Инженерно-геодезические изыскания для строительства (реконструкции) автомобильных дорог должны обеспечивать получение топографо-геодезических материалов и данных о ситуации и рельефе местности, существующих зданиях и сооружениях, элементах планировки, необходимых для комплексной оценки природных и техногенных условий территории строительства.
В состав инженерно-геодезических изысканий для строительства дорог входят:
- сбор и обработка материалов инженерных изысканий прошлых лет, топографо-геодезических, картографических, аэрофотосъемочных и других материалов и данных;
- рекогносцировочное обследование территории;
- создание (развитие) опорных геодезических сетей, включая геодезические сети специального назначения для строительства;
- создание планово-высотных съемочных геодезических сетей;
- топографическая (наземная, аэрофототопографическая, стереофотограмметрическая) съемка;
- обновление инженерно-топографических и кадастровых планов в графической, цифровой, фотографической и иных формах;
- инженерно-гидрографические работы;
- камеральное трассирование и предварительный выбор конкурентоспособных вариантов трассы для выполнения полевых работ и обследований;
- полевое трассирование;
- съемки существующих железных и автомобильных дорог, составление продольных и поперечных профилей, пересечений линий электропередачи (ЛЭП), линий связи (ЛСВ), объектов радиосвязи, радиорелейных линий и магистральных трубопроводов.
Независимо от того, каким методом выполняются геодезические изыскания автомобильных дорог, важно, чтобы плотность съемочных точек была высокой и равномерной в продольном и поперечном направлениях. Таким образом, можно получить наиболее адекватное отображение существующей поверхности.
Инженерно-геологические изыскания для индивидуального строительства
Основные факторы, которые должны учитываться при выборе технологии изысканий, это скорость выполнения работ и достоверность получаемых результатов.
Нивелирование по поперечникам. Технология геодезических изысканий, основанная на нивелировании поперечников по проектной трассе, является наиболее традиционной и привнесена из технологии изысканий новых дорог периода 50-60-х годов 20-го столетия. Суть ее заключается в том, что по оси дороге выполняется трассирование, закрепляется трасса, разбивается пикетаж и, с заданным шагом, выполняется нивелирование поперечников, нормальных (перпендикулярных) оси запроектированной дороги. Эта технология является чрезвычайно простой, требующей применения наиболее простых геодезических инструментов (теодолиты, нивелиры, рейки, рулетки), что обеспечивает ее живучесть даже в настоящее время.
Однако эта технология имеет ряд изъянов, которые не позволяют рассматривать ее в качестве базовой при геодезических изысканиях для проектирования реконструкций и ремонтов автомобильных дорог.
Во-первых, трассирование по существующей дороге (в случае реконструкции и ремонта) в полевых условиях, да еще на основе традиционных элементов трассирования, не позволяет выполнить эту процедуру достаточно качественно, то есть, с максимальным приближением проектируемой трассы по отношению к существующей.
Инженерно-геологические изыскания для строительства: полевая часть
Во-вторых, в то же время, делается допущение, что проектируемая трасса повторяет очертания существующей. И на этом основании выполняют дальнейшие изыскательские процедуры.
В-третьих, изменения проектных решений по трассе на этапе камеральных работ уже невозможно. Это обстоятельство характерно в целом для геодезических изысканий дорог «пикетным» методом.
Тахеометрическая съемка. Наиболее массовым в настоящее время видом геодезических измерений при изысканиях для проектирования дорог является тахеометрическая съемка (рис.4.1). Она обеспечивает необходимую точность измерений, но, в тоже время, достаточно трудоемка, особенно в условиях высокой транспортной загрузки проектируемой дороги.
Нивелирование на основе лазерных построителей плоскостей. Среди существующего в настоящее время многообразия лазерной геодезической техники наиболее эффективно применения для изысканий дорог лазерных построителей плоскостей (см. рис. 4.2.).
Опыт этого вида изысканий накоплен в научно-исследовательском институте проблем дорожного транспортного комплекса РГСУ. Компьютерная лазерная система позволяет с геодезической точностью определять отметки точек поперечных сечений с шагом 10 см. Прибор оснащен специальной тележкой со встроенным счетчиком пути и имеет электронные сегменты с матричной схемой расположения фотодиодов. Отдельно располагаемый излучатель генерирует луч в видимом спектре, который, попадая на определенный сегмент и фотодиод прибора, вызывает срабатывание соответствующей цепи электронной схемы и записывается в оперативную память. Частота регистрируемых точек регулируется и составляет 100-300 точек на поперечник, обуславливая отображение фактической поверхности в виде плотной последовательности точек.
После конвертации полученной информации в цифровую модель системы автоматизированного проектирования можно приступать к процессу проектирования на основе полной информации об очертаниях существующей поверхности ремонтируемой (модернизируемой) автомобильной дороги.
Съемка ультразвуковыми и лазерными профилографами. Съемка лазерными профилографами является наиболее производительной. В течение 1 смены можно выполнить съемку 100-150 км. Однако, в виду того, что лазерные профилографы, как правило, являются навесным оборудованием автомобиля, то точность таких измерений не высокая. Это обусловлено тем, что погрешность измерений вносится действием подрессоренной подвески автомобиля.
Лазерное сканирование. Работа лазерного сканера основана на измерении наклонной дальности D от источника измерения (лазера) до наземного объекта (дороги), являющегося препятствием на пути распространения лазерного луча. Такое препятствие вызовет появление отраженного импульса, который будет зарегистрирован приемником, а по времени задержки от момента излучения зондирующего импульса до регистрации отраженного импульса можно определить дальность D.
Одновременно определяются координаты пространственного положения носителя X,Y,Z за счет использования системы спутниковой навигации, а также углы ориентации зондирующего луча.
Знание этих 6-ти параметров внешнего ориентирования позволяет математически перейти к координатам точки, вызвавшей отражение. Основным результатом работы лазерного локатора является получение лазерно-локационного изображения или «облака» лазерных точек (рис. 4.3). Отметим важную деталь – лазерно-локационное изображение всегда дискретно.
GPS-съемка (системы спутниковой навигации). Этот вид съемки, в последнее время, достаточно массово применяется при изысканиях автомобильных дорог. Однако, в виду того, что прибор (режим «кинематика») устанавливается на автомобиль (подрессоренная часть), точность таких измерений остается низкой. В режимах «статика» и «stop and go» GPS является достойной альтернативой тахеометрической съемке.
Существенным недостатком этого метода является и то, что в закрытой местности (залесенность, застройка) показания GPS могут давать сбои и отказы. Избежать этого можно совместным применением спутниковых и гироскопических систем.
4.2. Инженерно-геологические изыскания
Инженерно-геологические изыскания должны обеспечивать комплексное изучение инженерно-геологических условий района проектируемой автомобильной дороги, включая рельеф, геологическое строение, геоморфологические и гидрогеологические условия, состав, состояние и свойства грунтов, геологические и инженерно-геологические процессы, изменение условий освоенных (застроенных) территорий, составление прогноза возможных изменений инженерно-геологических условий в сфере взаимодействия проектируемых объектов с геологической средой.
