберегающие технологии в строительстве
Калачеевский аграрный техникум
Энергосберегающие технологии при строительстве частных домов стали широко использоваться в России. Время дешевизны энергоносителей в нашей стране уже прошло, только за два последних года цены на электроэнергию выросли на 45,8%, а на газ — на 63,5%.
Одним из активных потребителей энергии является строительный комплекс, где возможно экономить энергию за счет энергосберегающих технологий в строительстве.
Для развития концепции энергосберегающего дома, безусловно, необходимо опираться на богатый опыт эксплуатации различных зданий. Очевидно, что энергоэффективность здания определяется совокупностью многих факторов. Исследования показывают, что при эксплуатации традиционного многоэтажного жилого дома через стены теряется до 40% тепла, через окна — 18%, подвал — 10%, крышу — 18%, вентиляцию — 14%. Поэтому свести теплопотери к минимуму возможно только при комплексном подходе к энергосбережению.
Таким образом, целью данной работы является рассмотреть современное состояние и возможности дальнейшего развития применения энергосберегающих технологий в строительстве.
Задачами работы являются:
- изучить мировой опыт применения энергосберегающих технологий в строительстве;
- рассмотреть алгоритмы экономии при эксплуатации жилых зданий;
- проанализировать теплопотери через кровлю, стены, пол;
- предложить алгоритм энергоэффективности при строительстве дома;
- рассмотреть энергоэффективные дома в России.
При эксплуатации жилого дома большая часть тепла теряется через ограждающие конструкции: стены, крышу, окна. Поэтому современные системы утепления предусматривают создание комплексной тепловой оболочки, передвигающей зону положительных температур в несущие конструкции по всей поверхности дома, включая и теплоизоляцию контактирующего с грунтом фундамента. Такое решение исключает появление мостиков холода, повышает тепловое сопротивление ограждения и предотвращает выпадение конденсата, отрицательно влияющего на теплоизолирующие и другие эксплуатационные характеристики.
Теплоизоляция зданий и сооружений преследует несколько целей: повышение уровня комфортности, тепло и звукоизоляции, экономию топливных ресурсов и сокращение эксплуатационных расходов.
Высокую энергоэффективность жилища можно обеспечить за счет оптимизации архитектурных форм и расположения объекта с учетом розы ветров, максимального использования солнечной энергии, повышения сопротивления теплопередаче ограждающих конструкций и окон. Снижения теплопотерь при воздухообмене за счет создания высокой герметизации объекта, установки приточно-вытяжной системы вентиляции с рекуперацией тепла и очисткой входящего воздуха, использования нетрадиционных источников энергии. Перечисленные мероприятия подразделяются на пассивную теплозащиту, базирующуюся на создании «броневого» термощита, и активную составляющую, за которой стоят системы умного дома в самых разных проявлениях.
Реализация таких проектов требует увеличения капитальных затрат на строительство, однако вложения окупаются в будущем за счет экономии энергии, снижения эксплуатационных затрат и обеспечения комфортных условий проживания, достигаемых за счет автоматического поддержания определенной температуры, относительной влажности, чистоты воздуха и других параметров.
Перечислим реальные рычаги экономии энергии:
- повышение сопротивления теплопередаче ограждающих конструкций;
- остекление лоджий (приточный воздух механической вентиляцией забирается из застекленных пространств, где подогревается солнцем);
- эффективная герметизация трещин, швов, заполнение пустот;
- использование солнечной энергии для горячего водоснабжения и отопления;
- применение электрооборудования с низким потреблением энергии;
- использование тепловых насосов;
- устройство напольного водяного низкотемпературного отопления;
- применение водоразборного оборудования с экономным расходом воды;
- использование приборов учета и контроля потребления тепловой энергии для домов, подключенных к централизованным системам теплоснабжения;
- грамотное расположение светопрозрачных конструкций с ориентацией на южную сторону;
- создание управляемых светопрозрачных конструкций, контролирующих микроклимат в помещении.
Каждое из этих направлений очень важно. Результатом может стать ощутимая — до десятков процентов — энергетическая экономия, разумеется, при комплексном употреблении.
Интенсивность теплопотерь определяется двумя факторами: разницей температур внутри и снаружи дома и сопротивлением его ограждающих конструкций теплопередаче. Разделив разницу температур At на величину сопротивления теплопередаче Ro стен, кровли, пола, окон и дверей и умножив на площадь S их поверхности, можно вычислить интенсивность теплопотерьQ:
Разница температур At — величина непостоянная, она меняется от сезона к сезону, в течение дня, в зависимости от погоды и т.д. Однако задачу упрощает то обстоятельство, что нам необходимо оценить потребность в тепле суммарно за год. Поэтому для приближенного расчета мы вполне можем использовать такой показатель, как среднегодовая температура воздуха для выбранной местности. Для Воронежской области, по многолетним данным, она составляет 6,9 °С. Если считать комфортной температурой в доме 22 °С, то наша усредненная разница составит
Δt = 22 °С—6,9 °С = 15,1 °С.
Итак, приступаем к расчету, приведем пример расчета теплопотерь через стены.
Площадь стен нашего дома (два квадратных этажа 8,7 х 8,7 м высотой 2,5 м) будет примерно равна 175 кв. м. Однако из этого нужно вычесть площадь окон и дверей, для которых мы рассчитаем теплопотери отдельно. Предположим, что входная дверь у нас одна, стандартного размера 900 х 2 000 мм, а окон — 16 штук (по два на каждой стороне на обоих этажах) размером 1500 х 1500 мм. Суммарная площадь окон и дверей составит 37,8 кв. м, а оставшаяся площадь кирпичных стен — 137,2 кв. м.
Величина сопротивления теплопередаче стены толщиной в два кирпича равна 0,61 м 2 х °С/Вт. Для простоты пренебрежем сопротивлением теплопередаче слоя штукатурки, покрывающей стены изнутри. Таким образом, тепловыделение всех стен дома составит:
Qстен = (15,1 °С/0,61 м 2 х°С/ Вт) х 137,2 м 2 = 3,396 кВт.
Теплопотери рассчитаны и приведены в таблице 1.
Таблица 1. Теплопотери
Теплопотери
Разница температур, °С
Площадь, кв. м
Сопротивление теплопередаче, м 2 х°С/Вт
Источник: www.informio.ru