Характеристика оснований в строительстве

Строительная классификация грунтов. Виды грунтов.

Строительная классификация грунтов. Виды грунтов.

Строительная классификация грунтов. Виды грунтов.

Целью инженерно-геологических работ при строительстве является определение особенностей и свойств используемых грунтов под основание будущего здания или сооружения. Для упрощения данных работ составлена строительная классификация грунтов. Каковы основные виды грунтов и их строительные свойства?

Строительная классификация грунтов и виды грунтов

Грунты разнообразны по своему составу, структуре и характеру залегания. Строительная классификация грунтов и виды грунтов определяются согласно СНиП II-15-74 ч.2.

Грунты подразделяются на два класса: скальные — грунты с жесткими (кристаллизационными или цементационными) структурными связями и нескальные — грунты без жестких структурных связей.

1. Скальные грунты

Скальные – грунты с жесткими структурными связями залегают в виде сплошного массива или в виде трещиноватого слоя. К ним относятся магматические (граниты, диориты и др.), метаморфические (гнейсы, кварциты, сланцы и др.), осадочные сцементированные (песчаники, конгломераты и др.) и искусственные.

Лекции иссо: Основание и фундаменты

Они водоустойчивы, несжимаемы, имеют значительную прочность на сжатие и не промерзают и при отсутствии трещин и пустот являются наиболее прочными и надежными основаниями. Трещиноватые слои скальных грунтов менее прочны.

Скальные грунты разделяют по пределу прочности, растворимости, размягчаемости и засоленности.

2. Нескальные грунты

Нескальные грунты – это осадочные породы без жестких структурных связей. По крупности частиц и их содержанию делят на крупнообломочные, песчаные, пылевато-глинистые, биогенные и почвы. Характерной особенностью этих грунтов является их раздробленность и дисперсность, отличающие их от скальных весьма прочных пород.

2.1. Крупнообломочные грунты

Крупнообломочные – несвязные обломки скальных пород с преобладанием обломков размером более 2 мм (свыше 50%). По гранулометрическому составу крупнообломочные грунты подразделяют на: валунный d>200 мм (при преобладании неокатанных частиц – глыбовый), галечниковый d>10 мм (при неокатанных гранях – щебенистый) и гравийный d>2 мм (при неокатанных гранях – дресвяный). К ним можно отнести гравий, щебень, гальку, дресву.

Эти грунты являются хорошим основанием, если под ними расположен плотный слой. Они сжимаются незначительно и являются надежными основаниями.

При наличии более 40% песчаного заполнителя или более 30% пылевато-глинистого от общей массы учитывается только мелкая составляющая грунта, так как именно она будет определять несущую способность.

Крупнообломочный грунт может быть пучинистым, если мелкая составляющая — пылеватый песок или глина.

2.2. Песчаные грунты

Песчаные – состоят из частиц зерен кварца и других минералов крупностью от 0,1 до 2 мм, содержащие глины не более 3% и не обладают свойством пластичности. Пески разделяют по зерновому составу и размеру преобладающих фракций на гравелистые лески d>2 мм, крупные d>0,5 мм, средней крупности d>0,25 мм, мелкие d>0,1 мм и пылеватые d=0,05 — 0,005 мм.

Частицы грунта крупностью от d=0,05 — 0,005 мм называют пылеватыми . Если в песке таких частиц от 15 до 50 %, то их относят к категории пылеватых . Когда в грунте пылеватых частиц больше, чем песчаных, грунт называют пылеватым .

Чем крупнее и чище пески, тем большую нагрузку может выдержать слой основания из него. Сжимаемость плотного песка невелика, но скорость уплотнения под нагрузкой значительна, поэтому осадка сооружений на таких основаниях быстро прекращается. Пески не обладают свойством пластичности.

Гравелистые, крупные и средней крупности пески значительно уплотняются под нагрузкой, незначительно промерзают.

Тип крупнообломочных и песчаных грунтов устанавливается по гранулометрическому составу, разновидность – по степени влажности.

2.3. Пылевато-глинистые грунты

Пылевато-глинистые грунты содержат пылеватые (размером 0,05 – 0,005 мм) и глинистые (размером менее 0,005 мм) частицы. Среди пылевато-глинистых грунтов выделяют грунты, проявляющие специфические неблагоприятные свойства при замачивании, – просадочные и набухающие . К просадочным относятся грунты, которые под действием внешних факторов и собственного веса при замачивании водой дают значительную осадку, называемую просадкой. Набухающие грунты увеличиваются в объеме при увлажнении и уменьшаются в объеме при высыхании.