В состав инженерно-геологических изысканий дороги входят:
- сбор и обработка материалов изысканий прошлых лет;
- дешифрирование космо-, аэрофотоматериалов и аэровизуальные наблюдения;
- маршрутные наблюдения (рекогносцировочное обследование);
- проходка горных выработок;
- геофизические исследования;
- полевые исследования грунтов;
- гидрогеологические исследования;
- сейсмологические исследования;
- лабораторные исследования грунтов и подземных вод;
- камеральная обработка материалов;
- составление прогноза изменений инженерно-геологических условий;
- оценка опасности и риска от геологических и инженерно-геологических процессов.
Инженерно-геологические изыскания должны выполняться с применением прогрессивных методов работ, современных приборов и оборудования, обеспечивающих повышение производительности труда, улучшение качества и сокращение продолжительности изысканий.
Основной объем изыскательских работ для построения геолого-литологических разрезов, отбора образцов грунта, изучения их свойств, изучения гидрогеологических условий выполняется бурением скважин.
Кроме буровых и шурфовочных работ, для изучения инженерно-геологических условий проложения проектируемой дороги, применяют геофизические методы и георадарные технологии [12].
Георадар – цифровой, портативный, геофизический прибор, предназначенный для решения широкого спектра геотехнических, геологических, экологических, инженерных и других задач, где есть необходимость оперативного мониторинга среды, получения разрезов грунта, не требующих бурения или раскопок.
Его действие основано на излучении импульсов электромагнитных волн и регистрации сигналов, отраженных от границ раздела слоев зондируемой среды, имеющих различие по диэлектрической проницаемости.
В настоящее время георадар широко применяется в дорожной отрасли для следующих целей: определения толщины конструктивных слоев дорожной одежды и качества уплотнения дорожно-строительных материалов; изыскания карьеров дорожно-строительных материалов и оценки оснований под транспортные сооружения; распределения глубины промерзания в грунтовых массивах и дорожных конструкциях; содержания влаги в грунте земляного полотна и подстилающих грунтовых основаниях; эрозии грунтов на участках мостовых переходов.
4.3. Инженерно-экологические изыскания
Инженерно-экологические изыскания автомобильных дорог выполняются для экологического обоснования строительства и иной хозяйственной деятельности с целью предотвращения, снижения или ликвидации неблагоприятных экологических и связанных с ними социальных, экономических и других последствий и сохранения оптимальных условий жизни населения.
Инженерно-экологические изыскания дорог должны обеспечивать:
- комплексное изучение природных и техногенных условий территории, ее хозяйственного использования и социальной сферы;
- оценку современного экологического состояния отдельных компонентов природной среды и экосистем в целом, их устойчивости к техногенным воздействиям и способности к восстановлению;
- разработку прогноза возможных изменений природных (природно-технических) систем при строительстве, эксплуатации и ликвидации объекта;
- оценку экологической опасности и риска;
- разработку рекомендаций по предотвращению вредных и нежелательных экологических последствий инженерно-хозяйственной деятельности и обоснование природоохранных и компенсационных мероприятий по сохранению, восстановлению и оздоровлению экологической обстановки;
- разработку мероприятий по сохранению социально-экономических, исторических, культурных, этнических и других интересов местного населения;
- разработку рекомендаций и (или) программы организации и проведения локального экологического мониторинга, отвечающего этапам (стадиям) предпроектных и проектных работ.
В состав инженерно-экологических изысканий входят:
- сбор, обработка и анализ опубликованных и фондовых материалов и данных о состоянии природной среды, поиск объектов-аналогов для разработки прогнозов;
- экологическое дешифрирование аэрокосмических материалов с использованием различных видов съемок;
- маршрутные наблюдения с покомпонентным описанием природной среды и ландшафтов в целом, состояния наземных и водных экосистем, источников и визуальных признаков загрязнения;
- проходка горных выработок для установления условий распространения загрязнений и геоэкологического опробования;
- опробование почво-грунтов, поверхностных и подземных вод и определение в них комплексов загрязнителей;
- исследование и оценка радиационной обстановки;
- газогеохимические исследования;
- исследование и оценка физических воздействий;
- эколого-гидрогеологические исследования (оценка влияния техногенных факторов на изменение гидрогеологических условий);
- почвенные исследования;
- изучение растительности и животного мира;
- социально-экономические исследования.
Инженерно-экологические изыскания выполняются на всех стадиях проектирования: прединвестиционной (концепции, программы) и инвестиционной (обоснование инвестиций, проект, рабочая документация).
Основной объем инженерно-экологических изысканий выполняют на стадии программ и обоснования инвестиций с целью обеспечения своевременного принятия объемно-планировочных, пространственных и конструктивных решений, гарантирующих минимизацию экологического риска и предотвращение неблагоприятных или необратимых экологических последствий.
Материалы инженерно-экологических изысканий должны обеспечивать разработку разделов «Оценка воздействия на окружающую среду (ОВОС)» в обоснованиях инвестиций и «Охрана окружающей среды» в проекте строительства (реконструкции) автомобильных дорог.
Поскольку инженерно-экологические изыскания выполняют, в основном, на предпроектной стадии (программы, обоснование инвестиций), то базовой автоматизированной технологией для их обработки, расчетов и последующей визуализации используют не САПР, а, как правило, ГИС.
4.4. Цифровое и математическое моделирование местности
4.4.1. Формирование рельефа и ситуации
При системном автоматизированном проектировании результатом топографо-геодезических работ является цифровая модель (массив точек) зоны проектирования. При геодезической съемке или последующей камеральной ее обработке точкам придают определенные атрибуты, необходимые для адекватного моделирования поверхностей, ситуации и корректной реализации всех последующих проектных процедур.
Таким образом, для построения рельефа и ситуации зоны проектирования формируются следующие исходные данные:
- точки, имеющие имя (Name), координаты (x, y, z), коды условных знаков, коды принадлежностей их к линиям и контурам;
- структурные линии, вдоль которых имеет место нарушение гладкости поверхности (линии обрывов, водоразделы, тальвеги, границы рек, озер, искусственных сооружений и пр.);
- ситуационные линии и контуры – данные о местности, такие как расположение лесов, рек, озер, дорог, домов и пр.
Точки обычно отображают графически в виде массива точек с подписью их высотного положения (см. рис. 4.6, а). Точка может нести информацию о точечных объектах (столб, дерево, геодезический знак и пр.). Обозначения этих объектов выбирают из соответствующих библиотек условных знаков и помещают, как правило, в отдельный слой отображения.
Поскольку в реальных проектах сложных сооружений инженер имеет дело с массивами размерностью в десятки и сотни тысяч точек, то, естественно, что современные САПР должны обладать развитыми средствами их визуального редактирования. В режиме редактирования точек, как правило, предусматривают контекстное меню. Состав команд контекстного меню зависит от количества и типа выделенных точек.
Приведем лишь несколько команд по редактированию точек.
Выделить все. Выделяет все точки активной поверхности для последующего их редактирования.
Выделить по признаку. Открывает подменю, из которого можно выбрать один из предложенных признаков выделения точек или задать свой признак.
Выделить все линии, относящиеся к точке. Выделяет все линии, проходящие через выделенную точку. Команда недоступна, если выделено несколько точек.
Копировать в слой. Копирует или перемещает выделенные точки в указанный слой.
Ситуационная/Структурная. Определяет статус точки.
