Форшахта в строительстве это

Устройство, используемое в качестве кондуктора при строительстве оснований зданий и сооружений методом «стена в грунте» в сборном и монолитном вариантах, а также свайных оснований на строительных объектах разного назначения. Конструкции форшахты могут различаться как по форме (Г-образные, трапециевидные), так и по способу применения (постоянные, переносные). Конструкция форшахты разрабатывается совместно со свайными основаниями и «стеной в грунте» в составе проекта. Форшахта предназначается для: фиксирования направления основной траншеи по горизонтали и вертикали; обеспечения устойчивости верхней части рабочей траншеи против обрушения в процессе её разработки; выполнения функции кондуктора, направляющего рабочий орган землеройной машины.

Чаще всего ищут

Традиционный универсальный инструмент для проведения ремонтно-отделочных работ. Применяется он преимущественно для заделки трещин и неровностей стен и потолка с помощью шпатлевок, мастик, густых клеевых смесей и пр., для очистки поверхностей от старых обоев и краски, операций грунтования, нанесения плиточного клея и многое, многое другое. Другими словами, шпатели используют для этапа подготовки поверхностей перед ее финишной отделкой.

Устройство форшахты

Различают фасадные и малярные шпатели. Лезвие фасадного инструмента, как правило, выработано из более жестких металлических пластин (высокопрочной углеродистой стали), поскольку этот инструмент предназначен для штукатурных, облицовочных, печных и других фасадных работ. Такие шпатели оснащены прочной двухкомпонентной ручкой, отличающейся усиленным сцеплением с металлическим полотном. Малярные шпатели имеют боле гибкое лезвие, слегка пружинящее при надавливании – идеальный вариант для внутренней отделки помещений, а именно, для выравнивания поверхностей, заделки мелких неровностей и трещинок. Также используется при травлении (размягчении старой краски с помощью растворителя).

Резиновые шпатели используются для затирки швов и шпатлевки небольших поверхностей. Идеальны для замазки плиточных швов и работы с герметиками. Ими можно удалять остатки строительной смеси с кафельной плитки, не боясь повредить ее целостность или оцарапать глянцевую поверхность.

Осуществляемая юридическими лицами и индивидуальными предпринимателями на основе соглашения с заинтересованным лицом (либо по доверенности) деятельность по совершению от его имени и за его счет либо от своего имени, но за счет и в интересах заинтересованного лица, гражданско-правовых сделок с земельными участками, зданиями, строениями, сооружениями, жилыми и нежилыми помещениями и правами на них. Если риэлтер действует от имени заинтересованного лица, то все права и обязанности по сделке возникают непосредственно у данного лица, то есть риэлтер является поверенным. Если риэлтер действует от своего имени, то действуют правила о договоре комисии. Услуги по оценке недвижимости не являются риэлтерской деятельностью. Риэлтерская деятельность подлежит обязательному лицензированию.

Совокупность взаимосвязанных процессов строительных работ, результатом которых является готовая часть здания (сооружения).
При возведении зданий работы выполняются в три этапа: подземный, надземный и отделочный. После окончания подготовительного периода строительства осуществляются работы подземного цикла: земляные, бетонные и железобетонные, гидроизоляционные.
Работы надземного цикла: монтаж конструкций; кровельные работы; столярные работы, санитарно-технические работы.
Работы отделочного цикла: окраска, устройство полов, внутренние сантехнические и электромонтажные работы; монтаж технологического оборудования и относящихся к нему вентиляционных устройств.

Источник: estateline.ru

1. Введение

Патенты на устройство «стены в грунте» под защитой бентонитовой суспензии впервые были получены немецкими учеными Брандтом и Раннемом в 1912 году. В 1936 г. Летцтерр разработал машины для изготовления «стены в грунте» непрерывным способом.

В начале пятидесятых годов 20-го столетия профессоры Федер и Грац изобрели метод изготовления «стены в грунте» без использования обсадных труб, а профессор Лоренц предложил метод изготовления «стены в грунте», применяемый в настоящее время.

В настоящее время в больших городах возведение высотных зданий и строительство заглубленных сооружений сориентированы на использование метода «стена в грунте» вместо традиционных методов «открытый котлован» или «опускной колодец».