2.3.1. Глинистые грунты

Глинистые – связные грунты, состоящие из частиц крупностью менее 0,005 мм, имеющих в основном чешуйчатую форму, с небольшой примесью мелких песчаных частиц. В отличие от песков глины имеют тонкие капилляры и большую удельную поверхность соприкосновения между частицами. Так как поры глинистых грунтов в большинстве случаев заполнены водой, то при промерзании глины происходит ее пучение.

Несущая способность глинистых оснований зависит от влажности, которая определяет консистенцию глинистых грунтов. Сухая глина может выдерживать довольно большую нагрузку.

Тип глинистого грунта зависит от числа пластичности, разновидность – от показателя текучести.

2.3.2. Лёссовые и лёссовидные грунты

В качестве естественных оснований под здания непригодны (при увлажнении полностью теряют прочность и возникают большие, часто неравномерные, деформации — просадки). При использовании лёсса в качестве основания необходимо принимать меры, устраняющие возможность его замачивания.

2.3.3. Плывуны

Плывуны – это грунты, которые при вскрытии приходят в движение подобно вязко-текучему телу, образуются мелкозернистыми пылеватыми песками с илистыми и глинистыми примесями, насыщенными водой. При разжижении становятся сильно подвижными, фактически, превращаются в жидкообразное состояние.

Различают плывуны истинные и псевдоплывуны. Истинные плывуны характеризуются присутствием пылевато-глинистых и коллоидных частиц, большой пористостью (> 40%), низкими водоотдачей и коэффициентом фильтрации, особенностью к тиксотропным превращениям, оплыванием при влажности 6 — 9% и переходом в текучее состояние при 15 — 17%. Псевдоплывуны – пески, не содержащие тонких глинистых частиц, полностью водонасыщенные, легко отдающие воду, водопроницаемые, переходящие в плывунное состояние при определенном гидравлическом градиенте.

Они малопригодны в качестве естественных оснований.

2.4. Биогенные грунты

2.5. Почвы

Почвы – это природные образования, слагающие поверхностный слой земной коры и обладающие плодородием.

Почвы и биогенные грунты служить основанием для здания или сооружения не могут. Первые — срезают и используют для целей земледелия, вторые — требуют специальных мер по подготовке основания.

2.6. Насыпные грунты

Насыпные – образовавшиеся искусственно при засыпке оврагов, прудов, мест свалки и т.п. или грунты природного происхождения с нарушенной структурой в результате перемещения грунта. Свойства таких грунтов очень различны и зависят от многих факторов (вид исходного материала, степень уплотнения, однородность и т. д.). Обладают свойством неравномерной сжимаемости, и в большинстве случаев их нельзя использовать в качестве естественных оснований под здания. Насыпные грунты весьма неоднородны; кроме того, различные органические и неорганические материалы существенно ухудшают его механические свойства. Даже при отсутствии органических примесей, в некоторых случаях, они остаются слабыми на протяжении многих десятилетий.

В качестве основания для зданий и сооружений насыпной грунт рассматривается в каждом отдельном случае в зависимости от характера грунта и возраста насыпи. Например, слежавшиеся более трёх лет, особенно пески, могут служить основанием под фундамент небольших строений, при условии, что в нем отсутствуют растительные останки и бытовой мусор.

В практике встречаются также намывные грунты, образовавшиеся в результате очистки рек и озер. Эти грунты называют рефулированными насыпными грунтами . Они являются хорошим основанием для зданий.

Вы смотрели: Строительная классификация грунтов. Виды грунтов.

Источник: stroykaa.ru

Назначение фундамента и его конструкция

Пример не залитого фундамента

Не существует сооружения, которое можно было бы возвести непосредственно на грунте.

Ведь за счет собственной, даже небольшой, массы несущих конструкций здание будет неизбежно проседать, а уже через несколько лет появятся трещины в конструкции с дальнейшим полным разрушением.

Поэтому, под зданием нужно обязательно обустраивать специальную конструкцию – основание. Именно оно обеспечит дополнительную жесткость и прочность будущему сооружению.

