Нормы по строительству электрических сетей

Содержание

В данной статье речь пойдет о допустимых нормах отклонения напряжения на зажимах электроприемников, согласно ГОСТов, НТП, РД, СП и различных справочников по электроснабжению.

В настоящее время допустимые отклонения напряжения регламентируются следующими нормативными документами:

  • ГОСТ 32144 — 2013 (взамен ГОСТ Р 54149—2010) соответствует европейскому стандарту EN 50160:2010 и принят в таких странах как: Армения, Беларусь, Кыргызстан, Российская Федерация, Таджикистан и Узбекистан.
  • ДСТУ ЕN 50160:2014 (взамен ГОСТ 13109-87) он разработан на основании европейского стандарта EN 50160:2010 и принят в Украине.
  • НТП 99 (взамен СН 357-77) – Нормы технологического проектирования. Проектирование силовых электроустановок промышленных предприятий.
  • РД 34.20.185-94 — Инструкция по проектированию городских электрических сетей.
  • СП 31-110-2003 — Проектирование и монтаж электроустановок жилых и общественных зданий.

Согласно ГОСТ 32144 — 2013 пункт 4.2.2 предельно допустимое значение установившегося отклонения на зажимах электроприемников должно быть в пределах ± 10 % от номинала сети.

охранная зона(ЗОУИТ) линий электропередач

ГОСТ 32144 — 2013 пункт 4.2.2

Соответственно номинальное напряжение будет находится в пределах:

  • для сети 220 В – от 198 до 242 В;
  • для сети 380 В – от 342 до 418 В;

Диапазон допустимых отклонений напряжения в сети 220 В

Обращаю Ваше внимание, что для нормальной работы электроприемников нормально допустимым показателем отклонения напряжения является ±5%. В ГОСТ 32144 — 2013 об этом ничего не сказано, в отличие от ГОСТ 13109-87 (заменен) таблица 1.

ГОСТ 13109-87 (заменен) таблица 1

Также в действующих нормативных документах приведены следующие формулировки:

РД 34.20.185-94 пункт 5.2.2:

РД 34.20.185-94 пункт 5.2.2

СП 31-110-2003 пункт 7.23:

СП 31-110-2003 пункт 7.23

В справочнике по проектированию электрических сетей и электрооборудования. Ю.Г.Барыбина. 1991г в таблице 2.58, страница 170, приведены допустимые отклонения напряжения на зажимах электроприемников. Данная таблица в полном объеме соответствует таблице, приведенной в нормативном документе СН 357-77 – заменен.

Таблица 2.58 - Допустимые отклонения напряжения на зажимах электроприемников

Сравнение ДСТУ ЕN 50160:2014 и ГОСТ 13109-87

На основе проведенного анализа данных нормативных документов предложены сравнительные таблицы со сроками и нормами основных нормативных документов по качеству электрической энергии, которые могут быть полезными для практического использования этих документов. Выявленные недостатки новых нормативных документов, которые необходимо устранить в их следующих переизданиях.

Проектирование Электрических сетей в AutoCAD (пошаговый алгоритм)

Таблица 1 - Сравнение ДСТУ ЕN 50160:2014 и ГОСТ 13109-87

Таблица 2 - Сравнение ДСТУ ЕN 50160:2014 и ГОСТ 13109-87

Более подробно о сравнении ДСТУ ЕN 50160:2014 и ГОСТ 13109-87, можно ознакомится в таких материалах как:

  • УДК 621.314 – Порівняльний аналіз основних нормативних документів щодо якості електричної енергії. Трунова І. М., к.т.н., Лебедєва Я. А, д.т.н. В данной статье предлагаются таблицы с терминами и нормами основных нормативных документов по качеству электрической энергии. Выявлены недостатки новых нормативных документов, которые необходимо устранить в их последующем переиздании.
  • УДК 621.312 – Деякі питання щодо застосування ДСТУ ЕN 50160:2014. Трунова І. М., к.т.н., Лебедєва Я. А, д.т.н. В данной статье исследуются противоречия действующих стандартов характеристик напряжения и предлагаются рекомендации по применению ДСТУ EN 50160:2014 в условиях действующего ГОСТ 13109-97.

Все нормативные документы (ГОСТ, НТП, РД, СП, инструкции по проектированию), справочники по электроснабжению и научные статье, которые приводились в данной статье, вы сможете найти в архиве.

Источник: raschet.info

СНиП 31-02. Электроснабжение жилых домов.

ПРОЕКТИРОВАНИЕ И СТРОИТЕЛЬСТВО ИНЖЕНЕРНЫХ СИСТЕМ ОДНОКВАРТИРНЫХ ЖИЛЫХ
ДОМОВ.

СНиП 31-02 предъявляет требования к системе электроснабжения дома в части соответствия ее «Правилам устройства электроустановок» (ПУЭ) и государственным стандартам на электроустановки, а также к оборудованию электроустановок устройствами защитного отключения (УЗО), к устройству и размещению электропроводок и к наличию устройств по учету расхода электроэнергии.
10.1 Электропроводки, включая разводку сети, должны выполняться в соответствии с требованиями ПУЭ и настоящего Свода правил.
10.2 Электроснабжение жилого дома должно осуществляться от сетей напряжением 380/220 В с системой заземления Т1М-С-5. Внутренние цепи должны быть выполнены с раздельными нулевым защитным и нулевым рабочим (нейтральным) проводниками.
10.3 Расчетная нагрузка определяется заказчиком и не имеет ограничений, если они не установлены местными административными органами.
10.4 При ограничении возможностей энергоснабжения расчетную нагрузку электроприемников следует принимать не менее:
— 5,5 кВт — для дома без электрических плит;
— 8,8 кВт — для дома с электрическими плитами.
При этом, если общая площадь дома превышает 60 ка.м., расчетная нагрузка должна быть увеличена на 1 % на каждый дополнительный кв.м. При разрешении энергоснабжающей организации допускается использовать электроэнергию напряжением более 0,4 кВ.
10.5 В помещениях могут применяться следующие виды электропроводок:
— открытые электропроводки, прокладываемые в электротехнических плинтусах, коробах, на лотках и по строительным конструкциям;
— скрытые электропроводки, выполняемые в стенах и перекрытиях на любой высоте, в том числе в пустотах строительных конструкций из негорючих или горючих материалов групп Г1, Г2 и ГЗ.
Электропроводки в помещениях жилых домов выполняются проводами и кабелями с медными жилами. Кабели и провода в защитных оболочках допускается пропускать через конструкции зданий, выполненные из негорючих или горючих материалов групп П, Г2 и ГЗ, без использования втулок и трубок.
10.6 Места соединений и ответвлений проводов и кабелей не должны испытывать механических усилий. В местах соединений и ответвлений жилы проводов и кабелей должны иметь изоляцию, равноценную изоляции жил целых мест этих проводов и кабелей.
10.7 Провода, прокладываемые скрыто, должны иметь у мест соединения в ответвительных коробках и у мест присоединения к светильникам, выключателям и штепсельным розеткам запас длины не менее 50 мм. Аппараты, устанавливаемые скрыто, должны быть заключены в коробки. Ответвительные коробки при скрытой прокладке проводов должны быть утоплены в строительных элементах зданий заподлицо с окончательно отделанной внешней поверхностью. Соединения проводов при проходе из сухого помещения в сырое или наружу здания должны выполняться в сухом помещении.
10.8 Проход через наружные стены незащищенных изолированных проводов выполняется в трубах из полимерных материалов, которые должны быть оконцованы в сухих помещениях изолирующими втулками, а в сырых и при выходе наружу — воронками.