Знаки… Назначение знаков выделенным точкам.
Структурные линии строят строго по рельефным точкам и по своей сути они являются трехмерными ломаными линиями (рис. 4.6, б). Следует отметить, что структурные линии не могут пересекаться, но могут примыкать друг к другу. Структурные линии могут оказывать существенное влияние на очертания поверхностей. Это их свойство будет более подробно рассмотрено в разд.
4.4.3.
Ситуационные линии и контуры могут проходить как по рельефным точкам, так и по ситуационным (не имеющим координату z). Условие прохождения этих линий и контуров через точки не является строгим. Для них нет также запрета на пересечения и наложения (рис. 4.6, в).
Как ситуационные, так и структурные линии имеют атрибуты цвета, толщины и стиля. Контуры имеют атрибуты заливки цветом или текстурой (условными знаками).
Рис. 4.6. Исходные данные для построения рельефа и ситуации:
а) массив точек; б) структурные линии; в) ситуационные линии и контуры
В случае заливки контуров один слой, (например, ситуация) может закрывать другой (например, триангуляция). Последовательность наложения слоев друг на друга определяется проектировщиком и может в процессе проектирования, при необходимости, изменяться.
4.4.2. Триангуляция Делоне и способы ее редактирования
Для моделирования поверхностей существуют различные виды структур: по горизонталям, по структурным линиям, по поперечникам к трассе или магистральному ходу, статистические [26]. На практике чаще всего используют два основных вида структур: регулярная (равномерная прямоугольная, рис. 4.7, а) и нерегулярная (триангуляционная, рис. 4.7, б).
Массив точек для регулярных моделей может быть представлен в следующем виде:
Таким образом, для однозначного представления регулярной сетки размерностью m ´ n требуется хранить всего m ´ n+5 чисел. Однако для адекватного представления поверхности с заданной точностью требуется высокая плотность точек, что сопряжено со значительной многодельностью работ по подготовке исходной информации. К тому же, в виду ограниченности быстродействия компьютеров и массивов обрабатываемых данных приходится выбирать между точностью представления (размером ячейки) и размером обрабатываемой поверхности.
Для нерегулярных моделей массив точек описывается последовательностью:
Размерность нерегулярной сетки составляет 6k, что почти в 6 раз выше размерности регулярной сетки, но, в тоже время, для адекватного отображения поверхности требуется существенно меньшее количество точек.
Задача построения поверхности способом триангуляции является одной из базовых в вычислительной геометрии. К ней сводятся многие другие, связанные с моделированием поверхностей и решением пространственных задач в машинной графике, системах автоматизированного проектирования и геоинформационных системах.
Задачей построения триангуляции по заданному набору точек называется задача соединения точек непересекающимися отрезками так, чтобы образовалась триангуляция. Эта задача не является однозначной, поэтому возникает вопрос, какая из двух различных триангуляций лучше (оптимальна)?
Рассмотрим некоторые алгоритмы построения триангуляции.
Например, триангуляция Делоне, названная в честь советского математика Б. Н. Делоне (1934 г., [10])основана на ряде практических свойств:
- триангуляция, удовлетворяет условию Делоне, если внутрь окружности, описанной вокруг любого построенного треугольника, не попадает ни одна из заданных точек триангуляции;
- пара соседних треугольников триангуляции удовлетворяет условию Делоне, если этому условию удовлетворяет триангуляция, составленная только из этих двух треугольников;
- триангуляции удовлетворяет условию Делоне, если этому условию удовлетворяет триангуляция, составленная только из этого треугольника и трех его соседей (если они существуют).
- триангуляция Делоне обладает максимальной суммой минимальных углов всех своих треугольников среди всех возможных триангуляций;
- триангуляция Делоне обладает минимальной суммой радиусов окружностей, описанных около треугольников, среди всех возможных триангуляций.
Триангуляцию Делоне можно получить из любой другой триангуляции по тому же массиву точек, последовательно перестраивая пары соседних треугольников D ABC и D BCD, не удовлетворяющих свойствам Делоне, в пары треугольников D ABD и D ACD (рис. 4.8). Такую операцию называют флип.
Источник: seniga.ru
ИНЖЕНЕРНО-ГЕОЛОГИЧЕСКИЕ ИЗЫСКАНИЯ
Состав работ. Содержание отчета по инженерно-геологическим изысканиям
Инженерно-геологические изыскания — вид инженерных изысканий, выполняемых с целью изучения инженерно-геологических условий района строительства, включая физико-механические свойства грунтов и гидрогеологические данные для проектирования и строительства.
Цель инженерно-геологических исследований — получить необходимые для проектирования объекта инженерно-геологические материалы, так как ни один объект нельзя построить без этих данных.
Инженерно-геологические изыскания должны обеспечивать комплексное изучение инженерно-геологических условий района проектируемого строительства, включая рельеф, геологическое строение, сейсмотектонические, геоморфологические и гидрогеологические условия, состав, состояние и свойства грунтов, геологические и инженерно-геологические процессы, и составление прогноза возможных изменений инженерно-геологических условий в сфере взаимодействия проектируемых объектов с геологической средой с целью получения необходимых и достаточных материалов для обоснования проектной подготовки строительства, в том числе мероприятий инженерной защиты объекта строительства и охраны окружающей среды.
Ведение инженерно-геологических изысканий регламентируется нормативными документами [17, 19], в которых определяется порядок, состав, объём и виды выполняемых работ изысканий для различных этапов проектирования, строительства и эксплуатации объектов и различных геологических обстановках, а так же состав документации по результатам изысканий, порядок их предоставления и приёмки, а так же ответственность исполнителей и заказчиков (проектировщиков).
Состав инженерно-геологических изысканий определяется программой, согласованной с проектной организацией. В состав работ входят:
- • сбор и обработка материалов изысканий и исследований прошлых лет;
- • дешифрирование аэро- и космоматериалов;
- • рекогносцировочное обследование, включая аэровизуальные и маршрутные наблюдения;
- • лабораторные исследования грунтов;
- • полевые исследования грунтов;
- • проходка горных выработок;
- • гидрогеологические исследования;
- • геофизические исследования;
- • стационарные наблюдения (локальный мониторинг компонентов геологической среды);
- • обследование грунтов оснований фундаментов существующих зданий и сооружений;
- • составление прогноза изменений инженерно-геологических условий;
- • камеральная обработка материалов и составление технического отчета (заключения).
Задачами инженерно-геологических изысканий являются:
- • составление общего геологического разреза по глубине сжимаемой толщи, выявление гидрогеологического режима и химического состава подземных вод;
- • определение физико-механических свойств грунта на уровне подошвы фундамента и ниже ее;
- • установление соответствия новых материалов исследования архивных;
- • установление категории сложности инженерно-геологических условий и установление геологического риска территорий;
- • выявление опасных инженерно-геологических процессов.
В ходе инженерно-геологических изысканий необходимо иметь четкое представление о геологическом строении местности стратиграфии тектоники, литологии и физико-географических и геологических процессов на местности.
Стратиграфия — характеристика пород с точки зрения последовательности их напластования и возраста.
Тектоника — перемещение горных пород под действием внутренних сил, возникающих в недрах земли.