Метод «стена в грунте» предназначен для возведения заглубленных в грунт сооружений различного назначения. Сущность метода «стена в грунте» заключается в том, что стены заглубленных сооружений возводят в узких и глубоких траншеях, вертикальные борта которых, удерживаются от обрушения при помощи глинистой суспензии, создающей избыточное гидростатическое давление на грунт.

После устройства в грунте траншей необходимых размеров их заполняют, в зависимости от конструкции и назначения сооружения, монолитным железобетоном, сборными железобетонными элементами или глиногрунтовыми материалами. В результате этого в грунте формируют несущие стены сооружений или противофильтрационные диафрагмы.

По назначению заглубленные сооружения, возводимые методом «стена в грунте», классифицируются следующим образом:

— промышленные — подземные этажи и фундаменты промышленных зданий, скиповые ямы, установки непрерывной разливки стали, колодцы для дробильных цехов горнообогатительных комбинатов, бункерные ямы под вагоноопрокидыватели; технологические галереи, туннели и др.;

— жилищно-гражданские — подземные этажи и фундаменты жилых и общественных зданий, закладываемых на глубину до 30 м;

— транспортные — подземные переезды и переходы под улицами с интенсивным движением, станции и туннели метрополитенов мелкого заложения; подземные автомагистрали; подземные автогаражи и автостоянки и другие подсобные сооружения, закладываемые на глубине до 25-30 м;

— гидротехнические — водозаборы и насосные станции, располагаемые в берегах рек, водохранилищ и озер; противофильтрационные диафрагмы, устраиваемые как в теле, так и в основании гидротехнических подпорных сооружений на реках, в прудах-накопителях для промышленных сточных вод, неподдающихся очистке и загрязняющих поверхностные и подземные воды; каналы и дренажные коллекторы; противооползневые и многие другие подобные инженерные сооружения.

Метод «стена в грунте» обладает рядом преимуществ по сравнению с другими методами строительства:

— возможность устройства глубоких котлованов в непосредственной близости от существующих зданий и сооружений, что особенно важно при строительстве в стесненных условиях, а также при реконструкции сооружений;

— резко уменьшается, а в некоторых случаях отпадает необходимость в устройстве водопонижения или водоотлива; уменьшаются объемы земляных работ;

— отпадает необходимость в устройстве обратных засыпок и, следовательно исключаются неравномерные просадки полов и отмосток в процессе их эксплуатации;

— появляется возможность одновременно производить работы по устройству надземных и подземных частей зданий, что резко сокращает сроки их строительства;

— бесшумность метода строительства. Измерения показывают, что уровень шума при строительстве «стена в грунте» ниже обычного шума дорожного движения.

Исключается понижение уровня грунтовых вод, так как бетон «стены в грунте» ограждает конструкцию от проникновения воды.

«Стены в грунте» классифицируются:

— по назначению — несущие, ограждающие и противофильтрационные;

— по материалу — железобетонные, бетонные, грунтоцементные, глинистые, комбинированные;

— по способу изготовления — монолитные, сборные, сборно-монолитные.

Способ сооружения ограждающих и несущих конструкций методом «стена в фунте» может применяться для любых конфигураций и размеров стен в плане. Глубина заложения «стены в фунте» ограничивается требованиями проекта и возможностями имеющегося в наличии оборудования.

Применение способа «стена в фунте» целесообразно при возведении подземных сооружений в стесненных условиях существующей застройки и реконструкции действующих предприятий.

Наибольший эффект достигается в тех случаях, когда «стена в фунте», прорезая водоносные пласты, заглубляется в водоупорный слой. В этом случае появляется возможность производить работы в котловане без устройства водопонижения.

Современные технологии позволяют устраивать конструкции подземных сооружений различных форм, но традиционными и наиболее часто встречающимися являются конструкции из прямолинейных стенок.

Расстояние между стенками, как правило, принимаются до 15-20 м из расчета прочности и устойчивости распорных конструкций. При расстоянии более 20 м устойчивость стен обеспечивается за счет устройства анкерных креплений.

Читайте также:  Вальгалла где брать материалы для строительства

Анкерные крепления «стены в фунте» в один или несколько ярусов следует устраивать в следующих случаях:

— при ширине котлована более 20 м;

— при ширине котлована более 10 м, когда в силу особенностей конструктивного решения могут быть использованы только временные расстрелы, требующие перекрепления.