СОДЕРЖАНИЕ СНиП 31-02

Все материалы, размещенные на сайте https://www.parthenon-house.ru, принадлежат компании ПАРФЕНОН. При цитировании текстов ссылка источник обязательна!

Можно ли для небольшого, узкого участка подобрать проект комфортабельного и уютного загородного дома или коттеджа.

Представляем вам новые проекты современных небольших одноэтажных домов с улучшенными планировками.

Вступил в силу Закон российской Федерации от 3 августа 2018 года № 340-ФЗ «О внесении изменений в Градостроительный кодекс и отдельные законодательные акты России», согласно которому вводится уведомительный порядок возведения некоторых построек. Получать разрешение на строительство малоэтажных строений, в том числе и домов больше не надо.

Если вы еще не определились, какой хотите построить дом, то мы рекомендуем вам как можно больше читать информационных и обзорных материалов о самых популярных строительных технологиях, которые предлагает индустрия частного домостроения.

Опрос о строительстве

Мы оказываем помощь и даем грамотные и профессиональные консультации по подбору готовых проекты домов, коттеджей, бань, гаражей, бассейнов, беседок и других малоэтажных построек. В нашем каталоге также широко представлены проекты коммерческого назначения (мотели, магазины, автомойки). Мы оказываем свои услуги по всей России и странам СНГ.

Проектная документация разработана в соответствии с действующими строительными нормами и правилами, принятыми в Российской Федерации и обеспечивает безопасную для жизни и здоровья людей эксплуатацию объекта при соблюдении предусмотренных рабочими чертежами мероприятий. Мы оказываем содействие не только в подборе готовых проектов домов самых лучших архитекторов России, но также можем помочь вам с индивидуальным проектированием по вашим эскизам. Кроме этих проектных работ, мы можем предложить и рекомендовать вам услуги надежных строительных компаний работающих в Московской области и других регионах России.

Источник: www.parthenon-house.ru

Какая норма напряжения в сети по ГОСТ в РФ: 220 или 230 Вольт?

Основные параметры сети переменного тока — напряжение и частота — различаются в разных регионах мира. В большинстве европейских стран низкое сетевое напряжение в трёхфазных сетях составляет 230/400 В при частоте 50 Гц, а в промышленных сетях — 400/690 В. В Северной, Центральной и частично Южной Америке низкое сетевое напряжение в сетях с раздёлённой фазой составляет 115 В при частоте 60 Гц.

Более высокое сетевое напряжение (от 1000 В до 10 кВ) уменьшает потери при передаче электроэнергии и позволяет использовать электроприборы с большей мощностью, однако, в то же время, увеличивает тяжесть последствий от поражения током неподготовленных пользователей от незащищённых сетей.

Для использования электроприборов, предназначенных для одного сетевого напряжения, в районах, где используется другое, нужны соответствующие преобразователи (например, трансформаторы). Для некоторых электроприборов (главным образом, специализированных, не относящихся к бытовой технике) кроме напряжения играет роль и частота питающей сети.

Современное высокотехнологичное электрооборудование, как правило, содержащее в своём составе импульсные преобразователи напряжения, может иметь переключатели на различные значения сетевого напряжения либо не имеет переключателей, но допускает широкий диапазон входных напряжений: от 100 до 240 В при номинальной частоте от 50 до 60 Гц, что позволяет использовать данные электроприборы без преобразователей практически в любой стране мира.

Параметры сетевого напряжения в России

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц[1] (межфазное напряжение 400 , напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод)

линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.

В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220

, но фактически напряжение в сети почти всегда выше этого значения и достигает 230—240 В, варьируясь от 190 до 250 В.

Номинальные напряжения бытовых сетей (низкого напряжения): Россия (СССР, СНГ)

До 1926 года техническим регулированием электрических сетей общего назначения занимался Электротехнический отдел ИРТО, который только выпускал правила по безопасной эксплуатации. При обследовании сетей РСФСР перед созданием плана ГОЭЛРО было установлено, что на тот момент использовались практически все возможные напряжения электрических токов всех видов. Начиная с 1926 года стандартизация электрических сетей перешла к Комитету по стандартизации при Совете Труда и Обороны (Госстандарт), который выпускал стандарты на используемые номинальные напряжения сетей и аппаратуры. Начиная с 1992 года Межгосударственный совет по стандартизации, метрологии и сертификации выпускает стандарты для электрический сетей стран входящих в ЕЭС/ОЭС.