Фундамент должен обеспечивать:

  • Равномерное распределение по грунту массы здания;
  • Обеспечение стандартного положения сооружения на почве;
  • Стабилизация угловых вертикальных и горизонтальных смещений;
  • Жесткость и соединение с несущими элементами здания;
  • Снижение негативного влияния самой почвы, а также нивелирование возможных подвижек почвы;
  • Защиту внутреннего пространства здания, особенно подвалов, технических этажей, от проникновения грунтовых вод, грызунов;
  • Обеспечение оптимального микроклимата внутри сооружения;
  • Стабилизацию здания в условиях сейсмической активности.
Читайте также:  Технология строительства домов соломенных блоков

Поэтому, существует огромное количество различных оснований, которые отличаются конструкцией, характеристиками, сферой применения. Но сначала нужно разобраться, на каких грунтах какие основания используются.

Виды оснований зданий по назначению

  • Несущий. Это основной тип фундамента, выполняет задание только передачи нагрузки от здания на грунт, другого назначения нет.
  • Комбинированный. Этот уже выполняет не только несущее задание, но и защищает здание от сейсмических толчков, вибрации от магистралей или железнодорожного полотна, паводков и других внешних воздействий. Соответственно, конструкция уже отличается, как и подобранные для такого основания материалы.
  • Специальные. К ним относятся сейсмостойкие основания. Они не предназначены для защиты сооружения от вспучивания почвы или воздействия грунтовых вод. А в конструкции имеют специальные наполнители и соединительные группы, которые отвечают за целостность конструкции в целом даже при значительных подвижках почвы. Бывают качающиеся и плавающие. Конструкция каждого типа основания зависит от почвы и сейсмических характеристик территории.

Типы оснований по материалам

  • Железобетонный. Выполняется из бетонных материалов, обладает значительной жесткостью и прочностью, стойкий к грунтовым водам и агрессивным средам. Дополнительную прочность и жесткость конструкции дает арматурное наполнение. Арматура играет ключевую роль на первичных этапах возведения здания, ведь бетон получает свои несущие характеристики длительное время, до нескольких лет в зависимости от климата и почвы. Бывает монолитный (единая железобетонная плита) и сборный (делается из сборных заводских блоков, соединенных арматурой и раствором).
  • Каменный. Это долговечный фундамент, который можно встретить в старых зданиях, причем он отличается высокой прочностью и отличными техническими характеристиками. Он делается из натурального камня, причем используется материал, характерный для данной территории. Камень соединяется между собой в единое целое с помощью цементного раствора, глины или других материалов.
  • Саманный фундамент. Это особенный тип основания, используется на территориях с умеренной влажностью и низким залеганием грунтовых вод. Его особенность в том, что при возведении используются только натуральные материалы, такие как глина и солома. Используется только для небольших жилых зданий, но тут комбинировать саманный кирпич с керамическим кирпичом или блоками нельзя, основание не выдержит нагрузки. Также саманный фундамент нужно дополнительно гидроизолировать, теплоизоляция тут не нужна.
  • Деревянный. Для его возведения используют прочную древесину, стойкую к атмосферным воздействиям, грунтовым водам и грызунам. Для таких целей отлично подходит лиственница (она выделяет на открытом воздухе скипидар, который не «любят» грызуны и грибки, а сама древесина консервируется) и дуб (прочный и стойкий к любым воздействиям). Это плавающий тип фундамента, причем выдерживает сильные сейсмические волны, поэтому изх часто можно встретить в горной местности.
  • Ячеистобетонный. Этот тип основания набирает популярность через свою дешевизну и скорость возведения. Как правило, в конструкции предусмотрена ячейка для бетонных блоков, они ложатся в шахматном порядке, и медленно поднимается сама конструкция основания.

Влияние грунта на выбор фундамента

Конструкция любого основания подразумевает передачу всей нагрузки от здания на грунт. Соответственно, состав, характеристики и несущая способность грунта играет ключевую роль при выборе типа и конструкции фундамента для будущего здания. Итак, основания грунтового типа могут быть естественными и природными.

Естественные – это основания, на которых фундаменты возводятся без дополнительного укрепления. А к искусственным относятся основания, которые ложатся на специально создаваемую песчаную подушку. Естественные основания бывают следующих типов: песчаные, глинистые, лессовидные (тут нужно помнить о значительной сейсмической опасности), скальные, супеси и суглинки.

Все почвы, кроме скальных, неизбежно дадут значительную просадку здания, поэтому впоследствии неравномерной нагрузки на грунт в различных местах здания возникают трещины.

Поэтому, самые надежные почвы с точки зрения искусственного возведения оснований, считаются именно скальные.

Глубина заложения основания в зависимости от типа почвы

Гравелистые почвы (скальные породы, возможна комбинация с песком или глиной). Это прочные почвы, не склонные к подвижкам и не сжимаются впоследствии температурного воздействия. Глубина закладки фундамента здания составляет до 1 метра.

