ПОВЕРХНОСТНО-АКТИВНЫЕ ВЕЩЕСТВА, в-ва, адсорбция к-рых из жидкости на пов-сти раздела с др. фазой (жидкой, твердой или газообразной) приводит к значит. понижению поверхностного натяжения (см. Поверхностная активность).
В наиб. общем и важном с практич. точки зрения случае адсорбирующиеся молекулы (ионы) ПАВ имеют дифильное строение, т. е. состоят из полярной группы и неполярного углеводородного радикала (дифильные молекулы). Поверхностной активностью в отношении неполярной фазы (газ, углеводородная жидкость, неполярная пов-сть твердого тела) обладает углеводородный радикал, к-рый выталкивается из полярной среды. В водном р-ре ПАВ на границе с воздухом образуется адсорбц. мономолекулярный слой с углеводородными радикалами, ориентированными в сторону воздуха. По мере его насыщения молекулы (ионы) ПАВ, уплотняясь в поверхностном слое, располагаются перпендикулярно пов-сти (нормальная ориентация).
Концентрация ПАВ в адсорбц. слое на неск. порядков выше, чем в объеме жидкости, поэтому даже при ничтожно малом содержании в воде (0,01-0,1% по массе) ПАВ могут снижать поверхностное натяжение воды на границе с воздухом с 72,8·10 -3 до 25·10 -3 Дж/м 2 , т.е. практически до поверхностного натяжения углеводородных жидкостей. Аналогичное явление имеет место на границе водный р-р ПАВ — углеводородная жидкость, что создает предпосылки для образования эмульсий.
Виды и схемы работы ПАВ
В зависимости от состояния ПАВ в р-ре условно различают истинно р-римые (молекулярно-диспергированные) и коллоидные ПАВ. Условность такого разделения состоит в том, что одно и то же ПАВ может относиться к обеим группам в зависимости от условий и хим. природы (полярности) р-рителя. Обе группы ПАВ адсорбируются на фазовых границах, т. е. проявляют в р-рах поверхностную активность, в то время как объемные св-ва, связанные с возникновением коллоидной (мицеллярной) фазы, проявляют лишь коллоидные ПАВ. Указанные группы ПАВ отличаются значением безразмерной величины, к-рая наз. гидрофильно-липофильным балансом (ГЛБ) и определяется отношением:
где -сродство (своб. энергия взаимодействия) неполярной части молекулы ПАВ к углеводородной жидкости (b-безразмерный параметр, зависящий от природы ПАВ, -своб. энергия взаимод. в расчете на одну группу CH 2 , v-число групп CH 2 в углеводородном радикале), a-сродство полярной группы к воде. Для коллоидных ПАВ (b + или , где индексы m соответствуют миним. значениям сродства, при к-ром начинают проявляться коллоидные св-ва ПАВ. Миним. число углеродных атомов в радикале для разных видов коллоидных ПАВ лежит в пределах 8-12, т.е. коллоидные ПАВ имеют достаточно большой углеводородный радикал. Вместе с тем коллоидные ПАВ должны обладать и истинной р-римостью в воде, т.е. полярность гидрофильной группы также должна быть достаточно высокой. Этому соответствует условие:
Поверхностно-активные вещества
В нач. 60-х гг. 20 в. Д. Девисом была разработана шкала ГЛБ со значениями от О до 40. ПАВ с липофильными св-вами имеют низкие значения ГЛБ, с гидрофильными-высокие. Каждой группе атомов, входящей в молекулу ПАВ, приписывается групповое число. При сложении этих чисел получают ГЛБ по ф-ле:
ГЛБ = гидрофильных групповых чисел + 4- гидрофобных групповых чисел + 7.
Хотя понятие о ГЛБ является достаточно формальным, оно позволяет определять области применения ПАВ. Так, для образования эмульсий вода/масло ГЛБ лежит в пределах 3-6, эмульсий масло/во да-8-16, для смачивателей-7-9, для моющих средств-13-15.