Переменный ток 50 Гц с разделённой фазой или постоянный ток,
двух-/трёхпроводные линии
Трёхфазный переменный ток, 50 Гц
110/220 В 220/440 В 3×120 В[р 1]
(треугольник)
127/220 В 220/380 В 230/400 В[р 2]
Временные правила ИРТО, 1891[2] широко используется запрещен[р 3] разрешён запрещен[р 3] запрещен[р 3] запрещен[р 3]
Дополнение к временным правилам ИРТО от 1898[3] широко используется разрешён широко используется разрешён разрешён
ГОЭЛРО I очередь (1920)[4] предпочтителен[р 4]
ОСТ 569 (1928)[5] предпочтителен предпочтителен разрешён предпочтителен[р 5]
ОСТ 5155 (1932) разрешён разрешён разрешён[р 6][р 7] разрешён
ГОСТ 721-41[6][7] разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен[р 8]
ГОСТ 5651-51[8][р 9] разрешён разрешён -[р 10] разрешён[р 10] разрешён
ГОСТ 721-62 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 5651-64[9][р 9] разрешён разрешён разрешён
ГОСТ 721-74 разрешён разрешён допускается сохранение существующих установок разрешён предпочтителен
ГОСТ 21128-75[10] разрешён разрешён для ранее разработанного оборудования[р 11] предпочтителен
ГОСТ 23366-78 разрешён разрешён для ранее разработанного оборудования предпочтителен
ГОСТ 21128-83 разрешён разрешён для ранее разработанного оборудования предпочтителен разрешён
ГОСТ 5651-89[р 9] разрешён разрешён
ГОСТ 29322-92 (МЭК 38-83) разрешён до 2003 года предпочтителен
ГОСТ 29322-2014 (IEC 60038:2009) в текст стандарта внесено примечание: «Однако … до сих пор продолжают применять.» предпочтителен
  1. «Акционерное Общество Электрического Освещения 1886 года» использовало этот номинал (напряжение на зажимах трансформатора 133 В), что и было отражено в ОСТ 569. В результате гармонизации с рекомендациями МЭК в шкале стандартных напряжений ГОСТ 721 он был заменён на номинал 3×127 В, но допускалось сохранение существующих установок 3×120 В. Фактически, сети тех крупных городов, которые его использовали, уже переходили на «звезду» с номиналами 127/220 В и 220/380 В.
  2. Номинал трёхфазного переменного тока 230/400 В, начиная c ОСТ 569, 1928 года, являлся предпочтительным для источников тока (генераторов и трансформаторов).
  3. ↑ 1234
    Использование тока высокого напряжения выше ±225 В или выше ∼110 В было запрещено в бытовых сетях, не требующих квалифицированного персонала.
  4. Первоначально, в I очереди плана ГОЭЛРО было намечено строительство сетей 120/210 В, исходя из того, что в сетях некоторых крупных городов использовалось 3×120 В (треугольник), однако, при реализации, строили сети 127/220 В.
  5. 1928-1931 гг. Витебск, Вязьма, Бобруйск, Рыльск, Россошь, Златоуст, Камышин, Камень, Красноярск, Чита, Острогожск, Старобельск, Чугуев, Красноград, Хмельник, Купянск, Проскуров, Червоное … и др. См.: Гейлер Л.Б.
    110 или 220 V в распределительных сетях населённых мест // Электричество. — 1933. — № 9. — С. 39. Впоследствии все крупные новые электросети СССР создавались на 220/380 В.
  6. 1932-40 гг., Ленэнерго, переход старых сетей 3×120 В на 127/220 В. См.: Айзенберг Б.Л., Мануйлов Р.Е.
    Заземление нейтрали городской кабельной сети низкого напряжения // Электричество. — 1940. — № 11. — С. 54.
  7. 1936-47 гг., Мосэнерго, переход избранных районов старых сетей 3×120 В на 127/220 В. См.: Плюснин К.Л.
    Низковольтная замкнутая сетка в Московской кабельной электросети // Электричество. — 1937. — № 22. — С. 7., и
    Куликовский А.А.
    Система городских распределительных сетей низкого напряжения с искусственными нейтральными точками // Электричество. — 1947. — № 9. — С. 45.
  8. В других стандартах, связанных с промышленным применением, например, ГОСТ 185-41, номинал 127/220 В остался недоступен для новых изделий.
  9. ↑ 123
    Стандарты ГОСТ 5651 — «Аппаратура радиоприёмная бытовая», в частности, определяли номиналы напряжения питания радиоприёмников.
  10. ↑ 12
    1950 г., начало перевода низковольтной сети со 127 В на 220/127 В и применения напряжения 380/220 В для электроснабжения новых жилых районов Москвы. См.:
    Зуев Э.Н..
    Московских окон негасимый свет.
  11. 1970-79 гг., Киев, Ленинград и Харьков, в основном, перешли на 280/380 В. Хотя отдельные дома, в которых переход не завершился, встречались и позднее.
Читайте также:  Курсы повышения квалификации инженера ПТО в строительстве

Введение

Настоящий стандарт устанавливает номинальные напряжения для электрических систем, сетей, цепей и оборудования переменного и постоянного тока, которые применяют в странах — членах Международной электротехнической комиссии.

Настоящий стандарт по построению, последовательности изложения требований, нумерации разделов и подразделов полностью соответствует стандарту IEC 60038:2009. По сравнению со стандартом IEC 60038:2009 настоящий стандарт дополнен обновленными ссылками на международные стандарты и определениями терминов.

Наименьшее используемое напряжение в Таблице А.1 Приложения А настоящего стандарта определено для максимального падения напряжения между вводом в электроустановку пользователя и электрооборудованием, которое равно 4%. Такое максимальное падение напряжения в электрических цепях электроустановки было указано в ранее действовавшем стандарте IEC 60364-5-52:2001. В Таблице G.52.1 действующего в настоящее время стандарта для электроустановок, подключаемых к электрическим сетям общего пользования IEC 60364-5-52:2009, установлены иные значения максимального падения напряжения:

  • для электрических светильников — 3%;
  • для других электроприемников — 5%.

Примечания

  1. ГОСТ 32144-2013 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения.
  2. Грищенко А.И., Зиноватный П.С.
    Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 118.
  3. Грищенко А.И., Зиноватный П.С.
    Энергетическое право России. (Правовое регулирование электроэнергетики в 1885—1918 гг.). — М.: «Юрист», 2008. — С. 13.
  4. План электрификации РСФСР. — 2-е изд. — М.: Госполитиздат, 1955. — С. 213,355,356,361. — 660 с.
  5. Производство пара, паровые машины, пароме турбины, двигатели внутреннего сгорания, газовые турбины, ветряные двигатели, водяные двигатели, насосы и компрессоры, теплосиловое хозяйство, электротехника, освещение // Hütte Справочник для инженеров, техников и студентов. — М.-Л.: ОНТИ, 1936. — Т. 3. — С. 950.
  6. Проект общесоюзного стандарта «Номинальные напряжения стационарных установок сильного тока» (Взамен ОСТ 4760 и ОСТ 5155)(2-я редакция, Октябрь 1938 г.) // Электричество. — 1939. — № 1. — С. 30.
  7. Основные напряжения ГОСТ 721-41.
  8. Левитин Е.
    Государственный общесоюзный стандарт на радиовещательные приемники // Радио. — 1951. — № 9. — С. 11-13.
  9. Левитин Е.А., Левитин Л.Е.
    Радиовещательные приемники. — Издание второе, переработанное и дополненное. — М.: Энергия, 1967. — С. 349.
  10. Основные напряжения ГОСТ 21128-75.

История вопроса

Эталон напряжения

14 июля 1729 года произошло великое событие: Стивен Грей догадался проводить статическое электричество по шёлковым нитям и прочим материалам, создав первую цепь. До внедрения электричества предприятиям приходилось располагаться прямо на берегах рек. Что неудобно. Гораздо проще строить заводы вблизи ресурсов.

Сложно вести разработку природных ресурсов вдали от источников энергии. Людская сила не заменит электричество. Первой попыткой передать энергию на расстояние стал коммерческий телеграф в 1837 году длиной линии 20 км. Этим доказано, что возможно передавать энергию на дальние расстояния и выполнять там при помощи неё работу.