Литология — отрасль биологии, изучающая осадочные горные породы их минеральный состав, структуру, физические и химические свойства, условия образования и изменения.
Генезис — происхождение горных пород подземных вод рельефа и других процессов, влияющих на свойство грунтов.
В состав отчёта по результатам ииженерио-геологических изысканий входят следующие пункты:
- 1. Введение (во введении указывается основание для производства работ (договор), задачи инженерно-геологических изысканий (определение кадастровой стоимости, оценка и т.д.), местоположение района (адрес), данные о проектируемом объекте, виды и объёмы выполняемых работ, сроки их проведения, методы производства работ, состав исполнителей);
- 2. Изученность инженерно-геологических условий (характер назначения и границы ЗУ ранее выполненных инженерных изысканий и исследований, наименование организации исполнителей, период производства работ, основные результаты работ, возможности их использования для установления инженерно-геологических условий);
- 3. Физико-механические техногенные равновесия (климат, рельеф, геоморфология, растительность, почвы, гидрография, сведения о хозяйственном освоении и использовании территории, техногенных нагрузках, опыт местного строительства).
- 4. Геологическое строение (стратиграфогенетические комплексы, условия залегания грунтов, литографическая и петрографическая характеристика выделенных слоев грунтов по генетическим типам, тектоническое строение).
- 5. Гидрогеологические условия (характеристика в сфере взаимодействия вскрытых водоносных горизонтов с проектируемыми объектами, положение уровня подземных вод, распространение, условия залегания, источники питания, химический состав подземных вод, прогноз изменения гидрогеологических условий в процессе строительства и эксплуатации объектов).
- 6. Свойства грунтов (характеристика состава, состояния, физических, механических и химических свойств выделенных типов грунтов и их пространственной изменчивости)
- 7. Специфические грунты (указания о наличии и распространении специфических грунтов (многолетние мерзлые грунты, просадочные грунты, набухающие грунты, органоминеральные грунты, техногенные грунты), а также приуроченность этих грунтов к формам рельефа и геоморфологическим элементам, границы распространения, мощность и условия залегания, состояние и специфические свойства).
- 8. Геологические и инженерно-геологические процессы (наличие и распространение геологических и инженерногеологических процессов (карстовые процессы, гравитационные явления, подтопление, подрабатываемые территории, сейсмические районы), зоны и глубины развития этих процессов, особенности развития процессов, прогноз развития процессов во времени и пространстве)
- 9. Заключение (краткие результаты выполненных инженерно-геологических изысканий для принятия проектных решений и необходимости выполнения специальных работ и исследований)
- 10. Графическая часть отчета содержит карту фактического материала (топографический план с размещением на нем сква-жин/выработок для проведения изысканий и проектируемых объектов, инженерно-геологические разрезы по каждому участку, графики зондирования, материалы обработки полевых исследований грунтов, опытно-фильтрационных работ, а также другие графические материалы выполненных работ).
Сбор и обработка материалов изысканий и исследований прошлых лет. Этим работам подлежат следующие материалы:
• инженерно-геологические изыскания прошлых
лет, технические отчеты об инженерно-геологических изысканиях, гидрогеологических, геофизических и сейсмологических исследованиях, стационарных наблюдениях и другие данные, сосредоточенные в государственных и ведомственных фондах и архивах;
- • геолого-съемочные работ, инженерногеологического картирования, региональных исследований, режимных наблюдений и др.;
- • аэрокосмических съемки территории;
- • научно-исследовательские работы и научно-техническая литература, в которых обобщаются данные о природных и техногенных условиях территории и их компонентах и приводятся результаты новых разработок по методике и технологии выполнения инженерно-геологических изысканий.
В состав материалов, следует включать сведения о климате, гидрографической сети района исследований, характере рельефа, геоморфологических особенностях, геологическом строении, геодинами-ческих процессах, гидрогеологических условиях, геологических и инженерно-геологических процессах, физико-механических свойствах грунтов, составе подземных вод, техногенных воздействиях и последствиях хозяйственного освоения территории, сведения о деформации зданий и сооружений и результаты обследования грунтов их оснований, опыте строительства других сооружений в районе изысканий, а также сведения о чрезвычайных ситуациях, имевших место в данном районе.
На основании собранных материалов устанавливается категория сложности инженерно-геологических условий, в соответствии с чем в программе изысканий по объекту строительства устанавливаются состав, объемы, методика и технология изыскательских работ.
Дешифрирование аэро- и космоматериалов и аэровизуальные наблюдения. Эти работы следует предусматривать при изучении и оценке инженерно-геологических условий значительных по площади территорий.
Дешифрирование аэро- и космоматериалов и аэровизуальные наблюдения, выполняются для:
уточнения границ распространения генетических типов четвертичных отложений; уточнения и выявления тектонических нарушений и зон повышенной трещиноватости пород; установления распространения подземных вод, областей их питания, транзита и разгрузки; выявления районов развития геологических и инженерно-геологических процессов; установления видов и границ ландшафтов; уточнения границ геоморфологических элементов; наблюдения за динамикой изменения инженерно-геологических условий; установления последствий техногенных воздействий, характера хозяйственного освоения территории, преобразования рельефа, почв, растительного покрова и др.
При дешифрировании используются различные виды аэро- и космических съемок: фотографическая, телевизионная, сканерная, инфракрасная, радиолокационная, многозональная.
Рекогносцировочное обследование территории. В задачу рекогносцировочного обследования территории входит: осмотр места изыскательских работ; визуальная оценка рельефа; описание имеющихся обнажений, в том числе карьеров, строительных выработок и др.; описание водопроявлений; описание геоботанических индикаторов гидрогеологических и экологических условий; описание внешних проявлений геодинамических процессов; опрос местного населения о проявлении опасных геологических и инженерно-геологических процессов, об имевших место чрезвычайных ситуациях и др.
При маршрутных наблюдениях следует производить отбор образцов грунтов и проб воды для лабораторных исследований, осуществлять сбор опросных сведений и предварительное планирование мест размещения ключевых участков для комплексных исследований, а также уточнять результаты предварительного дешифрирования аэро- и космоматериалов.
При маршрутных наблюдениях на застроенной территории следует дополнительно выявлять дефекты планировки территории, развитие заболоченности, подтопления, просадок поверхности земли, степень полива газонов и древесных насаждений и другие факторы, обусловливающие изменение геологической среды или являющиеся их следствием.
По результатам маршрутных наблюдений следует намечать места размещения ключевых участков для проведения более детальных исследований, составления опорных геолого-гидрогеологических разрезов, определения характеристик состава, состояния и свойств грунтов с выполнением комплекса горнопроходческих работ, геофизических, полевых и лабораторных исследований, а также стационарных наблюдений.
Полевые исследования грунтов. Для качественного проектирования оснований зданий и сооружений необходимо получение достоверной информации по результатам инженерно-геологических изысканий. Надежность проектных решений зависит как от методов расчета, так и от качества инженерных изысканий на будущей площадке строительства.
Качество инженерно-геологических изысканий зависит от многих факторов, таких как технология бурения и отбора монолитов, под готовки образцов, методов лабораторных и полевых испытаний, требования нормативных документов.
В практике инженерно-геологических изысканий большинство показателей грунта определяют как полевыми, так и лабораторными исследованиями.