Искусственные основания делают на слабых почвах при значительных нагрузках на подошву. К ним часто относят песчано-гравийную подсыпку, различные наполнители и каменистый прочный материал.

Выбор типа фундамента в зависимости от почвы

Ленточный фундамент

Если нужно возводить основание на холмистой местности, тогда сразу нужно рассчитывать боковое давление почвы, возможности горизонтального сдвига и давление почвы по уровню промерзания.

Величина таких давлений зависит от множества факторов и ее трудно порой рассчитать правильно. Поэтому конструкция оснований на холмах сразу предусматривает как минимум половину запаса прочности.

В таких случаях нужно использовать столбчатые фундаменты, столбы которых соединяются между собой ростверком (железобетонная обвязка). Также тут можно использовать ленточные фундаменты с надежной горизонтальной и вертикальной обвязкой.

  • Стационарное основание. Используется при возведении небольших зданий с малой несущей массой.
  • Плавающий фундамент. Строится на пучинистых почвах, несущие свойства которых отличается от сезона, насыщенности влагой и температурного режима. Конструкция: монолитная или решетчатая плита, толщина зависит от нагрузки самого здания. Используется для небольших сооружений.
  • Ленточный и столбчатый фундаменты. Это распространенные стационарные основания, пользуются заслуженной популярностью среди частных застройщиков. Столбчатая конструкция незаменима на глубоко промерзаемых почвах. Не рекомендуется его использовать при строительстве домов с тяжелыми стенами, ведь тогда нужно проводить подробные расчеты несущей нагрузки на каждый столб индивидуально. А это несет за собой расчет толщины, высоты и типа столба, а также материала его выполнения. Особенность ленточного фундамента в том, что цоколь там плавно переходит в стены, а нагрузка от стен и перекрытий передается равномерно на каждый квадратный сантиметр основания. Ленточное основание способно выдержать значительные нагрузки, можно построить полноценный подвал или технический этаж, а также подземный паркинг. Его нужно возводить на сухих непучинистых грунтах, ведь при установке основания на глубоко промерзающих грунтах его постройка будет очень дорогой и экономически не выгодной.
  • Фундамент на винтовых сваях. Он появился относительно недавно, раньше применялся в промышленности для возведения оснований для высоковольтных линий электропередач, некоторых промышленных зданий, а также мачт сотовой связи. Но плавно такая технология перешла в частный сектор и активно используется при возведении зданий на сложных почвах. Отличительная особенность свайной конструкции – это возможность монтажа свай на значительной глубине, ведь она вкручивается до тех пор, пока не достигнет плотных пород.

Винтовая свая – это металлическая конструкция с лопастями, которая вкручивается в грунт специальной техникой или вручную.

Как правило, расчет проводится не столько количества этих дешевых строительных конструкций, как нагрузки на ростверк, с помощью которого сваи соединяются между собой. Также свайный фундамент возводится на поверхностях с большими перепадами высот, ведь тут не нужно проводить первичную обработку и выравнивание почвы.

Но основной недостаток свайного фундамента – это необходимость делать теплоизоляцию подполья, а это сложная технология, учитывая наличие открытого пространства снизу. Монтаж свай занимает максимум несколько дней, при этом не нарушается структура самой почвы. Не используется при возведении зданий на скалистых почвах.

После монтажа свай их внутренняя полость заполняется бетоном с целью увеличить прочность и допустимую нагрузку.