Анкерные крепления следует использовать во всех грунтах, за исключением рыхлых песков, торфов и глин текучей консистенции.

Обеспечение устойчивости стен за счет применения наклонных анкеров является наиболее простым и эффективным способом.

Стены имеют толщины 500; 600; 800; 1000 и 1200 мм и возводятся из монолитного железобетона, отдельными секциями согласно проекта производства работ (ППР).

2. Машины и оборудование для устройства траншейных «стен в грунте»

Наиболее дорогостоящим и сложным является оборудование для образования узкой глубокой траншеи в грунтах I-IV групп на глубину до 50 м, шириной от 0,5 до 1,2 м.

Для разработки траншей используются следующие виды траншеепроходческого оборудования:

— оборудование вращательного действия с погружным приводом породоразрушающего инструмента;

— оборудование вращательного действия с расположенным на поверхности приводом породоразрушающего инструмента;

— оборудование ударного и ударно-вращательного действия;

— оборудование с породоразрушающим инструментом скребкового типа (экскаваторы-драглайны, скребковые траншеекопатели, экскаваторы с обратной лопатой, грейферные установки);

По способу извлечения разработанного фунта из траншеи все виды землеройных машин и оборудования подразделяются на две группы:

1. Машины и оборудование, землеройным инструментом которых является грейфер, осуществляющий подъем на поверхность разработанного грунта с выгрузкой в транспортное средство или отвал;

2. Машины и оборудование, разрабатывающие грунт специальным буровым инструментом с переводом его в рабочий глинистый раствор и с выносом на поверхность эрлифтной установкой.

В первом случае разработанный грунт не засоряет глинистый раствор, но увеличивается количество операций, связанных с подъемом и опусканием грейфера, а во втором случае необходима обратная циркуляция раствора с очисткой его от шлама.

Ниже приведены технологии устройства «стены в фунте», выполняемые некоторыми видами оборудования.

Разработка грунта в траншее грейферным оборудованием для устройства «стены в грунте»

В настоящее время в России широко применяют для разработки грунта и удаления его из траншеи высокопроизводительное импортное грейферное оборудование, подвешиваемое на телескопической штанге буровой гидравлической установки типа модели HR260 фирмы MAIT (Италия) или на тросовой подвеске специального гусеничного крана типа модели HS 855 HD фирмы Libherr (Германия), оснащенных дополнительным оборудованием для работы по технологии «стена в грунте».

Схема разработки захватки траншеи за один проход грейфера представлена на рис. 2.1.

После разработки траншеи на полную глубину производится проверка глубины траншеи, зачистка траншеи от слоя осыпавшего грунта и осадка глинистого раствора путем плавного опускания и перемещения грейфера по всей плоскости траншеи.

Разработка грунта в траншее барражными машинами непрерывного действия для устройства «стены в грунте»

Барражные машины непрерывного действия применяются для устройства противофильтрационных завес путем разработки грунта на прямолинейных участках большой протяженности на глубину до 30 м.

Разработка грунта в траншее барражными машинами производится под защитой глинистого раствора

Разрушенный грунт извлекается из траншеи эрлифтной установкой в виде пульпы.

Пульпа поступает на очистную установку, либо в отстойник. Очищенный от породы, отстоявшийся глинистый раствор возвращается в траншею. По мере продвижения барражной машины с образованием траншеи ведется подготовка уже разработанных участков к заполнению противофильтрационными материалами.

Рис. 2.1. Разработка захватки траншеи за один проход грейфера.

Для этого участок изолируется от полости остальной траншеи с помощью стальных разделительных инвентарных элементов.

Диапазон геологических условий для машин такого типа ограничен однородными, без крупных каменистых включений, разрезами, представленными породами с пределом прочности на сжатие до 40 МПа.

Барражная машина непрерывного действия модели БМ-0,5/50-2М БМ-0,5/50-3МЭ выпускает ОАО «ВИОГЕМ» имени С.Я. Жука.

Схема разработки грунта в траншее барражными машинами непрерывного действия с удалением пульпы из траншеи эрлифтной установкой представлена на рис. 2.2

По данным ОАО «СГСТУ ВИОГЕМ» производительность барражной машины непрерывного действия модели БМ-0,5/50-3МЭ для нормальных грунтовых условий составляет от 25 до 45 м 3 траншеи в час.