Пятью годами ранее сэр Джозеф Генри демонстрировал устройство с бухтой провода в милю. Электромагнит поднимал весьма солидный даже по нынешнему времени груз.

Все совершалось при помощи вольтова столба – набора из кружков меди и цинка, разделённых слоем мокрой ткани, пропитанной солёной водой. Первая серьёзная конструкция появилась в 1836 году. Она стала первым эталоном номинального напряжения, измерявшего прочие источники, к примеру, термоэлектрические генераторы. Джон Фредерик Дэниэл пытался решить затруднение выделения газа (водорода) гальваническим источником при работе. Это привело его к идее использования двух электролитов вместо одного.

Дэниэл основывался на докладе профессора Дэви за 1801 год о химической природе вольтова столба, как результата оксидирования металла. Позднее тема затрагивалась Беккерелем. Дэниэл решил проверить электрохимические опыты Фарадея и искал подходящий источник. Как результат, появился новый тип гальванического элемента:

  • Исходная конструкция:
  1. В центре чаши находился цинковый стержень, окружённый бычьим пищеводом. Внутрь заливался слабый раствор цинковой кислоты.
  2. Вкруг пищевода шёл полый медный цилиндр диаметром 3,5 дюйма, заполненный слабым раствором сульфата меди. Цилиндр покрывался перфорированным диском, сквозь который в центре проходили пищевод быка и цинковый стержень.
  3. На нижней грани медного диска находились крупные кристаллы сульфата меди, не дававшие раствору выйти из насыщения.
  • Реконструкция (см. рис.):
  1. В центре чаши находится медный полый цилиндр (см. рис.), погруженный в раствор сульфата меди.
  2. Конструкция умещается внутри мембраны из пищевода быка.
  3. Снаружи располагался цинковый полый цилиндр, покрытый амальгамой и чуть меньшей высоты, окружённый слабым раствором серной кислоты.

Неизвестно, что привело учёного к столь экзотической конструкции, но она действовала потрясающе. За сто лет до события учёного точно обвинили бы в колдовстве. В 1881 году на Международной конференции электриков решено, что напряжение, выдаваемое одной ячейкой Дэниэла, станет называться 1 В. Эта величина и сегодня используется для измерения номинального напряжения. С оговоркой: действительный потенциал ячейки Дэниэла при температуре 25 градусов Цельсия равен 1,1 В.

Конструктор отмечал, что бычий пищевод возможно заменить фаянсом, но эксплуатационные характеристики ячейки становились хуже. Позже Джон Гасьё предложил использовать неглазированный фарфор в качестве пористой мембраны. Высокое внутреннее сопротивление ячейки обуславливало малый ток, но постоянность потенциала (1,1 В) оказалась быстро замечена, и гальванический элемент использовался в качестве эталона до официального признания таковым в 1881 году. С этого времени говорят о номинальном напряжении.

Поставки энергии

Уже в 1843 году Луис Делеуи при помощи ячеек Бунзена и электрической дуги осветил Площадь Согласия в Париже. Это важный момент, как видно дальше, на французские шоу равнялись прочие видные деятели того времени.

Считается, что первый магнето построен Пикси в 1832 году, но массового применения ток не нашёл. В 1844 году пару ручных генераторов создал Вулрич для гальванизации металлов, и это первые промышленные образцы. В середине 50-х энергию стали использовать, получая её из пара и преобразуя при помощи коленвала и подобных штуковин в электричество. Уже были известны двигатели Пейджа, совершавшие прямо противоположное, толкая составы поездов.

Двухтонный двигатель на 600 оборотов, построенный по проекту Блэквэлла считается первой попыткой создания полностью автоматического парового генератора тока. В паре с ним использовался механический коммутатор для спрямления переменной составляющей. В 1858 году подобные генераторы начали использоваться в качестве оборудования английских маяков. Результат не превзошёл ожидания, но совершился первый шаг к поставкам энергии для нужд человечества.

Параллельно шли демонстрации электрического освещения во Франции. Там новинка служила скорее для развлечения публики. К началу 70-х годов отдельные маяки прочно перешли на электричество, включая одесский. На сцену выходят немцы, прежде остававшиеся в тени английских и французских экспериментов. Организатору и затейнику Оскару фон Миллеру захотелось превзойти иностранцев.

Он заказал организовать передачу электрической энергии на расстояние 35 миль. Что стало первой высоковольтной сетью в мире.

Источник: profservice24.ru

Напряжение в сети

Уровень стандартных напряжений за последние 100 лет постоянно изменялся, для отечественных бытовых сетей в зависимости от степени технологического развития. Так, на заре электрификации стран советского лагеря для потребителей электрической энергии устанавливался номинал на 127 В. Такая система номинальных параметров вошла в обиход благодаря разработкам Доливо-Добровольского, который и предложил трехфазную генерацию вместо устаревшей двухфазной. Следует отметить, что еще в конце 30-х годов прошлого века норма напряжения 127 В уже слабо соответствовала возросшим производственным нуждам, именно тогда возникли первые попытки заменить ее, но с началом Второй мировой войны эти планы так и не реализовались.

Но уже в 60-х годах начались масштабные работы по приведению номинального напряжения к новому стандарту 220/380 В вместо переменного трехфазного 127/220 В. Европейские сети, к тому моменту уже совершили массовый переход на новые номиналы, дабы избежать необоснованно затратной замены проводов на большее сечение. В попытке не уступать в эффективности советские страны также начали переход, который планировалось закончить за ближайшую пятилетку. Происходило строительство новых электростанций, замена трансформаторов и силовых агрегатов, но процесс перехода на нормы в 220 В фазного напряжения для бытовых потребителей затянулся до 80-х годов.

Номинал на розетке

Номинал на розетке

В 1992 году ГОСТ 29322-92 (МЭК 38-83) ввел новые нормы напряжения: 230 В фазного вместо 220 В и 400 В линейного вместо привычных 380 В.

Такой шаг преследовал стремление вывести собственную энергетическую систему в один ряд с зарубежными для:

  1. удобства работы с ближайшими соседями;
  2. возможности беспрепятственного выхода на мировые рынки;
  3. упрощения процедуры транзита.

Но, из-за несовершенства всей отечественной системы электроснабжения и отсутствия средств для полномасштабной реконструкции, эти нормы напряжения не установились и по сей день.

Разногласия в ГОСТах

Как же так, есть нормы, в стандарте приведены новые требования, а практическая реализация не наступила и почти что через тридцать лет. Причиной этому послужило постоянное наращивание мощности бытовыми приборами, их количеством и растущее потребление. Поэтому энергоснабжающие организации не могли достигнуть даже допустимых отклонений предыдущего стандартного номинального напряжения.