Полевые методы изучают свойства пород при естественных условиях залегания, требуют относительно сложного оборудования и значительных объемов подготовительных работ.
Лабораторные методы, наряду с возможностью изучения свойств грунтов естественного сложения, то есть из монолитного образца, позволяют при проведении исследований создать условия, в которых грунт будет находиться как в процессе строительства, так и в процессе эксплуатации сооружений.
Наиболее точное определение прочностных и деформативных характеристик влияет на дальнейший расчет несущей способности оснований и выбор типа фундамента, поэтому лабораторные и полевые методы применяют в комплексе.
В состав полевых инженерно-геологических работ входят:
- • отбор монолитов и проб грунтов и воды для лабораторных исследований;
- • испытания вертикальными статическими нагрузками на штамп;
- • испытание прессиометром;
- • испытание на сдвиг и на срез;
- • статическое и динамическое зондирование.
Лабораторные исследования грунтов
Лабораторные исследования грунтов следует выполнять с целью определения их состава, состояния, физических, механических, химических свойств для выделения классов, групп, подгрупп, типов, видов и разновидностей в соответствии с ГОСТ 25100-2011, определения их нормативных и расчетных характеристик, выявления степени однородности грунтов по площади и глубине, выделения инженерногеологических элементов, прогноза изменения состояния и свойств грунтов в процессе строительства и эксплуатации объектов.
В зависимости от свойств грунтов, характера их пространственной изменчивости, а также целевого назначения инженерногеологических работ в программе изысканий рекомендуется устанавливать систему опробования путем соответствующего расчета.
Выбор вида и состава лабораторных определений характеристик грунтов следует производить в соответствии с учетом вида грунта, этапа изысканий, характера проектируемых зданий и сооружений, условий работы грунта при взаимодействии с ними, а также прогнозируемых изменений инженерно-геологических условий территории (площадки, трассы) в результате её освоения.
Лабораторные исследования по определению химического состава подземных и поверхностных вод, а также водных вытяжек из глинистых грунтов необходимо выполнять в целях определения их агрессивности к бетону и стальным конструкциям, коррозионной активности к свинцовой и алюминиевой оболочкам кабелей, оценки влияния подземных вод на развитие геологических и инженерногеологических процессов (карст, химическая суффозия и др.) и выявления ореола загрязнения подземных вод и источников загрязнения.
Для оценки химического состава воды рекомендуется проводить стандартный анализ. Выполнение полного или специального химического анализа воды следует предусматривать при необходимости получения более полной гидрохимической характеристики водоносного горизонта, водотока или водоёма, оценки характера и степени загрязнения воды, что должно быть обосновано в программе изысканий.
Гидрогеологические исследования. Гидрогеологические исследования при инженерно-геологических изысканиях необходимо выполнять в тех случаях, когда в сфере взаимодействия проектируемого объекта с геологической средой распространены или могут формироваться подземные воды, возможно загрязнение или истощение водоносных горизонтов при эксплуатации объекта, прогнозируется процесс подтопления или подземные воды оказывают существенное влияние на изменение свойств грунтов, а также на интенсивность развития геологических и инженерно-геологических процессов (карст, суффозия, оползни, пучение и др.).
Опытно-фильтрационные работы должны выполняться с целью получения гидрогеологических параметров и характеристик для расчета дренажей, водопонизительных систем, противофильтрациониых завес, водопритока в строительные котлованы, коллекторы, тоннели, фильтрационных утечек из водохранилищ и накопителей, а также для составления прогноза изменения гидрогеологических условий.
При проектировании особо сложных объектов при необходимости, обосновываемой в программе изысканий, следует выполнять моделирование, специальные гидрогеологические работы и исследования с привлечением научных и специализированных организаций, в том числе: опытно-эксплуатационные откачки для установления закономерностей изменения уровня и химического состава подземных вод в сложных гидрогеологических условиях;
опытно-производственные водопонижения для обоснования разработки проекта водопонижения;
сооружение и испытания опытного участка дренажа;
изучение процессов соле- и влагопереноса в зоне аэрации, сезонного промерзания и пучения грунтов;
изучение водного и солевого баланса подземных вод и др.
- • экспресс-откачки из скважин;
- • кустовые и одиночные откачки из скважин;
- • наливы, нагнетания в скважины, наливы в шурфы;
- • полевые геофизические и индикаторные методы.
Проходка инженерно-геологических выработок. Проходка горных выработок осуществляется с целью установления или уточнения геологического разреза, условий залегания грунтов и подземных вод; определения глубины залегания уровня подземных вод; отбора образцов грунтов для определения их состава, состояния и свойств, а также проб подземных вод для их химического анализа; проведения полевых исследований свойств грунтов, определения гидрогеологических параметров водоносных горизонтов и зоны аэрации и производства геофизических исследований; выполнения стационарных наблюдений; выявления и оконтуривания зон проявления геологических и инженерно-геологических процессов.
Бурение скважин вручную применяется в труднодоступных местах и стесненных условиях (в подвалах, внутри здании, в горах, на крутых склонах, на болотах, со льда водоемов и т.п.) при соответствующем обосновании в программе изыскании.
Выбор вида горных выработок способа и разновидности бурения скважин следует производить исходя из целей и назначения выработок с учетом условий залегания, вида, состава и состояния грунтов, крепости пород, наличия подземных вод и намечаемой глубины изучения геологической среды.
Намечаемые в программе изысканий способы бурения скважин должны обеспечивать высокую эффективность бурения, необходимую точность установления границ между слоями грунтов (отклонение не более 0,25-0,50 м), возможность изучения состава, состояния и свойств грунтов, их текстурных особенностей и трещиноватости скальных пород в природных условиях залегания.
Применение шнекового бурения следует обосновывать в программе изысканий из-за возможных ошибок при описании разреза и невысокой точности фиксации контакта между слоями грунтов (0,50 -0,75 м и более).
Шахты и штольни рекомендуется проходить при изысканиях для проектирования особо ответственных и уникальных зданий и сооружений, а также объектов народного хозяйства, размещаемых в подземных горных выработках при обосновании в программе работ. В шахтах и штольнях следует изучать условия залегания и обводненность пород, их температурные особенности, степень сохранности, характер геологических структур и разрывных нарушений, а также проводить отбор проб, выполнять исследования свойств пород и другие специальные работы.
Все горные выработки после окончания работ должны быть ликвидированы: шурфы — обратной засыпкой грунтов с трамбованием, скважины — тампонажем глиной или цементно-песчаным раствором с целью исключения загрязнения природной среды и активизации геологических и инженерно-геологических процессов.
Геофизические исследования. Геофизические исследования при инженерно-геологических изысканиях выполняются на всех стадиях (этапах) изысканий, как правило, в сочетании с другими видами инженерно-геологических работ с целью:
- • определения состава и мощности рыхлых четвертичных отложений;
- • выявления литологического строения массива горных пород, тектонических нарушений и зон повышенной трещиноватости и обводненности;
- • определения глубины залегания уровней подземных вод, водоупоров и направления движения потоков подземных вод, гидрогеологических параметров грунтов и водоносных горизонтов;
- • определения состава, состояния и свойств грунтов в массиве и их изменений; выявления и изучения геологических и инженерногеологических процессов и их изменений;
- • проведения мониторинга опасных геологических и инженерно-геологических процессов;
- • сейсмического микрорайонирования территории.