Разработка грунта в траншее барражными машинами циклического действия для устройства «стены в грунте»

Барражная машина циклического действия конструкции ОАО «ВИОГЕМ» имени С.Я. Жука модели БМ-30/0,5-3Ш — применяется для разработки как прямолинейных в плане, так и имеющих сложную конфигурацию траншей шириной 0,5 м, в том числе замкнутых, глубиной до 50 м и длиной до 150 м.

Основной операцией технологии проходки барражными машинами циклического действия является поочередная разработка отдельных захваток при последовательном погружении бурового инструмента и его извлечении. При разработке частично перекрывающихся захваток с образованием сплошной полости траншеи глубиной до 30 м проблема отделения участков, подлежащих заполнению, решается посредством установки инвентарных разделительных элементов с последующим их извлечением.

Рис. 2.2. Барражная машина непрерывного действия модели БМ-0,5/50-3МЭ
1 — базовая платформа барражной машины; 2 — рабочий орган; 3 — разрабатываемая траншея, заполненная глинистым раствором; 4 — породоразрушающий инструмент.

При использовании в качестве материала «стены в грунте» жестких конструктивных элементов разработка траншеи может вестись без применения разделителей.

Диапазон геологических условий включает широкий спектр пород — от супесей и суглинков до трещиноватых гранитов с пределом прочности на сжатие до 100 МПа.

Схема разработки кольцевой «стены в фунте» барражной машиной циклического действия приведена на рис. 2.3.

Применение барражных машин цикличного действия наиболее целесообразно при строительстве сложных по конфигурации траншей для различных заглубленных сооружений.

Разработка грунта в траншее фрезерными машинами для устройства «стены в грунте»

Фрезерные машины типа СВД-500 и СВД-500Р предназначены для образования траншей в несвязных, полускальных и скальных фунтах. Машина СВД-500Р снабжена специальной тележкой из двух платформ на рельсовом ходу, каждая из которых снабжена электролебедкой грузоподъемностью 8 тс.

На первой платформе размещено оборудование для привода бурового инструмента, а на второй — для очистки глинистого раствора. Буровой инструмент выполнен в виде электробура с встроенным электроприводом.

Буровой инструмент, подвешенный к базовой машине, скользит по полозьям направляющего шаблона, фиксирующего его положение.

В комплект фрезерной машины СВД-500 входят: компрессор ДК-9, ситогидроциклонная установка ЧСГУ-2, две глиномешалки МГ2-4, агрегат для приготовления и укладки глиногрунтовой пасты ГЗ-1, смеситель глинистых растворов БС-2, эрлифт.

Фрезерная машина обеспечивает разработку траншеи глубиной до 25 м. Работой машины управляет машинист-оператор из кабины, в которой установлен пульт управления. Машина при проходке перемещается на заданный интервал автоматически, при этом величина перемещения задается исходя из контрольных геологических условий грунта.

Схема разработки грунта в траншее фрезерными машинами для устройства «стены в грунте» приведена на рис. 2.4.

Рис. 2.3. Сооружение кольцевого участка барражной машиной циклического действия модели БМ-30/0,5-3Ш
А — погружной электробур; 1 — самоходный кран; 2 — заполнение ранее пройденного участка траншеи; 3 — готовый участок «стен в грунте»

3. Этапы производства подготовительных работ при сооружении «стены в грунте»

Подготовительные работы

Перед началом сооружения «стены в грунте» выполняются следующие подготовительные работы:

— ограждение строительной площадки;

— вскрытие и перенос подземных коммуникаций, попадающих в габариты стен;

— планировка поверхности площадки и устройства временных дорог;

— размещение временных административно-бытовых зданий;

— подготовка мест для складирования строительных материалов и конструкций;

— монтаж технологического оборудования.

Замена грунта на глубину не менее 3 м привозным песчано-глинистым грунтом с уплотнением (Купл ³ 0,95). Затем, вдоль оси стен производится разработка пионерной траншеи с естественными откосами 1,5-2,0 м.

Сооружение форшахты (направляющей стены).

В разработанной пионерной траншее сооружается монолитная железобетонная форшахта.

Форшахта предназначена обеспечивать:

— проектное направление разработки основной траншеи;

Читайте также:  Что такое обелиск в строительстве

— необходимое положение грейфера в грунте;

— возможность подвески на ней арматурных каркасов, установки оборудования для проходки и бетонирования траншеи;

— отвод переливающегося через край глинистого раствора.