Читайте также:  Документы на возврат налога на строительство

Первый из рассматриваемых нормативов – это ГОСТ 32 1 44-2013 , предназначенный для определения основных параметров качества электрической энергии. Как один из этих показателей, в стандарте установлены допустимые диапазоны для разности потенциалов.

Разумеется, рассматривать все пункты и их расчетную часть смысла не имеет, поэтому оговорим наиболее важные моменты:

  • согласно п.4.2.2 номинальное напряжение считается 220 В между фазой и нулем, и 380 В для линейной нормы.
  • провалы напряжения, которые, как правило, обуславливаются введением мощных потребителей, длительность провала не должна превышать 1 минуты;
  • в соответствии с п.4.3.3 импульсные перенапряжения, которые могут обуславливаться атмосферными разрядами, составляют норму от 1 микросекунды до нескольких миллисекунд;
  • несимметрия трехфазной сети согласно п.4.2.5 должна составлять не более 2 – 4% коэффициента несимметрии в десятиминутном интервале по недельной характеристике.

Для сравнения с предыдущими нормами, в действии находится ГОСТ 29322-2014 , который относится к международным стандартам и устанавливает номинальные характеристики рядов напряжения. Был разработан в соответствии с другими нормами — IEC 60038:2009 и аннулировал действие стандарта 1992 года. Но в нем, согласно п.3.1 номинал сетей бытовой энергии устанавливается на отметку 230 В и 400 В для электрических сетей с переменным током частотой 50 Гц. Стоит сказать, что для зарубежных сетей с частотой 60 Гц имеются некоторые отличия, но допустимое отклонение частоты всего 2%, поэтому для отечественных потребителей эти поправки неактуальны.

Какое напряжение в сети

С 2003 года в розетках наших квартир и частных домов должно было появиться стандартное напряжение 230В. Но на протяжении уже 17 лет этот переход никак не может завершиться.

С 30.09.2014 г. вместо ГОСТа 29322-92 был принят ГОСТ 29322-2014 (IEC 60038:2009), устанавливающий, каким должно быть стандартное напряжение в России. Теперь его величина составляет 230 В (±10 %) при частоте 50Гц (±0,2). Но всё еще довольно часто в электросети присутствует 220 В вместо ожидаемых 230 В.

Напряжение в сети

Номинальные параметры электросетей переменного тока до 1000 В указаны в таблице, приведенной в ГОСТ 29322-2014.

Напряжение в сети

В первой и второй колонке меньшие величины – это напряжение между фазой и нейтралью (фазные), большие – между фазами (линейные). Если указана одна величина, то это напряжение между фазами трехфазной трехпроводной системы.

Стандартное напряжение 230/400 В появилось в результате эволюции системы 220/360 В и 240/415 В. В настоящее время система 220/360 уже не используется в Европе и других странах, но 220/380 В и 240/415 В до сих пор активно применяется.

Изменение стандартов было вызвано необходимостью приведения электроэнергии в полное соответствие с европейскими параметрами, для облегчения экспорта и импорта электроэнергии и электротехнических устройств.

Допустимые отклонения напряжения в сети

Не всегда в нашей сети ровно 230 Вольт.

Напряжение в сети

Зачастую устаревшее сетевое оборудование, ошибки в проектировании сетей, некачественное обслуживание, износ самих сетей, большой рост потребления электроэнергии приводят к значительному отклонению от существующих стандартов.

В таблице (ГОСТ 29322-2014), фрагмент которой представлен ниже, нормируется наибольший и наименьший вольтаж в системах переменного тока до 1000 В.

Напряжение в сети

По ГОСТу 29322-2014 в 2020 году в сети должно быть:

  • 230 Вольт;
  • допустимые отклонения 207 — 253 В.

Откуда берется напряжение

Чтобы подать электричество в розетку, необходимо его как-то сгенерировать. Для выработки электроэнергии до сих пор в большинстве применяются технологии конца 19 века – электромагнитная индукция, преобразующая механическую энергию в электрическую. Проще говоря – генераторы. Различие генераторов лишь в том, каким образом подают механическую энергию.

Раньше это были громоздкие паровые машины. Со временем добавились гидротурбины для проточной воды (гидроэлектростанции) , двигатели внутреннего сгорания, ядерные реакторы.

ТЭС

Принцип действия генератора основан на магнитной индукции. Вращательное движение генератора превращается в электрический ток. То есть можно сказать, что генератор — это тот же самый электродвигатель, но обратного действия. Если на электродвигатель подать напряжение, то он начнет вращаться. Генератор работает наоборот.

Вращательное движение вала генератора превращается в электрический ток. Поэтому, чтобы вращать вал генератора, нам потребуется какая-либо энергия извне. Это может быть пар, который раскручивает турбину, а она в свою очередь раскручивает вал генератора

Принцип работы ТЭС

ГЭС

либо это может быть сила потока воды, которая с помощью гидротурбины раскручивает вал генератора, а он в свою очередь также вырабатывает электрический ток

Принцип работы ГЭС

Ну или это может быть даже ветряк

ветряная электростанция

Ветряная электростанция

Короче говоря, принцип везде один и тот же.

Кстати, ядерный реактор не способен самостоятельно выработать энергию. По сути, атомная энергоустановка является тем же самым примитивным паровым котлом, где рабочим телом является обыкновенный пар. Да, нынче существуют иные способы генерации электричества, на вроде тех же самых солнечных элементов, бетагальванических и изотопных ядерных батарей, «мифических» токомаков. Однако, вышеперечисленный «хайтэк» имеет существенные ограничения – запредельная стоимость материалов ,монтажа и наладки, габариты и малый кпд. Потому, всерьёз рассматривать всё это в качестве полноценной электростанции большой мощности не стоит (по крайней мере в ближайшие пару десятков лет).

Разновидности

Бывает двух видов: постоянным и переменным. Первое есть в электростатических видах цепей и тех, которые имеют постоянный ток. Переменный встречается там, где есть синусоидальная энергия. Важно, что синусоидальная энергия делится на действующее, мгновенное со средневыпрямленным. Единица измерения напряжения электрического тока вольт.

Стоит также отметить, что величина энергии между фазами называется линейной фазой, а показатель тока земли и фаз — фазным. Подобное правило используется во всех воздушных линиях. На территории Российской Федерации в электрической бытовой сети стандартное — 380 вольт, а фазное — 220 вольт.

Напряжение в сети

Основные разновидности

Постоянное напряжение

Постоянным называется разность между электрическими потенциалами, при которой остается такой же величина с перепадами полярности на протяжении конкретного периода. Главным преимуществом постоянной энергии является тот факт, что отсутствует реактивная мощность. Это означает, что вся мощность, которая вырабатывается при помощи генератора, потребляется нагрузкой за исключением проводных потерь. Течет по всему проводниковому сечению.