Для обеспечения достоверности и точности интерпретации результатов геофизических исследований проводятся параметрические измерения на опорных участках, на которых осуществляется изучение геологической среды с использованием комплекса других видов работ (бурения скважин, проходки шурфов, зондирования, с определением характеристик грунтов в полевых и лабораторных условиях).
Стационарные наблюдения. Стационарные наблюдения необходимо выполнять для изучения: динамики развития опасных геологических процессов (карст, оползни, обвалы, солифлюкция, сели, каменные глетчеры, геодинамические и криогенные процессы, переработка берегов рек, озер, морей и водохранилищ, выветривание пород и др.); развития подтопления, деформации подработанных территорий, осадок и просадок территории, в том числе вследствие сейсмической активности; изменений состояния и свойств грунтов, уровенного, температурного и гидрохимического режима подземных вод, глубин сезонного промерзания и протаивания грунтов; осадки, набухания и других изменений состояния грунтов основания фундаментов зданий и сооружений, состояния сооружений инженерной защиты и др.
Стационарные наблюдения следует производить, как правило, в сложных инженерно-геологических условиях для ответственных сооружений, начиная их при изысканиях для предпроектной документации или проекта и продолжая при последующих изысканиях, а при необходимости — в процессе строительства и эксплуатации объектов .
Стационарные наблюдения следует проводить на характерных специально оборудованных пунктах наблюдательной сети, часть из которых рекомендуется использовать для наблюдений после завершения строительства объекта.
В качестве наиболее эффективных средств проведения стационарных наблюдений следует использовать режимные геофизические исследования — измерения, осуществляемые периодически в одних и тех же точках или по одним и тем же профилям, измерения с закрепленными датчиками и приемниками, а также режимные наблюдения на специально оборудованных гидрогеологических скважинах.
Состав наблюдений, объемы работ, методы проведения стационарных наблюдений (визуальные и инструментальные), точность измерений следует обосновывать в программе изысканий в зависимости от природных и техногенных условий, размера исследуемой территории, уровней ответственности зданий и сооружений и этапа (стадии) проектирования.
Продолжительность наблюдений должна быть не менее одного гидрологического года или сезона проявления процесса, а частота наблюдений должна обеспечивать регистрацию экстремальных (максимальных и минимальных) значений изменения компонентов геологической среды за период наблюдений.
Стационарные наблюдения за изменениями отдельных компонентов геологической среды, связанные с необходимостью получения точных количественных характеристик геодезическими методами или обусловленные проявлением гидрометеорологических факторов, следует осуществлять в соответствии с положениями соответствующих сводов правил по проведению инженерно-геодезических и инженерногидрометеорологических изысканий.
Обследование грунтов оснований фундаментов существующих зданий и сооружений. Обследование следует проводить при их расширении, реконструкции и техническом перевооружении, строительстве новых сооружений вблизи существующих (в пределах зоны влияния), а также в случае деформаций и аварий зданий и сооружений.
При обследовании необходимо определять изменения инженерно-геологических условий за период строительства и эксплуатации предприятий, зданий и сооружений, включая изменения рельефа, геологического строения, гидрогеологических условий, состава, состояния и свойств грунтов, активности инженерно-геологических процессов, с целью получения данных для решения следующих задач:
- • возможности надстройки, реконструкции зданий и сооружений с увеличением временных и постоянных нагрузок на фундаменты; установления причин деформаций и разработки мер для предотвращения их дальнейшего развития, а также восстановления условий нормальной эксплуатации зданий и сооружений; определения состояния грунтов основания, возможности и условий достройки зданий и сооружений после длительной консервации их строительства; определения состояния мест примыкания зданий-пристроек к существующим и разработки мер по обеспечению их устойчивости;
- • выяснения причин затапливания и подтапливания подвалов и других подземных сооружений.
Прогноз — качественный и количественный. В целях выявления возможных изменений во времени и в пространстве инженерногеологических условий исследуемой территории выполняется качественный и количественный прогноз состава, состояния и свойств грунтов, рельефа, режима подземных вод, геологических и инженерногеологических процессов. Прогноз необходимо приводить в техническом отчете о результатах инженерно-геологических изысканий наряду с оценкой современного состояния этих условий.
Камеральная обработка полученных материалов включает изучение:
- • инженерно-геологических условий;
- • физико-географических и техногенных условий;
- • геологического строение;
- • гидрогеологических условий;
- • свойств грунтов;
- • геологические и инженерно-геологические процессы и особенности инженерно-геологических условий площадки.
Камеральную обработку полученных материалов необходимо осуществлять в процессе производства полевых работ и после их завершения и выполнения лабораторных исследований (окончательную камеральную обработку и составление технического отчета или заключения о результатах инженерно-геологических изысканий).
В процессе текущей обработки материалов изысканий осуществляется систематизация записей маршрутных наблюдений, просмотр и проверка описаний горных выработок, разрезов естественных и искусственных обнажении, составление графиков обработки полевых исследований грунтов, каталогов и ведомостей горных выработок, образцов грунтов и проб воды для лабораторных исследований, увязка между собой результатов отдельных видов инженерно-геологических работ, составление описаний горных выработок, предварительных инженерно-геологических разрезов, карты фактического материала, предварительных инженерно-геологических и гидрогеологических карт и пояснительных записок к ним.
При окончательной камеральной обработке производится уточнение и доработка представленных предварительных материалов, оформление текстовых и графических приложений и составление текста технического отчета о результатах инженерно-геологических изысканий, содержащего все необходимые сведения и данные об изучении, оценке и прогнозе возможных изменений инженерногеологических условий, а также рекомендации по проектированию и проведению строительных работ.
Источник: bstudy.net
Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой — мы готовы помочь.
1. Инженерно-геологические изыскания…………………………………..4
2. Договор (контракт), техническое задание и программа инженерно-геологических изысканий…………………………………………………4
3. Основные стадии и нженерно-геологически х изыскани й………………5
4. Инженерно-геологические изыскания для строительства зданий и сооружений………………………………………………………………….8
5. Инженерно-геологические изыскания для градостроительных работ. 10
Введение
Особенностями современного проведения инженерно-геологических изысканий для строительства и реконструкции зданий и сооружений на городских территориях являются: резкое ускорение темпов ведения всех видов строительных работ; нередкое ограничение финансирования изыскательских работ; стеснённые условия проведения инженерно-геологических изысканий на территории города.
По этим причинам в большинстве случаев не выполняются в полном объёме требования соответствующих нормативных документов. Нередко изыскатели и проектировщики используют «табличные» значения характерных грунтов, установленные как среднее для территории крупного региона, в большинстве случаев без дифференциаций по генетико-стратиграфическим признакам. Не учитывается техногенная изменённость состава, строения и свойств массива грунтов основания строительных объектов.
Ведение инженерно-геологических изысканий регламентируется основным нормативным документом в строительстве «Строительными нормами и правилами» СНиП 11-02 – 96 «Инженерные изыскания для строительства». Данный документ определяет порядок, состав, объём и виды выполняемых работ изысканий для различных этапов проектирования, строительства и эксплуатации объектов и различных геологических обстановках, а так же состав документации по результатам изысканий, порядок их предоставления и приёмки, а так же ответственность исполнителей и заказчиков (проектировщиков).