Конструкция различных типов фундаментов

  • Ленточный. Это сборная или монолитная железобетонная конструкция, делается на всему периметру будущего здания под несущими стенами. Ленточные фундаменты бывают заглубленными (нижняя кромка устанавливается на граничном уровне промерзания), малозаглубленными (нижняя кромка выше глубины промерзания). Заглубленные основания считаются оптимальными для зданий с высокими нагрузками на грунт, ведь фундамент стойкий к воздействию со стороны почвы. Конструкция состоит из монолитных плит или готовых железобетонных блоков, которые укладываются по периметру несущих стен, а также на их пересечении, соединяются между собой арматурой. Стоит такое основание недешево, но выдерживает большие нагрузки, а за счет монолитности конструкции даже при средних подвижках сдвигается все здание, а не его часть.
  • Столбчатый. Часто его используют для экономии материалов при возведении оснований на слабопучинистых почвах. Если используются только столбы, тогда лучше несущие стены из ленточных бетонных блоков делать по стыкам на столбах. А если столбчатая конструкция используется на пучинистых слабых почвах, тогда столбы между собой соединяются жестким железобетонным армированным ростверком. Тут ключевой элемент – это столб, который углубляется на глубину ниже уровня промерзания, в качестве несущей конструкции используется асбестовая труба, внутри устанавливается арматура, делается обвязка и все заливается бетоном.
  • Свайные фундаменты. Их сразу можно подразделить по конструкции и типу выполнения свай на забивные, трубобетонные, буронабивные, винтовые и другие конструктивные разновидности. Соответственно, конструкция отличается в зависимости от способа установки свай, их типа, материала выполнения, прочих параметров. Все сваи нужно между собой соединить армированием в виде металлической обвязки или железобетонного ростверка. Также можно делать деревянную обвязку, но она рассчитана на небольшие нагрузки. Такой фундамент незаменим при возведении зданий на рельефной территории, ведь земляные работы будут стоить дороже использования даже металлических или бетонных свай.
  • Плитные фундаменты. Это фактически монолитная железобетонная плита, расположенная под стенами здания и она монтируется по всей площади будущего сооружения. Это дорогое удовольствие, ведь на сооружение плиты пойдет много цемента, песка, щебня и арматуры. Но такая плита гарантирует плавность всего здания, ведь при сейсмических воздействиях сползать будет только плита, а не отдельные ее элементы.
  • Континуальные фундаменты. Это основания специального назначения, используются при возведении мостов, бункеров, больших промышленных объектов. Конструкция оснований подбирается под каждое сооружение индивидуально, отличается множеством параметров, а также призвана передавать равномерно массу сооружения на всю поверхность почвы. Толщина и наполнение плит во многом зависит от назначения, поэтому в частном строительстве практически не используется.
Читайте также:  Построить многоквартирный дом без разрешения на строительство

Как подобрать оптимальную конструкцию будущего фундамента

Виды фундамента

Тут многое зависит от финансовых возможностей застройщика и ключевых характеристик будущего здания. Ведь на одном и том же грунте можно возвести сразу несколько вариантов фундаментов, но они будут отличаться конструкцией и финансовыми составляющими. Соответственно, при выборе конструкции фундамента стоит обращать внимание на следующие параметры:

  • Совместимость выбранной конструкции из существующим типом почвы;
  • Наличие или отсутствие сейсмических зон;
  • Протяженность различных источников мощной вибрации;
  • Наличие поблизости памятников архитектуры;
  • Температурные факторы промерзания грунта, а также влажность климата, глубина погружения и расположения грунтовых горизонтов;
  • Наличие поблизости промышленных предприятий, которые часто сбрасывают сточные воды, загрязненные агрессивными веществами.

Какую конструкцию фундамента не использовать, все равно нужно обязательно сделать гидроизоляцию и теплоизоляцию основания. Без этих действий нельзя получить качественное и долговечное основание, способное выполнять свои основные функции.

Источник: fundamentclub.ru

ЕСТЕСТВЕННЫЕ ОСНОВАНИЯ

Физические характеристики грунтов, их строительная классификация, грунтовые воды, напластования грунтов и т.п. более подробно рассматриваются в курсе «Инженерная геология». В настоящем учебнике даны основные понятия, нужные для понимания расчетов оснований и фундаментов.

Грунты являются трехкомпонентной системой, т.е. состоят из твердых частиц и пор, которые заполнены водой и газами (рис. 11.2).

Ряд характеристик грунтов определяют в лабораторных условиях, для них принимают следующие обозначения: V — объем грунта; Vs — объем твердых частиц; Г — объем пор; Vw — объем воды; т — масса

Основные понятия

Рис. 11.1. Основные понятия:

1 — фундамент; 2 — подошва фундамента; 3 — верхний обрез фундамента; 4 — линза (включение в пласт другого грунта); DL — отметка планировки; d1 — глубина заложения фундамента; I — несущий пласт; II, III — подстилающие пласты

Грунт

Рис. 11.2. Грунт:

а] поры (заполненные: 1 — газами; 2 — водой);

б) твердые частицы (минеральная часть грунта)

грунта; ms — масса твердых частиц; mw — масса воды. Определив эти величины, можно найти следующие основные характеристики грунта:

Зная плотности грунта, можно найти соответственно:

• удельный вес твердых частиц (кН/м 3 ):

где#= 10 (м/сек 2 ) — ускорение свободного падения.