Конструкции форшахты определяются по проекту и сооружаются отдельными секциями из монолитного железобетона.

Рис. 2.4. Буровая фрезерная машина модели СВД-500
1 — базовая машина; 2 — буровой снаряд; 3 — эрлифт; 4 — образованная траншея; 5 — пульпопровод; 6 — навесное оборудование; 7 — уровень глинистого раствора.

Монтаж и пуск бентонитовой установки

Перед разработкой траншеи необходимо произвести монтаж, опробование и пуск бентонитовой установки для приготовления, подачи, очистки и регенерации глинистого раствора, который первоначально должен заполнять пространство между стенками пионерной траншеи. Далее, по мере разработки грунта грейфером, в захватку должна производится непрерывная подача глинистого раствора с поддержанием его уровня не ниже 0,2-0,3 м от верха форшахты.

4. Этапы производства основных работ при сооружении «стены в грунте»

После сооружения форшахты, для устройства «стены в грунте», последовательно выполняются следующие основные технологические операции:

— установка и извлечение ограничителей захваток;

— установка секций арматурных каркасов;

— бетонирование траншеи методом вертикально перемещаемой трубы (ВПТ).

Схема строительства подземной части сооружения методом «стена в грунте» по последовательности выполнения технологических операций представлена на рис. 3.1.

Рис. 3.1 Схема строительства подземной части сооружения методом «стена в грунте»
1 — форшахта; 2 — разработка фунта в траншейных захватках; 3 – установка армокаркаса; 4 — бетонирование методом вертикально перемещаемой трубы (ВПТ); 5 — устройство обвязочного пояса по периметру; 6 — готовая стена; 7 — глинистый раствор

Разработка траншей

Траншеи при строительстве подземных сооружений способом «стена в фунте» следует разрабатывать под защитой глинистого раствора, отдельными захватками последовательно одна за другой вдоль траншеи или поочередно на различных участках траншеи.

Способ и технологическая последовательность разработки траншей определяется ППР в соответствии с инженерно-геологическими условиями строительства, размерами и конфигурацией и назначением возводимой стены, характеристиками траншеепроходческого оборудования.

В сложных грунтовых условиях при высоком уровне грунтовых вод, а также при глубинах свыше 15 м, когда в качестве ограничителей используются инвентарные металлические трубы, проходку траншей следует производить в две очереди через одну — две захватки.

Длина отдельной захватки составляет, как правило, 2,0-6,0 м и определяется ППР, исходя из условия обеспечения устойчивости стен траншей при их разработке и размера рабочего органа траншеекопателя.

Захватка может быть пройдена за один или несколько проходов рабочего органа траншеекопателя на полную глубину траншеи.

После разработки захватки на полную глубину производится проверка глубины траншеи, зачистка траншеи от слоя осыпавшего грунта и осадка глинистого раствора путем плавного опускания и перемещения грейфера по всей плоскости траншеи, пробный забор шлама, контроль параметров и замена глинистого раствора.

Установка ограничителей захваток

Стальные разделительные элементы устанавливаются по краям захваток в качестве стыкового элемента. Для получения качественных стыков рекомендуется применять металлическую трубу с ребрами из уголков 75 ´ 75 мм. Уголки привариваются таким образом, чтобы при погружении трубы они врезались в борта траншеи менее чем на 30 мм.

Разделительные элементы являются сборными и по мере опускания в траншею, собираются из передовой ножевой секции длиной 6 м, рядовой секции 6 м и необходимого числа дополнительных рядовых секций длиной 1-2 м (в соответствии с глубиной траншеи).

Нижняя ножевая часть разделительного элемента должна быть заглублена в дно траншеи не менее, чем на 30 ¸ 50 см.

Разделительный элемент и верхняя концевая пластина крепятся на конструкции форшахты с применением специальных инвентарных устройств, с превышением уровня «воротника» форшахты.

После бетонирования захватки ограничители извлекаются через 1-3 часа (до начала сцепления с бетоном).

Установка арматурных каркасов

Устанавливаемый в захватку арматурный каркас должен соответствовать рабочим чертежам и иметь паспорт. Тип, конструкция монтажных стыков арматурного каркаса должны соответствовать проекту.