1 Инженерно-геологические изыскания
Инженерно-геологические изыскания — производственный процесс получения, накопления и обработки инженерно-геологической информации для обеспечения строительного проектирования исходными данными об инженерно-геологических условиях района (площадки, участка, трассы).
Под инженерно-геологическими условиями понимается совокупность компонентов геологической среды, которые могут оказать влияние на проектируемые здания и сооружения (рельеф и геоморфология, геологическое строение, подземные воды, состав, состояние и свойства грунтов, опасные геологические процессы).
Одной из важнейших задач инженерно-геологических изысканий является прогнозирование возможных изменений в сфере взаимодействия проектируемого сооружения с геологической средой.
2 Договор (контракт), техническое задание и программа инженерно-геологических изысканий
Содержание этих важнейших проектно-изыскательских документов регламентируется СНиП 11-02-96.
Основанием для производства инженерно-геологических изысканий является договор (контракт) между Заказчиком (финансирующей, проектной или строительной организацией) и Исполнителем инженерно-геологических изысканий. Обязательными приложениями к договору должны быть техническое задание, календарный план работ и смета, а при наличии требования Заказчика и программа инженерно-геологических изысканий.
Техническое задание на выполнение инженерно-геологических изысканий составляется Заказчиком и передается в изыскательскую организацию.
В техническом задании указываются местоположение площадки (или трассы) предполагаемого строительства, вид проектируемого сооружения, стадийность (этап) проектирования, конструктивные особенности проектируемых зданий и сооружений, намечаемый тип фундаментов (свайный, плита, ленточный), этажность, наличие мокрых технологических процессов, подвальных помещений, допускаемые величины деформаций, предполагаемая нагрузка на грунты основания и другие сведения.
Для трасс коммуникаций указывается предполагаемая глубина их заложения, протяженность, диаметр и материал трубопроводов и др.
При небольшом объеме намечаемых инженерно-геологических работ (несложные объекты II и III уровня ответственности, простые инженерно-геологические условия, высокая степень геологической изученности) допускается взамен программы составление технического предписания на производство изысканий.
Материалы инженерно-геологических изысканий, передаваемые Заказчику в виде технического отчета, подлежат обязательной государственной экспертизе.
3 Основные стадии инженерно-геологических изысканий
Инженерно-геологические изыскания для строительства выполняются последовательно на различных стадиях (этапах)
Различают следующие основные стадии работ: предпроектную (она включает прединвестиционную документацию, градостроительную документацию и обоснование инвестиций в строительство) и проектную (в состав которых входят проект и рабочая документация для строительства предприятий, зданий и сооружений).
Предпроектная документация разрабатывается с целью обоснования целесообразности строительства объекта, выбора строительных площадок и направления магистральных транспортных и инженерных коммуникаций, основ генеральных схем инженерной защиты от опасных геологических процессов и др.
Основной объем инженерно-геологических изысканий выполняют на этапе обоснования инвестиций в строительство. В состав работ входит: проведение инженерно-геологической съемки на территории проектируемых строительных объектов и трасс линейных сооружений. Проводятся буровые и горнопроходческие работы, полевые методы исследования грунтов, лабораторные исследования, стационарные наблюдения и другие виды работ.
Инженерно-геологические изыскания для разработки проекта должны обеспечивать комплексное изучение инженерно-геологических условий уже выбранной площадки (участка, трассы) и прогноз их изменений при строительстве и эксплуатации объекта.
Инженерно-геологические изыскания для разработки рабочей документации проводятся на окончательно выбранной стройплощадке для отдельных зданий и сооружений с целью детализации и уточнения инженерно-геологических условий. Проходят скважины и шурфы (чаще всего по контурам и осям проектируемых зданий и сооружений), определяют расчетные показатели физико-механических свойств грунтов, выполняют полевые исследования грунтов, опытно-фильтрационные работы и геофизические исследования. Продолжают начатые на предшествующих этапах изысканий стационарные наблюдения за развитием опасных геологических процессов, режимом подземных вод и т. д.
Для технически несложных объектов, а также при строительстве по типовым проектам инженерно-геологические изыскания выполняют для одной стадии: «рабочего проекта», при которой рабочая документация разрабатывается одновременно с проектом.
Инженерно-геологические изыскания в период строительства выполняют лишь в особых случаях: 1) при строительстве ответственных зданий и сооружений, особенно в сложных инженерно-геологических условиях; 2) в условиях стесненной городской застройки; 3) при длительных перерывах во времени между окончанием изысканий и началом строительства объектов и т. д.
Инженерно-геологические изыскания в период строительства включают: 1) уточнение геологических и гидрогеологических условий в период вскрытия котлованов, тоннелей, прорезей и других выемок, выявление расхождений натурных условий с проектными данными, внесение при необходимости соответствующих корректив и проведение дополнительных изыскательских работ; 2) контроль за ведением строительного водопонижения, инженерной подготовкой оснований зданий и сооружений, производством работ по закреплению грунтов.
В период эксплуатации объектов в необходимых случаях в соответствии с заданием Заказчика проводят обследования грунтов оснований фундаментов существующих зданий и сооружений, а также при их расширении, строительстве новых близко примыкающих зданий и в других случаях.
При необходимости в период эксплуатации объектов осуществляют стационарные наблюдения (локальный мониторинг) за развитием опасных геологических процессов, деформациями зданий и сооружений и другими неблагоприятными факторами.
Инженерно-геологические изыскания для реконструкции зданий и сооружений проводятся, как правило, в условиях плотной застройки и поэтому должны осуществляться с учетом конкретной природно-технической ситуации. По своему составу, объемам и применяемым методам изыскания для реконструкции значительно отличаются от изысканий под новое строительство. В частности, обязательным видом работ является натурное обследование окружающей территории и реконструируемого здания. В ходе обследования устанавливают геотехническую категорию объекта, необходимые объемы работ по изысканиям, принципиальные варианты реконструкции и усиления и др.
Небольшой объем инженерно-геологических изысканий выполняется в период ликвидации зданий и сооружений . Цель этих работ – обоснование проектных решений по санации (оздоровлению) и рекультивации нарушенной территории, оценка опасности и риска от ликвидации объекта.
4 Инженерно-геологические изыскания для строительства зданий и сооружений
Инженерно-геологические изыскания являются начальным этапом строительства любого объекта и находятся в полной зависимости от вида объекта (промышленное предприятие, жилой дом, автомобильная дорога и т. д.). Поэтому изыскания под каждый вид объекта имеют свою специфику, свои особенности, но все изыскания имеют нечто общее, некоторый стандарт.
Результаты инженерно-геологических исследований в виде отчёта поступают в строительную проектную организацию. Отчёты должны иметь для инженера-проектировщика материалы по семи основным позициям результатов инженерно-геологических изысканий:
— оценка пригодности площадки для строительства данного объекта;
— геологический материал, позволяющий решать все вопросы по основаниям и фундаментам;
— оценка грунтового основания на восприимчивость возможных динамических воздействий от объекта;
— наличие геологических процессов и их влияние на устойчивость будущего объекта;
— полную характеристику по подземным водам;
— все сведения по грунтам, как для выбора несущего основания, так и для производства земляных работ;
— по влиянию будущего объекта на природную среду.