При проектировании фундаментов и оснований кроме основных характеристик необходимо знать ряд физических характеристик грунта, которые можно определять расчетом:

• коэффициент пористости грунта

по которому определяется плотность сложения грунтов;

  • • удельный вес грунта при учете взвешивающего действия воды
  • (кН/м 3 )

и другие характеристики.

Ниже рассматриваются физические характеристики дисперсных грунтов. Как уже отмечалось, дисперсные грунты разделяются на связные и несвязные. Связные дисперсные грунты обладают свойством пластичности.

Для пластичных грунтов (глинистые грунты, торфы) определяются характеристики, отражающие способность этих грунтов удерживать воду и состояние грунтов (от твердого до текучего) при природной влажности. Способность глинистых грунтов удерживать воду зависит от количества глинистых частиц в грунте; между частицами глины образуются водно-коллоидные связи, которые придают грунту связность (препятствуют рассыпанию частиц грунта) и влияют на работу таких грунтов под нагрузкой. Для нахождения этих характеристик предварительно в лабораторных условиях определяют влажность на границе текучести и на границе раскатывания:

  • • влажность на границе текучести WL — это такая влажность, при которой грунт переходит в текучее состояние. Величина условная, определяемая при помощи стандартного конуса, который ставится на исследуемый грунт, в котором изменяют влажность. Меняют влажность грунта и определяют глубину погружения конуса. При опускании конуса на установленную стандартом глубину считается, что грунт достиг границы текучести. Найденная для этого состояния грунта влажность считается влажностью на границе текучести;
  • • влажность на границе раскатывания Wp — это такая влажность, при которой грунт переходит в полутвердое состояние. Определяется раскатыванием тонких цилиндров грунта. При раскатывании вода, находящаяся в грунте, постепенно испаряется и наступает момент, когда в грунте появляются трещины. Принято считать, что при этом грунт перешел в полутвердое состояние, и определяется влажность такого грунта, которая и считается влажностью на границе раскатывания.

Используя влажность на границе текучести и раскатывания, расчетом определяют следующие характеристики пластичных грунтов:

• число пластичности

характеризует способность грунтов удерживать воду в промежутке от полутвердого состояния до текучего состояния. Чем больше в грунте глинистых частиц, тем больше число пластичности; грунты относятся к глинистым при I > 1 (т.е. становятся связными); глинистые грунты подразделяются в зависимости от числа пластичности I на супесь, суглинок, глину (табл. 11.1); супесь в своем составе содержит много песчаных частиц, суглинок — меньше и глина — еще меньше;

• показатель текучести

показывает состояние пластичного грунта при природной влажности (находится грунт в текучем, твердом или в каком-то промежуточном состоянии) (табл. 11.2).

Наименование глинистых грунтов складывается из наименования их разновидности (см. табл. 11.1) и разновидности по числу пластичности (см. табл. 11.2).

Источник: studref.com

Основания, фундаменты и эксплуатационные требования к ним

Нижняя часть любого сооружения — его фундамент — предназначена для передачи нагрузки всей его массы на грунт, который служит основанием. Надежные основания и фундаменты гарантируют прочность и устойчивость здания, а слабые, поддающиеся деформациям, приводят к разрушению его надземной части. Поэтому как в ходе строительства, так и в процессе эксплуатации сооружений основаниям и фундаментам нужно уделять особое внимание, ибо их надежность зависит от того, насколько правильно и полно учтены в проекте эксплуатационные требования к основаниям и фундаментам в конкретных условиях их устройства.

Основание и фундамент здания конструируют и рассчитывают совместно: чем прочнее грунтовое основание, тем меньше размеры фундамента; уплотняя и упрочняя слабое основание, можно уменьшить размеры фундамента, а увеличивая размеры фундамента, в частности его заглубление, площадь опирания на грунт — его подошву, можно использовать грунт в естественном состоянии. Из этого следует, что основания могут быть естественными или искусственными, т. е. специально усиленными путем уплотнения песком, щебнем (с трамбованием), химического либо электрохимического закрепления или забивки свай.

В строительстве на слабых грунтах часто применяют железобетонные сваи или специально уширенные блоки из железобетона, позволяющие использовать грунты в их естественном состоянии. Эксплуатационникам надо внимательно относиться
к грунтам основания и всемерно их защищать от подтопления атмосферными и талыми водами, а также от промерзания. Насыпные грунты и грунты с органическими примесями, кроме намывных, отличаются большой неоднородностью и сжимаемостью, а потому, как правило, не могут служить естественным основанием.