В состав каркаса входят необходимые закладные детали из листовой стали, монтажные петли, фиксаторы защитного слоя, обеспечивающие центрирование каркаса в траншее, трубы для пропуска грунтовых анкеров.

Секции арматурных каркасов, непосредственно, перед их установкой в захватку следует соединять между собой электродуговой сваркой отдельных элементов.

При глубине траншеи более 10-12 м каркас может состоять из отдельных секций, стыкуемых на высоте перед опусканием в траншею.

Внутри каркасов должны быть предусмотрены проемы с направляющими для установки бетонолитных труб.

Опускание каркаса производят в положении обеспечивающим его свободное прохождение в траншею при геодезическом контроле за вертикальностью и обеспечением проектной величины защитного слоя между несущей арматурой и грунтом.

При установке в захватку, арматурные каркасы устанавливаются на верхней части «воротника» форшахты с помощью поперечных труб или профильных балок так, чтобы продольные несущие стержни арматурных каркасов не доходили до низа траншеи на 25-30 см.

Бетонирование

Бетонирование стен производится под защитой глинистого раствора, не позднее, чем через 4 часа после опускания арматурных каркасов в траншею.

Транспортирование бетонных смесей с бетонных заводов на стройку следует производить в автобетоносмесителях.

Бетонирование следует осуществлять методом вертикально перемещаемой трубы (ВПТ) с одновременной откачкой вытесняемого бентонитового раствора в емкость или разрабатываемую захватку.

Бетонирование каждой очередной секции следует проводить, не допуская перерывов в подаче бетона.

При бетонировании под глинистым раствором необходимо обеспечивать:

— изоляцию бетонной смеси от раствора в процессе ее подачи в траншею;

— отсутствие перемешивания с раствором при укладке;

— непрерывность бетонирования в пределах захватки;

— контроль за технологией в процессе бетонирования.

Траншеи следует бетонировать секциями с применением межсекционных ограничителей.

Бетонирование методом ВПТ ведется при помощи сборно-разборной или цельной бетонолитной трубы с внутренним диаметром 250-350 мм. Монтаж сборной бетонолитной трубы включает следующие операции:

— очистка и подготовка звеньев к работе;

— установка опорной рамы на «воротнике» форшахты;

— монтаж става бетонолитной трубы с последовательным наращиванием звеньев при помощи быстросъемных соединений, когда ранее смонтированная часть подвешивается на опорной раме;

— установку и закрепление на трубе приемного бункера емкостью не менее 1,2 объема бетонолитной трубы.

Схема бетонирования траншеи методом ВПТ представлена на рис. 3.2.

Рис. 3.2. Схема бетонирования траншей методом ВПТ

В верхнюю горловину трубы следует установить пробку (например, из опилок или пакли в чехле из мешковины) высотой 20-25 см, которая прикрепляется тросиком к верху приемного бункера.

Бетонная смесь из автобетоносмесителя загружается в приемный бункер в объеме на 20% превышающем объем бетонолитной трубы. После этого трубу необходимо поднять на 3-5 см и перерезать тросик, удерживающий пробку. Пробка под действием избыточного давления бетонной смеси передвигается по бетонолитной трубе и выталкивает находящийся в ней глинистый раствор, препятствуя расслоению и перемешиванию бетона. Для выпуска пробки, заполненную бетонной смесью трубу необходимо приподнять на 20-30 см и затем вновь заполнить приемный бункер при понижении уровня бетонной смеси до устья воронки.

Для продолжения бетонирования необходимо обеспечить постоянную подачу смеси в бункер при постепенном поднятии и осаживании бетонолитной трубы.

Источник: znaytovar.ru

Устройство стены в грунте

Устройство стены в грунте

В условиях современного дефицита пространства, который наблюдается в крупных городах, застройщики всё чаще ищут способы наиболее рационального его использования. Для увеличения полезной площади возводимых зданий ещё в ХХ в. архитекторы устремили свои взоры ввысь, создав гигантские небоскрёбы.

Но в последнее время найден ещё более практичный способ использования драгоценной земли: наряду с ростом в высоту современные здания растут и вглубь. Это позволяет размещать в многоуровневых подземных пространствах стоянки и супермаркеты, склады и развлекательные комплексы. Одной из технологией, позволяющей производить подземное строительство, является «стена в грунте».