Поверхностная активность ПАВ, относящихся к разным группам, определяется по-разному. Для истинно р-римых ПАВ она равна макс. значению производной
и измеряется по начальному участку изотермы адсорбции s(c)при с0 (Г-число молей ПАВ, адсорбированных единицей пов-сти, R-газовая постоянная, T-абс. т-ра). Для коллоидных ПАВ поверхностная активность G мин = ( s 0 — s мин )/с мин , где s 0 — поверхностное натяжение чистого р-рителя, s МИH -наименьшее (постоянное) значение s , а с мин -соответствующая этому значению концентрация ПАВ.
Дальнейшее введение в р-р ПАВ приводит к увеличению числа мицелл, а концентрация молекулярно-диспергированного ПАВ остается постоянной. Величина с мин -критич. концентрация мицеллообразования (KKM). Она определяется как концентрация ПАВ, при к-рой в р-ре возникает большое число мицелл, находящихся в термоди-намич. равновесии с молекулами (ионами), и резко изменяются св-ва р-ра (электропроводность, поверхностное натяжение, вязкость, светорассеяние и т.д., см. Мицеллообразо-вание).
Классификация ПАВ. В данной статье описывается классификация, принятая на III Международном конгрессе по ПАВ и рекомендованная Международной организацией по стандартизации (ISO)в 1960. Она основана на хим. природе молекул и включает четыре осн. класса ПАВ: анионактив-ные, катионактивные, неионогенные и амфотерные. Иногда выделяют также высокомол. (полимерные), перфторир. и кремнийорг. ПАВ, однако по хим. природе молекул эти ПАВ м. б. отнесены к одному из вышеперечисл. классов.
Анионактивные ПАВ содержат в молекуле одну или неск. полярных групп и диссоциируют в водном р-ре с образованием длинноцепочечных анионов, определяющих их поверхностную активность. Это группы: COOH(M), OSO 2 OH(M), SO 3 H(M), где M-металл (одно-, двух- или трехвалентный). Гидрофобная часть молекулы обычно представлена предельными или непредельными алифатич. цепями или алкилароматич. радикалами. Выделяют 6 групп анионактивных ПАВ.
1) Производные карбоновых к-т (мыла): RCOOM, ROOC (СН 2 ) n СООМ, RC 6 H 4 (СН 2 ) n СООМ, RCH=CH — —(СН 2 ) n СООМ. 2) Первичные и вторичные алкилсульфаты ROSO 3 M, R’R : CHOSO 3 M, алкиларилэтилсульфаты RC 6 H 4 C 2 H 4 OSO 3 M, алкилциклогексилэтилсульфаты RC 6 H 10 C 2 H 4 OSO 3 M и т.п. (см. Авироль, Ализариновое масло, Алкилсульфаты).
3)Алкил- и алкилбензолсульфо-наты, сульфонаты сложных эфиров моно- и дикарбоно-вых к-т: RSO 3 M, RC 6 H 4 SO 3 M, ROOCCH 2 SO 3 M, ROOCCH 2 CH(COOR)SO 3 M (см. Алкилбензолсульфонаты, Нафталинсульфонаты, Сульфонаты).
4) Сульфо- и карбокси-этоксилаты спиртов, сульфоэтоксилаты карбоновых к-т, сульфоэтоксилаты алкилфенилэтиловых спиртов, диметал-лич. соли сульфоянтарной к-ты, соли сульфатов непредельных к-т: RO(C 2 H 4 O) n SO 3 M, RO(C 2 H 4 O) n CH 2 COOM, RCOO (C 2 H 4 O) n SO 3 M, RC 6 H 4 (C 2 H 4 O) 2 SO 3 M, ROOCCH 2 CH ·(COOM) SO 3 M, RCH (OSO 3 M)=CH (CH 2 ) n —COOM. 5) Азотсодержащие ПАВ: амидосульфонаты RCONR’—R : —SO 3 M, амиды сульфокарбоновых к-т RR’NOC—R : —SO 3 M, амидосульфаты RCONR’- R : —OSO 3 M, амидокарбоксилаты RCO(NH-R’—CO) n OM, в-ва с карбокси- и сульфогруппами RCONH—R— OCOR : (SO 3 M) —COOM. Вместо амидной группы во мн. таких в-вах м.б. также сульфоамидная группа, напр. RC 6 H 4 SO 2 NHCH 2 CH 2 SO 3 M. 6) Соли перфторир. карбоновых к-т, перфторир. сульфоацетатов, моно- и диалкил-фосфатов и фосфонатов, перфторир. фосфонаты и др. соединения.