Проектирование крупных объектов осуществляется по стадиям: технико-экономическое обоснование (ТЭО), технический проект и рабочие чертежи. Название стадий инженерно-геологических изысканий соответствует стадия проектных работ, за исключением стадии ТЭО, где геологические работы получили название рекогносцировочных инженерно-геологических изысканий. Следует отметить, что в практике строительства последовательность стадий проектирования не всегда соблюдается. Проектирование крупных объектов может быть проведено в две стадии, проектирование жилого дома в одну стадию. В соответствии с этими стадиями проводятся инженерно-геологические изыскания.
На ранних стадиях проектирования инженерно-геологические изыскания охватывают обширные площади, применяются не очень точные, но сравнительно простые и экономичные технические средства. По мере перехода к более поздним стадиям площади изысканий сужаются и применяются более сложные и точные методы геологических работ.
На выделенной под строительство площадке на каждом отдельном этапе инженерно-геологические изыскания выполняют в определённой последовательности:
— собирают общие сведения по территории из литературных публикаций и архивных материалов изыскательских организаций; сведения о климате, рельефе, населении, речной сети и т. д.;
— производят осмотр строительной площадки инженеры-проектировщики совместно с инженером-геологом; определяют степень её застройки, осматривают ранее построенные здания, дорожную сеть, рельеф, растительность и т. д.; в целом определяют пригодность участка под застройку и вырабатывают техническое задание на изыскания;
— выполняют инженерно-геологические изыскания; в полевых условиях изучают геологическое строение площадки, гидрогеологию, геологические процессы, при необходимости на грунтах ставят опытные работы; отобранные пробы грунтов и подземных вод изучают в лабораториях;
— по окончанию полевых и лабораторных работ в камеральный период составляют инженерно-геологический отчёт, который защищают в проектной организации, после чего он становиться документом и используется для проектирования объекта.
5 Инженерно-геологические изыскания для градостроительных работ
Проектирование городского и поселкового строительства осуществляется стадийно. В настоящее время оно складывается из проектов: планировки и планы размещения первоочередного строительства; детальной планировки и проекта застройки.
Соответственно этому инженерно-геологические исследования проводят так же по стадиям, применительно к каждому виду проектирования.
Исследования для проекта планировки и плана размещения первоочередного строительства. Инженерно-геологические исследования для проекта планировки городов (посёлков) должны дать оценку значительной территории с точки зрения возможности использования её для строительства. Геологические работы проводят в сочетании с другими исследованиями и проектными проработками; экономическими, климатическими, гидрогеологическими, экологическими, санитарно-гигиеническими и т. д.
По изучаемой территории должны быть получены сведения о рельефе, гидрологии, климате, почвах, растительности, геологическом строении, гидрогеологии, природных геологических явлениях и инженерно-геологических процессах (оползнях, карсте, просадках, сейсмике и т. д.), составе и свойствах грунтов.
Инженерно-геологические изыскания проводят в три периода: подготовительный, полевой и камеральный. Инженерно-геологический отчёт служит основанием для составления проекта планировки и плана размещения первоочередного городского и поселкового строительства.
Исследования для проекта детальной планировки. Проект детальной планировки существующего города (посёлка) включает в себя архитектурно-планировочную и техническую организацию районов застройки первой очереди, устанавливает последовательность застройки, решает вопросы благоустройства, содержит проекты детальной планировки и застройки отдельных городских районов.
На этой стадии проводят более детальное изучение геологии местности и свойств грунтов. Для этого закладывают дополнительные буровые скважины по створам вдоль новых или реконструируемых улиц в местах специальных сооружений. Глубина скважины под сооружением в большинстве случаев достигает 8-10 м. при наличии слабых пород закладываются шурфы с отбором 2-3 образцов для проведения полного комплекса лабораторных исследований.
Исследования для проекта застройки. Проект застройки в пределах существующего города предусматривает строительство отдельных жилых домов (микрорайонов), кварталов, улиц и площадей. Проектирование проводят в 2 стадии – проектного задания и рабочих чертежей. Перед каждой стадией выполняют инженерно-геологические работы.
Изыскания для проектного задания освещают геологические и гидрогеологические условия всей изучаемой площадки, характеризуют инженерно-геологические свойства грунтов. В случае если для данной площадки ранее проводились изыскания для проекта планировки и проекта детальной планировки, то этих материалов в полнее достаточно, чтобы не проводить новых исследований на стадии проектного задания застройки. При отсутствии каких либо инженерно-геологических исследований изыскания проводят в составе и объёме, как это было показано выше для проекта планировки и проекта детальной планировки.
На стадии рабочих чертежей инженерно-геологические материалы могут быть оформлены в одном отчёте. При составлении рабочих чертежей возможны случаи назначения дополнительных исследований. Это связано главным образом, с изменениями в размещении зданий или проверкой имеющихся геологических материалов.
Заключение
Главная цель инженерной геологии – изучение природной геологической обстановки местности до начала строительства, а также прогноз тех изменений, которые произойдут в геологической среде, и в первую очередь в породах, в процессе строительства и при эксплуатации сооружений. В современных условиях ни одно здание или сооружение не может быть спроектировано, построено и надежно эксплуатироваться (а впоследствии может быть ликвидировано или реконструировано) без достоверных и полных инженерно-геологических материалов.
Все это определяет основные задачи, которые стоят перед инженерами-геологами в процессе изыскательских работ еще до начала проектирования объекта (при принятии решения о строительстве, об инвестировании проекта и т.п.), а именно:
-выбор оптимального (благоприятного) в геологическом отношении (площадки, района) строительства данного объекта;
-выявление инженерно-геологических условий в целях определения наиболее рациональных конструкций фундаментов и объекта в целом, а также технологии производства строительных работ;
-выработка рекомендаций по необходимым мероприятиям и сооружениям инженерной защиты территорий и охране геологической среды при строительстве и эксплуатации сооружений.
Для выполнения этих задач существует необходимость нового метода проведения изысканий, сроки проведения которого должны сократиться, качество проведения улучшиться, т.к. инженерно-геологические изыскания оказывают влияние на качество строительства объекта.
Список литературы
1. Ананьев В. П. Инженерная геология : учебник для вузов / В. П. Ананьев, А. Д. Потапов; 2-е изд. – М.: Высшая школа, 2002. – 546с.
2. СНиП 11-02-96. Инженерные изыскания для строительства. Основные положения: взамен СНиП 1.02.07-87: введ. в действ. 1996-11-01. – М.: Госстрой России, 1996.-50с.
3. СП 11-105-97. Свод правил по инженерным изысканиям для строительства. Часть 1. Общие правила производства работ. Инженерно-геологические изыскания для строительства : введ. впервые 1998-03-01. – М.: Госстрой России, 1998.
4. СНиП 10-01-94. Система нормативных документов в строительстве. Основные положения: взамен СНиП 1. 01. 01-82*, СНиП 1. 01. 02-83*, СНиП 1. 01. 03-83*: введ. в действ.
1995-01-01. – М.: Госстрой России, 1995.
Источник: bukvasha.com