Описание технологии

Устройство стены в грунте

Грунтовые воды могут ограничить глубину строительства

Читайте также:  Список компаний по деревянному строительству

Разработана эта технология была для возведения различных подземных построек в условиях городской тесноты. Однако она вполне подойдёт и для частной застройки.

Особенно, если строительство загородного дома ведётся на дорогостоящих участках вблизи мегаполисов и владелец земли хочет по максимуму использовать свою землю.

Глубина строительства может ограничиваться подпочвенными водами, но зачастую «стена в грунте» проходит водоносные слои, опускаясь до 50 и более метров.

Суть метода в двух словах заключается в устройстве ограждающей стены по периметру будущего подземного помещения. Данная стена должна быть заглублена вплоть до самой нижней точки проведения работ или ещё ниже.

Подобная технология может быть условно разделена на несколько разновидностей по способу сооружения защитной стены.

  1. Траншейный или свайный.
  2. Сухой или мокрый.

Траншейный сухой способ

Устройство стены в грунте

Предусматривает применение готовых конструкций из железобетона либо заливку монолитного бетона. По периметру будущей постройки при помощи экскаватора или фрезы выкапывается траншея форшахты глубиной до 2 – 3 м.

Устройство стены в грунте

Стенки форшахты необходимо укрепить

Форшахта служит для обозначения периметра будущей постройки, а также для укрепления стенок будущей траншеи. Как известно, у глубокой траншеи наименее устойчива её верхняя часть.

Чтобы предотвратить осыпание верхнего слабого грунта, стенки форшахты укрепляют. После этого при помощи крановых или экскаваторных грейферов производят выборку почвы из траншеи на необходимую глубину вплоть до нескольких десятков метров.

После того, как траншея выкопана на нужную глубину по всему периметру будущих стен, в неё заливают монолитный железобетон или монтируют в ней сборные бетонные конструкции.

«Сухой» способ достаточно прост и поэтому наиболее востребован в частном строительстве, а также на достаточно прочных грунтах с низким уровнем подпочвенных вод.

Траншейный мокрый способ

Устройство стены в грунте

«Мокрая» технология основана на таком физическом понятии как «тиксотропность, под которым понимают свойство отдельных составов и материалов самостоятельно восстанавливать свою первоначальную форму. Это уникальное свойство в наибольшей степени присуще бентонитовым глинам, суспензия которых может разжижаться под действием вибрации, а после перехода в спокойное состояние – вновь увеличивать плотность, возвращаясь к исходному состоянию.

Первоначальный этап «мокрого» траншейного метода ничем не отличается от «сухого». Также производится устройство форшахты для обозначения контура глубинной траншеи. Но вот далее работы идут по совершенно другому сценарию: траншея заполняется взвесью глины в водном растворе – глиняной суспензией.

Устройство стены в грунте

Плотность суспензии зависит от слабости грунта

Она, оказывая давление на стенки траншеи, выкапываемой в слабых грунтах, не даёт им обваливаться вниз, удерживая их форму. При этом сама суспензия находится в жидком состоянии, ничуть не препятствуя землеройной технике углублять траншею.

Для приготовления раствора смешиваются глина и вода в пропорции от 1 к 1 до 1 к 2. Плотность раствора зависит от показателей прочности грунта: чем более слабый грунт. Тем более плотной должна быть суспензия.

«Мокрый» способ применяется обычно в крупном промышленном строительстве, когда работа ведётся на слабых грунтах, или когда «стена в грунте» должна пройти сквозь грунтовые воды. В частной застройке данный способ не используется из-за сложности технологии и финансовой затратности.

Свайный метод

Устройство стены в грунте

При свайном методе стена из монолитного или сборного железобетона заменяется сплошной стеной из буронабивных свай, заглубленных до нужного значения. В данном случае вместо копки траншеи применяется способ глубинного бурения. После устройства по периметру плотно примыкающих друг к другу скважин производится их армирование, а затем заливка бетонным раствором.

Для создания плотного заграждения, непроницаемого для подземной влаги – так называемого «инфильтрационного барьера», применяется технология лидерного бурения. Она подразумевает использование в качестве свай особых труб, одна из сторон которых имеет вогнутый желоб, проходящий вдоль всей длины трубы.

При монтаже одна труба своим желобом плотно прижимается к выпуклой части другой трубы. Таким образом, получается прочная и плотная стена, сквозь которую не могут пройти грунтовые воды.