Что касается недостатков, есть сложность повышения со снижением энергии, то есть в моменте преобразования ее из-за конструкции преобразователей и отсутствия мощных полупроводниковых ключей. К тому же сложно развязывается высокая и низкая энергия.

Обратите внимание! Используется постоянная энергия в электронных схемах, гальванических элементах, аккумуляторах, электролизных установках, сварочных инструментах, инверторных преобразователях и многих других приборах.

Напряжение в сети

Постоянный ток

Переменное напряжение

Переменным называется ток, изменяющийся по величине и направлению периодически, но при этом сохраняющий свое направление в электроцепи неизменно. Нередко его называют синусоидальным. Одно направление, в котором движется энергия, называется положительным, а другое — отрицательным. Поэтому получающаяся величина называется положительной и отрицательной.

Такой показатель является алгебраической величиной. В ответ на вопрос, как называется единица измерения напряжения, необходимо отметить, что это вольт. Значение его определяется по направлению. Максимальное значение — амплитуда. Бывает он:

Напряжение в сети

Двухфазный

Напряжение в сети

Трехфазный

Напряжение в сети

Многофазный

Используется активно в промышленности, на электрической станции, на трансформаторной подстанции и передается в каждый дом при помощи линий электрических передач. Больше всего используется три фазы для подключения. Подобная электрификация распространена на многих железных дорогах.

Обратите внимание! Стоит отметить, что имеются также некоторые виды двухсистемных электровозов, которые работают во многих случаях на переменном показателе.

Напряжение в сети

Переменный ток

Единицы измерения

Измеряется напряженье в вольтах. Обозначается В или Вольт. Одно значение выражено в разности нескольких точек на электрическом поле. Значение 220 вольт говорит о том, что электрическое поле призвано тратить энергию, чтобы протаскивать заряды через всю электрическую цепь с нагрузкой.

Экскурс в историю

Итак, генератор на нашей электростанции преобразовывает механическую энергию в электрическую. А что дальше? В каком виде и как именно передавать энергию потребителю? Как избежать колоссальных потерь при передаче?

Поразительно, но подобная ситуация существовала на самом деле! В той же Российской Империи вплоть до начала 20 века была полная неразбериха. Рядом с каждым «крупным» потребителем электроэнергии (фабрика, подворье преуспевающего купца или гостиница для особ благородных кровей) строили отдельную электростанцию.

Было множество конкурирующих фирм, предоставляющих услуги электрификации и, в последующем, своё электрическое оборудование заточенное только под свою сеть. Каждый поставщик электроэнергии задавал собственные параметры электросети – напряжение, частоту. Были даже электросети с постоянным током! Человек, купивший, к примеру, электролампочки в «Товариществе электрического освещения Лодыгин и Ко» смог бы использовать их лишь в электросети этой же компании. При подключении к сети «Дженерал электрик» эта лампочка тут же вышла бы из строя – напряжение сети этой фирмы было значительно выше необходимого, не говоря уже о других параметрах.

Лишь в 1913 году имперские инженеры решились передавать электроэнергию на большие расстояния по воздушным проводным линиям, избавив от необходимости постройки электростанций «у каждой розетки». В преддверии грядущей великой войны и нахлынувшего патриотизма власть задумалась об импортозамещении. Ну прям как в наше время, после кризиса 2014 года). Были финансово и юридически задавлены многие небольшие западные фирмы (кроме германских и французских), преференции и льготы давались лишь отечественным товариществам и предприятиям. В итоге, это привело к монополизму на рынке поставщика электроэнергии и, невольно, стандартизации параметров электрической сети.

Так как Берлин и Париж были уже электрифицированы единой энергосистемой с переменным напряжением сети 220 вольт, отечественные компании также приняли этот стандарт. Людям было удобнее использовать электрические приборы единого типа, не беспокоясь что их новомодный электрический пылесос сгорит на новом месте жительства из-за других параметров энергосети. Произошло полное вытеснение многих небольших фирм – никто уже не хотел пользоваться их услугами и их приборами, хотя они вынужденно подстроились под единый стандарт электросети. Те самые 220 вольт переменного тока.

Как и зачем оценивать качество напряжения в сети?

Действительно, зачем? Ведь достаточно нажать кнопку на пульте телевизора или воткнуть зарядное устройство айфона в розетку и пользоваться благами электрификации всей страны!

Но бывают моменты, когда что-то идет не так: крокодил не ловится, айфон не заряжается, кондиционер вместо прохлады выдает натужное гудение, а телевизор после щелчка не подает признаков жизни.

Тут собрались люди знающие, которые понимают, что значения основных параметров электрической сети — напряжения и частоты — можно узнать в первую очередь посредством мультиметра. Но что делать, если нужно посмотреть, что делается в розетке в течение суток? А что если нужно отследить скачок напряжения, который по времени гораздо короче интервала измерения мультиметра? Причем может быть так, что время появления этого артефакта неизвестно.

Обычно при любых проблемах с напряжением ставят стабилизаторы, но они помогают далеко не всегда. Ведь стабилизатор устраняет следствие, но не причину проблемы. А если происходит скачкообразное кратковременное изменение напряжения, то стабилизатор не только не поможет, но и усугубит положение.

И чтобы понять, что делать в том или ином случае — проверить качество контактов на вводе или поставить стабилизатор, — нужен анализатор качества электроэнергии (Power Quality Analyzer).

Анализатор качества электроэнергии дает полную картину того, что происходит в розетке.

Я использую в своей работе анализатор качества электрической энергии HIOKI 3197, фото которого будут приведены в статье.

Без анализатора качества часто вообще непонятно, что происходит в сети: какие помехи, импульсные перенапряжения и провалы, коэффициент мощности cos и так далее. Приходится действовать наугад, используя свой опыт и эксперименты. А с японцем HIOKI из Нагано все ясно-понятно. Для того, чтобы составить полную картину того, что творится в сети, прибор имеет клещи для измерения тока и зажимы для измерения напряжения, а также зажим для подключения к нейтрали. Итого — 7 точек подключения.

Анализатор качества электроэнергии

Анализатор качества электроэнергии

Реальный случай, когда без анализатора качества не обойтись. Контроллер в технологической линии периодически зависал и выдавал ошибки. Когда все перелопатили, а причину не нашли, на помощь пришел анализатор качества электроэнергии. После непродолжительного наблюдения напряжения 220 В, поступающего на питание контроллера, выяснилось, что причина в плохом контакте внутри сетевого фильтра.