Естественные основания должны обладать следующими эксплуатационными качествами:

Читайте также:  Нормы строительства построек на участке ИЖС

достаточной несущей способностью;

малой и равномерной сжимаемостью, обеспечивающей равномерную осадку здания в допустимых пределах;

неподвижностью и не подвергаться выпучиванию при промерзании (при пучинистых грунтах основание должно выбираться ниже глубины промерзания);

быть устойчивыми к действию агрессивных грунтовых вод и не вымываться.

Песчаные грунты, состоят из частиц крупностью 1—2 мм. Чем крупнее частицы песка, тем лучшими строительными качествами обладает такой грунт основания; чем больше в нем глинистых, пылеватых частиц размером 0,05—0,005 мм, тем хуже строительные качества таких грунтов, ибо они удерживают влагу, подвергаются выпучиванию, имеют малую несущую способность. Если в песке содержится таких частиц более 15 и до 50 %, то они относятся к пылеватым.

Глинистые грунты, состоят из чешуйчатых частиц крупностью меньше 0,005 мм. Глины, в отличие от песков, имеют тонкие капилляры, большую удельную поверхность соприкасания между частицами, сильно всасывают и удерживают воду и поэтому при промерзании подвергаются выпучиванию. Сжимаемость глинистых грунтов больше, чем песчаных, однако скорость их уплотнения под нагрузкой меньше, чем песков. Поэтому осадка сооружений, построенных на глине, продолжается длительное время.

Супеси и суглинки представляют собой смесь песка, глины и пылеватых частиц: супеси содержат от 3 до 10 % пылеватых частиц, а суглинки — от 10 до 30%- По своим качествам эти грунты занимают промежуточное положение между песками и глинами. Сильно насыщенные водой супеси называют плывунами-, они мало пригодны в качестве оснований.

Лёсс по зерновому составу относится к пылеватым суглинкам. Характерным его признаком являются крупные и длинные капилляры (макропоры) в виде вертикальных трубочек, которые при замачивании размокают и под нагрузкой дают большие осадки. Основаниями они могут служить лишь в том случае, если их защитить от увлажнения или специально обработать, например предварительно увлажнить и уплотнить катками или трамбовками, что эффективно при толщине просадоч- ного грунта до 1,5 м.

Фундаменты могут быть ленточными, столбчатыми, сплошными, в виде отдельных опор под колонны, свайными и др. (рис. 2.1).
Ленточные фундаменты представляют собой непрерывную ленту из каменного материала под всеми наружными и внутренними стенами. При устройстве подвалов ленточный фундамент образует их стены; это наиболее распространенный вид фундамента. Иногда ленточный фундамент заменяют столбами через 2—3 м и под пересечением стен, а по ним на отметке цо-

img-197

Рис. 2.1. Основные конструкции фундаментов
а — ленточный под стены; б —то же, под колонны; в — столбчатый под стены; г — отдельный под колонну; д — сплошная плита под колонны; е — коробчатый под здание; ж — свайный

коля укладывают обвязочную балку и по ней возводят стену. На слабых, пучинистых, вечномерзлых грунтах фундамент нередко выполняют из свай. Сплошные фундаменты устраивают при больших нагрузках в зданиях повышенной этажности, в заглубленных сооружениях, т. е. когда зданию необходимо придать особую надежность и монолитность. Фундаменты под колонны делают в виде отдельных опор-башмаков.

Ширина фундамента в верхней части определяется исходя из толщины стены, опирающейся на него, а также двух выступов- обрезов по 60 мм, учитывающих неточность разбивки фундамента и грубые формы используемых для него камней. Размер фундамента понизу зависит от прочности грунтов основания. При слабых грунтах фундамент в нижней части уширяют ступенями с соотношением высоты к выступу 1 :2, например 20 и 40 см. Заглубление фундаментов определяется прочностью
основания (чем оно глубже, тем больше его несущая способность), а также глубиной промерзания пучинистых грунтов. При влажных пучинистых грунтах заложение фундаментов должно быть обязательно на 250 мм ниже глубины промерзания. Для зданий с подвалами заглубление фундаментов назначается в зависимости от высоты подвала и прочности грунтов основания.
Изменение проектных условий оснований и фундаментов (например, в результате срезки или подсыпки грунта вокруг здания, повышения или понижения уровня грунтовых вод и т. п.) может привести к снижению несущей способности, неравномерной их осадке или к выпучиванию, разрушению всей надземной части здания. Фундаменты возводятся из морозо- и гнилостойких материалов и поднимаются над землей на 10 см, чтобы гидроизоляция и кирпичная кладка находились выше отмостки тротуара, а еще лучше слой гидроизоляции поднять выше — на 20—30 см с целью защиты стены от капиллярной воды.