Свайный метод используется в основном при строительстве подземных конструкций, расположенных в непосредственной близости от других зданий. В том числе, если их глубина больше, нежели глубина заложения фундамента соседних зданий.

Преимущества технологии

Устройство стены в грунте

Смонтировать стену в грунте можно на любом типе почв

Данная технология подземного строительства является наиболее распространённой при возведении различных сооружений на глубине свыше 5 – 7 м. Популярность её обусловлена рядом несомненных плюсов:

  1. Возможность совместить в одной конструкции фундамент здания и стены его подземной части.
  2. Простота и безопасность произведения работ по сравнению с другими способами.
  3. Многофункциональность технологии – устройство стены в грунте возможно практически на любых типах почв, в том числе на водонасыщенных и слабых основаниях.
  4. При использовании данной технологии на грунтах с высоким уровнем подпочвенных вод отпадает необходимость в их отведении или заморозке.

Единственными ограничениями для применения такого способа может стать наличие в почве крупных пустот и большой слой насыпного грунта.

Используемая техника

Устройство стены в грунте

Количество и номенклатура привлекаемой техники полностью зависит от объёмов работ и технологии их проведения. Если «стена в грунте» для малоэтажного загородного дома может быть сооружена при помощи лёгкого колёсного экскаватора, то строительство подземной конструкции при строительстве небоскрёба потребует привлечения большого количества специализированной техники.

Для устройства форшахты может использоваться фреза или лёгкий экскаватор. Закачка глиняной суспензии требует наличия специализированного растворного узла для её приготовления и бетононасосной станции для подачи жидкого раствора в траншею.

Глубинные траншеи копаются при помощи линейных (плоских) грейферов, навешанных на кран или экскаватор. Создание скважин для буронабивных свай производится буровыми установками вращательного или ударно-вращательного действия.

Армирование траншей и скважин

Устройство стены в грунте

Каркаса должно хватать на всю глубину траншеи

При армировании траншей или скважин применяются армокаркасы объёмного типа из рифлёной арматуры. При их изготовлении и установке следует соблюдать ряд строительных нормативов:

  1. Готовые каркасы должны быть по длине равными глубине траншеи или скважины.
  2. Для образования защитного бетонного слоя вокруг арматуры ширина каркаса должна быть на 120 – 150 мм уже ширины траншеи или скважины.
  3. При сооружении каркаса следует учитывать конструкцию стен, предполагаемую нагрузку, которую должна будет выдерживать «стена в грунте».
  4. В конструкции каркасов должны быть предусмотрены промежутки для введения внутрь них труб для заливки бетона.

Перед установкой армокаркаса в траншею, заполненную глиняной суспензией («мокрый» способ), арматуру следует смочить водой. Это позволяет уменьшить налипание на неё глиняной взвеси, в результате чего увеличивается её сцепка с бетонным раствором.

Заливка бетона

Устройство стены в грунте

В промышленном строительстве заливка бетона ведётся с использованием бетонолитных труб, которые перемещаются при помощи строительного крана.

Они представляют собой трубы диаметром от 20 до 30 см с толщиной стенки порядка 1 см, монтируемые из секций длиной 1-2 м, и подключаются к приёмному бункеру для бетона или бетононасосной станции.

Заливать бетон следует, соблюдая следующие технические условия:

    Для бетонирования применяется бетон марки не ниже М-200 с размером фракции наполнителя около 5 см.

Устройство стены в грунте

Для уплотнения бетона используйте глубинные вибраторы

В частном строительстве при сооружении «стены в грунте» можно использовать бетон, приготовленный своими руками.

Устройство стены в грунте

Монтаж сборного железобетона

Вместо заливки монолитного железобетона в «стену в грунте» можно смонтировать при помощи готовых бетонных конструкций. Это позволит значительно сократить затраты сил и времени, так как в данном случае можно будет обойтись более узкой траншеей. Подробнеее о строительстве стены в грунте смотрите в этом видео:

Не понадобится сооружать армированный каркас и производить трудоёмкую заливку бетонного раствора. Также не нужно будет ждать, пока монолитная заливка наберёт достаточную крепость. Сразу после монтажа подземной стены из готовых конструкций и их закрепления между собой можно приступать к выемке грунта для устройства подземных помещений.

Источник: moyastena.ru

Рейтинг
Загрузка ...