Нормы напряжения в электросети по ГОСТу

В нормативном документе определено несколько показателей, позволяющих характеризовать качество электроэнергии в точках присоединения (ввод в сети потребителей). Перечислим наиболее значимые параметры и приведем допустимые диапазоны отклонений для каждого из них:

  • Для установившегося отклонения напряжения не более 5,0% от номинала (допустимая норма) при длительном временном промежутке и до 10% для краткосрочной аномалии (предельно допустимая норма). Заметим, что данные показатели должны быть прописаны в договоре о предоставлении услуг, при этом указанные нормы должны отвечать действующим нормам. Например, для бытовых сетей (220 В) быть в пределах 198,0-220,0 В, а для трехфазных (0,40 кВ) – не менее 360,0 В и не более 440 Вольт.
  • Перепады напряжения, такие отклонения характеризуются амплитудой, длительностью и частотой интервалов. Нормально допустимый размах амплитуды не должен превышать 10,0% от нормы. К перепадам также относят дозу фликера (мерцание света в следствии перепадов напряжения, вызывают усталость), это параметр измеряется специальным прибором (фликометром). Допустимая краткосрочная доза – 1,38, длительная – 1.
    Пример устоявшегося отклонения и колебания напряжения
  • Броски и провалы. К первым относятся краткосрочные увеличения амплитуды напряжения, превышающие 1,10 номинала. Под вторым явлением подразумевается уменьшение амплитуды на величину более 0,9 от нормы, с последующим возвращением к нормальным параметрам. Ввиду особенностей природы процессов данные отклонения не нормируются. При частом проявлении рекомендуется установить ограничитель напряжения (для защиты от бросков) и ИБП (при частых провалах).
  • Перенапряжение электрической сети, под данным определением подразумевается превышение номинала на величину более 10% длящееся свыше 10-ти миллисекунд.
    Примеры перенапряжения и провала (А), бросков (В)
  • Несимметрия напряжения. Допустимое отклонение коэффициента несимметрии от нормы – 2,0%, предельное – 4,0%.
  • Несинусоидальность напряжения. Определяется путем расчета коэффициента искажения, после чего полученное значение сравнивают с нормативными значениями.
    Пример нарушения синусоидальности напряжения
  • Отклонения частоты. Согласно действующим требованиям нормально допустимое отклонение этого параметра 0,20 Гц, предельно допустимое – 0,40 Гц.
Читайте также:  Промышленное и гражданское строительство виды деятельности

Известные номиналы напряжений

Все функционирующие сегодня ЛЭП большой протяжённости работают на номинальных напряжениях 115 – 1200 кВ трёхфазного тока. Дальнейшее повышение вольтажа неэффективно, приводит к появлению обильных коронных разрядов, обнаруживающих тенденцию перерастать в дугу. Самые большие потери возникают на низковольтной части. К примеру, во Франции ежегодные потери оцениваются в 325 ГВт часов, что составляет 2,5%, в США они достигают 7,5%. Это объясняется разницей номинального напряжения – 220 В против 110.

На 1980 год экономически эффективная длина линии составляла 7000 км, но реально существующие намного короче указанной цифры. На значительных расстояниях начинают играть роль ёмкостное и индуктивное сопротивление. Вместе они образуют реактивный импеданс, не дающий поставить энергию пользователям. Это блуждающие туда и сюда токи, представляющие собой целиком паразитный эффект. Этим определяется фактор мощности линии, не слишком большой.

Сегодня доказано, что выгоднее на больших дистанциях поставлять постоянный ток, не затекающий в индуктивные сопротивления – ёмкостное, образованное проводом и землёй, и индуктивное. Отсутствует понятие реактивной мощности. Доказывается факт, что Никола Тесла вёл борьбу за переменный ток преимущественно для причинения ущерба Эдисону.

Учитывая сэкономленное, выгодно строить на концах мощных линий преобразовательные станции для перевода токов. Одновременно уходят потери на излучение, просачивание сквозь экран в землю, снижается уровень коронного разряда. Уже сегодня кабели для подзарядки аккумуляторов подводных лодок питаются постоянным током, передавать по ним переменный нецелесообразно уже на расстоянии 30 км. Сегодняшние линии имеют в 20 раз большую протяжённость, успешно эксплуатируются. Для передачи переменного тока ограничения зависят от расстояния:

  1. На малых линиях – тепловые потери, призванные не разрушить изоляцию провода.
  2. На средних дистанциях учитывается падение напряжения, нельзя брать слишком высокое.
  3. На дальних дистанциях в силу вступают факторы реактивной мощности, определяющие устойчивость системы.

Параметры сетевого напряжения в России

Производители электроэнергии генерируют переменный ток промышленной частоты (в России — 50 Гц). В подавляющем большинстве случаев по линиям электропередач передаётся трёхфазный ток, повышенный до высокого и сверхвысокого электрического напряжения с помощью трансформаторных подстанций, которые находятся рядом с электростанциями.

Согласно межгосударственному стандарту ГОСТ 29322-2014 (IEC 60038:2009), сетевое напряжение должно составлять 230 В ±10 % при частоте 50 ±0,2 Гц[1] (межфазное напряжение 400 , напряжением фаза-нейтраль 230 В, четырёхпроводная схема включения «звезда»), примечание «a)» стандарта гласит: «Однако системы 220/380 В и 240/415 В до сих пор продолжают применять».

К жилым домам (на сельские улицы) подводятся четырёхпроводные (три фазовых провода и один нейтральный (нулевой) провод)

линии электропередач (воздушные или кабельные ЛЭП) с межфазным напряжением 400 Вольт. Входные автоматы и счётчики потребления электроэнергии, обычно, трёхфазные. К однофазной розетке подводится фазовый провод, нулевой провод и, возможно, провод защитного заземления или зануления, электрическое напряжение между «фазой» и «нулём» составляет 230 Вольт.

В правилах устройства электроустановок (ПУЭ-7) продолжает фигурировать величина 220

но фактически напряжение в сети почти всегда выше этого значения и достигает 230—240 В, варьируясь от 190 до 250 В.

На сегодняшний день действует , с 2014 года.

Зато в Японии и на американском континенте не много ни мало, а (в 39 странах) стандартное напряжение составляет от 100 до 127 вольт.

Особо выделяется Бразилия, в северных районах которой стандартным напряжением является 127 вольт, а в остальных – 220. В Японии же, при стандартном напряжении в 110 вольт, частота сети может меняться от 50 до 60 Гц.

Основным решением по качественному электропитанию, являются стабилизаторы напряжения.

К сожалению, аварийные ситуации в электрических сетях нашей родины достаточно часты, и последствия изменений напряжения в наших домах приводят к выходу из строя дорогостоящих электроприборов, стоимость которых намного превосходит цены стабилизаторов напряжения и цены устройств защиты от импульсных перенапряжений.

Современные технологии позволяют обеспечить бесперебойное электроснабжение с заданными параметрами, одними из таких приборов которые могут помочь, являются ИБП HIDEN, еще более прогрессивным ИБП ECOVOLT .