Таблица 2.1. Исходные данные для установления эксплуатационных качеств фундаментов

img-198

На основе учета воздействующих на основания и фундаменты факторов и предъявляемых к ним нормативных требований составлена таблица (табл. 2.1) и принципиальная структурная схема (рис. 2.2), на которой показаны все воздействующие факторы и удовлетворяющие их конструктивные элементы фундамента.

Теперь, когда известны структурная схема, возможные конструктивные решения фундаментов и сформулированы (табл.

2.1) эксплуатационные требования к ним, можно перейти к выбору и обоснованию конструкции фундамента для конкретных гидрогеологических, климатических условий и назначения здания, его размеров, строительных материалов и других особенностей.

img-199

Рис. 2.2. Структурная схема фунда- мента
Воздействия на фундаменты: 1 — грунта и грунтовых вод; 2 — промерзания и пучения; 3 — атмосферных осадков; 4 — нагрузок
Конструктивные элементы фундаментов: I — горизонтальная
гидроизоляция; II — несущие элементы; III — вертикальная гидроизоляция и ее защита; IV — горизонтальная гидроизоляция в полу и фундаменте; V — дренаж; VI — основание (естественное или искусственное)

Задача выбора конструкции и размеров фундамента состоит в том, чтобы оценить выбираемый вариант по показателям указанной таблицы, структурной схеме фундамента и достигнуть полной и правильной реализации нормативных эксплуатационных требований в проектируемом фундаменте.

При этом важно выявить возможные несоотвествия, неполное удовлетворение эксплуатационных требований в проектируемом фундаменте и устранить их, а в инструкции по эксплуатации отразить специфику его технического обслуживания и ремонта.
Таким образом, задача проектирования фундаментов, как и других конструкций здания (сооружения), состоит в том, чтобы из всех известных и возможных конструктивных решений выбрать, руководствуясь эксплуатационными требованиями к ним, их принципальной структурной схемой, а также исходными данными для разработки проекта, наиболее рациональный для данного случая тип.

Цоколь — это нижняя часть стены, которая должна обладать особыми эксплуатационными качествами: конструктивными— защищать стену от увлажнения и механических повреждений; эстетическими — создавать зрительное впечатление прочной и надежной базы здания. Поэтому цоколь выполняется из прочного и красивого материала, разделывается «под крупные камни», его нередко окрашивают в темный цвет. Материалами для цоколя служат естественный камень, бетонные блоки, хорошо обоженных кирпич. Недооценка материала для цоколя, отсутствие в нем гидроизоляционного слоя приводит к быстрому разрушению здания, неприятному внешнему виду, а восстановить цоколь и гидрозоляцию в нем сложно и дорого.

Отмостка — это слой асфальта, бетона или камня толщиной 100—150 мм и шириной около 750 мм вдоль наружной стены
здания, уложенный на подготовленное из глины и щебня основание, имеющий уклон от здания 0,03—0,05; она предназначена для отвода воды от здания и прикрытия верхнего обреза фундамента. Важным условием исправности отмостки является хорошо уплотненный грунт обратной засыпки, на котором она устраивается; исправная отмостка — без трещин, «блюдец», скопления на ней воды — гарантирует сохранение в проектном положении основания, фундамента и всей надземной части здания. В зданиях, расположенных на красной линии, функции отмостки выполняет тротуар.

Нередко отмостке не придается должного внимания или ее вообще не устраивают. Недооценка роли отмостки и ее исправного состояния как малозначащего, несущественного элемента обходится весьма дорого. Поскольку она устраивается на обратной засыпке грунта вокруг фундамента, то грунт оказывается плохо уплотненным и отмостка дает просадку, в ней образуются трещины, через которые вода проникает под фундамент, снижает несущую способность основания, способствует его промерзанию и выпучиванию со всеми вытекающими последствиями. Из этого следует, что исправное состояние отмостки является важным ее эксплуатационным качеством, обязательным условием поддержания в исправном состоянии всего сооружения, а неисправное ее состояние, скопление на ней воды влекут за собой повреждения вышележащих частей здания.
По состоянию отмостки и цоколя можно судить о техническом состоянии здания, а также о профессионализме и добросовестном выполнении своих обязанностей эксплуатационниками.

Источник: www.remontlib.ru

Рейтинг
Загрузка ...