Величина допустимого падения напряжения: ПУЭ

Согласно принятым правилам устройства электроустановок (ПУЭ) еще в бывшем СССР, падением напряжения признается разность показателей напряжения на разных точках сети. Как правило, это точки начала и конца цепи. В установленных нормах по закону полагается различать понятия отклонение напряжения от ее потери. Если первый случай в общепринятом масштабе рассматривается на примере лампы накаливания, показатель отклонения которого признается номинальным и обязательным к исполнению, то в случае с потерей, рассматриваемой на шинах станции, – это признается рекомендуемым показателем.

Нормальное падение работы напряжения в сети:

  • В так называемых воздушных линиях – до 8%;
  • В кабельных линиях электроснабжения – до 6%;
  • В сетях на 220 В – 380 В – в районе 4-6%.

При этом падением в рамках аварийного режима признается падение до 12% в сети – это установленный предел. Падение более установленной нормы сулит включение системы защитной автоматики, которая должна срабатывать при достижении пониженной нормы на протяжении не менее 30 секунд.

Также в некоторых источниках можно найти стандарты напряжения, превышающие даже новые показатели в 230 В и 400 В. Не стоит путать примеры бытового использования с заводом или фабрикой, на которых показатели естественно значительно превышают бытовую среду.

Отклонение от номинального напряжения в частном секторе

  • Отгорание нулевого рабочего проводника в трансформаторной подстанции
  • Несимметричная нагрузка по линии электропередач. В основном по улице проходит 3 фазы и энергетики стараются равномерно распределить нагрузку по фазам. Очень часто бывает, что это было сделано давно и не соответствует действительности. В итоге получается, что одна фаза перегружена и происходит падение напряжения, может 190 В или 180В, но тем не менее это не соответствует норме.
  • Сварочные работы у соседа могут повлиять на величину напряжения
  • Удар молнии

Справочная информация. Если дом находится вблизи трансформаторной подстанции, то величина напряжения может быть близка к 230 В и больше, но это в пределах нормы. Это специально делают энергетики, что бы в конце линии не было сильного падения напряжения.

Запомните! Коммутационно-защитная аппаратура (пакетный переключатель, автоматический выключатель, УЗО) не защищает электрическую сеть от перепадов напряжения.

Максимальное отклонение напряжения в электросети

Ток в сети по естественным причинам непостоянен и изменяется в определенных показателях. В рамках нового стандарта 230 В/400 В номинальное отклонение допустимо в пределах 5% и максимально должны отмечаться в кратковременных промежутках не более 10%. Таким образом, такое теоретические отклонение допускается в пределах 198 В и до 242 В. Такой размах может считаться актуальным для большинства нынешних квартир.

Что влияет на сетевое колебание поставки энергии и потери напряжения:

  • Одним из самых распространенных причин является устаревание оборудования, в том числе счетчиков, электрощитов, кабелей проводки и так далее;
  • Значительные погрешности отмечаются и в плохо обслуживаемой сети;
  • Ошибки при планировке и выполнении прокладочных работ в доме;
  • Значительный рост показателей энергопотребления, превышающих установленный стандарт.

Как уже отмечалось, приемлемы перепады в сети на +-5%. Так, например, по поставляемому показателю в 220 вольт, допустимо отклонение в сети, равное 209 В и наибольшее превышение, равное 231 В.

Реальные примеры измерения напряжения

Наиболее простым примером измерения напряжения в бытовых условиях является пальчиковая батарейка. В ней вам необходимо приложить черный щуп к выводу «– », а красный к выводу « + », позицию переключателя установить на 2 В постоянного напряжения.

Пример измерения напряжения на батарейке

Пример измерения напряжения на батарейке

Если показания для батарейки 1,5 В будут в пределах от 1,6 до 1,2 В, то такой источник питания считается пригодным для всего оборудования, в случае снижения значений до 1 – 0,7 В, от батарейки будут запускаться импульсные устройства, к примеру, часы. Если вольтметр покажет 0,6 В и менее, разряд достиг критического значения.

При измерении разности потенциалов в бытовой сети, вам следует коснуться щупами контактов розетки. Так как изолированная часть щупа имеет ограничительное кольцо, за которым расположен длинный стержень, вы можете безопасно проникнуть в розетку, не рискуя прикоснуться к токоведущим элементам. Допустимыми считаются отклонения от номинала на 10%, то есть от 198 до 142 В.

Также можно замерить разность потенциалов на выходе автомобильного аккумулятора или на другом элементе цепи электрической проводки. Для этого черный щуп мультиметра устанавливается на «– » клемму аккумулятора, а красный на « + » клемму.

Если аккумулятор заряжен, то показания вольтметра должны находиться в пределах от 12 до 14 В, но встречаются модели и с большим разбросом. Такое измерение позволяет диагностировать различные причины неполадок.

Используемые приборы

В каждом доме прибор учета электроэнергии находится в состоянии постоянного измерения переменного напряжения, но крайне редко эти данные где-либо отображаются. Некоторые из них подключаются напрямую, другие через измерительные трансформаторы.

В практических целях для измерения уровня напряжения могут применяться:

  • Вольтметры;
  • Мультиметры
  • Осциллографы.

Вольтметр представляют собой устройство для проверки разности потенциалов. На практике могут встречаться как цифровые, так и аналоговые вольтметры, на которых измеряемое напряжение отображается на дисплее или посредством отклонения стрелки на циферблате соответственно.

Важными параметрами при выборе как электронного, так и стрелочного вольтметра являются единицы измерений (мВ, В, кВ), рабочий диапазон и класс точности. Однако сфера их применения ограничена и применяется, чаще всего, для лабораторных исследований, поскольку в бытовых и производственных нуждах содержать один прибор для измерения одной электрической величины нецелесообразно.

Мультиметр или цифровой тестер является более универсальным прибором, который может работать с несколькими параметрами: электрическим током, сопротивлением, частотой, температурой, напряжением и т.д. Для измерения напряжения мультиметр переключается в режим вольтметра, щупы подключаются к соответствующим разъемам. Конструктивно встречаются и цифровые и аналоговые модели, в некоторых из них можно переключать диапазон измерений, выбирать род тока, в других мультиметрах все эти величины могут подбираться автоматически.

Осциллограф – это довольно сложный прибор для измерения разности потенциалов, так как в нем на цифровом или аналоговом дисплее выводится кривая измеряемой величины. При этом можно растянуть или сократить диапазон частот, чтобы рассмотреть форму импульсных напряжений, длительность импульсов, нарастание и провалы в кривой функции. Поэтому осциллограф для измерения напряжения применяется в электрических цепях и приборах высокой точности, при изготовлении и проверке радиодеталей и т.д. Мало кто держит дома осциллограф из-за высокой стоимости и сложности выполнения операций.

Источник: electroinfo.net

Рейтинг
Загрузка ...