В анионактивных ПАВ катион м. б. не только металлом, но и орг. основанием. Часто это ди- или триэтаноламин. Поверхностная активность начинает проявляться при длине углеводородной гидрофобной цепи C 8 и с увеличением длины цепи увеличивается вплоть до полной потери р-ри-мости ПАВ в воде. В зависимости от структуры промежут. функц. групп и гидрофильности полярной части молекулы длина углеводородной части может доходить до C 18 . Бензольное ядро соответствует примерно 4 атомам С, перфто-рированная метиленовая группа CF 2 -примерно 2,5-3 мети-леновым группам.
Наиб. распространены алкилсульфаты и алкиларилсуль-фонаты. Оптим. поверхностно-активными св-вами обладают первичный додецилсульфат и прямоцепочечный доде-цилбензолсульфонат.
Эти в-ва термически стабильны, малотоксичны (ЛД 50 1,5-2 г/кг, белые мыши), не раздражают кожу человека и удовлетворительно подвергаются биол. распаду в водоемах (см. ниже), за исключением алкиларил-сульфонатов с разветвленной алкильной цепью. Они хорошо совмещаются с др. ПАВ, проявляя при этом синергизм, порошки их негигроскопичны.
Вторичные алкилсульфаты обладают хорошей пенообразующей способностью, но термически неустойчивы и применяются в жидком виде. Вторичные алкилсульфонаты обладают высокой поверхностной активностью, но весьма гигроскопичны. Перспективными являются ПАВ, у к-рых гидрофильная часть состоит из неск. функц. групп.
Напр., динатриевые соли сульфоянтарной к-ты обладают хорошими санитарно-гигиенич. св-вами наряду с высокими коллоидно-хим. и технол. показателями при растворении в жесткой воде. ПАВ, содержащие сульфониламидную группу, обладают биол. активностью. Хорошими св-вами обладает также додецил-фосфат.
Катионактивными наз. ПАВ, молекулы к-рых диссоциируют в водном р-ре с образованием поверхностно-активного катиона с длинной гидрофобной цепью и аниона-обычно галогенида, иногда аниона серной или фосфорной к-ты. Преобладающими среди катионактивных ПАВ являются азотсодержащие соед.; практич. применение находят и в-ва, не содержащие азот: соед. сульфония [RR’R : S] + X — и сульфоксония [RR’R : SO] + Х — , фосфония [R 3 PR’] + X — , арсония [R 3 AsR’] + Х — , иодония (ф-ла I). Азотсодержащие соед. можно разделить на след. осн. группы: 1) амины и их соли RNR’R : · HX; 2) моно- и бисчетвертичные аммониевые соед. алифатич. структуры [RNR’R : R»’] + X — , [RR’ 2 N-R : —NR’ 2 R] 2+ 2Х — , соед. со смешанной алифатич. и ароматич. структурой [RR’ 2 NC 6 H 4 NR’ 2 R] 2 + 2Х — ; 3) четвертичные аммониевые соед. с раз л. функц. группами в гидрофобной цепи; 4) моно- и бисчетвертичные аммониевые соед. с атомом азота в гетероциклич. кольце. Последняя группа объединяет сотни ПАВ, имеющих пром. значение. Важнейшие из них-соед. пиридина, хинолина, фталазина, бензи-мидазола, бензотиазола, бензотриазола, производные пир-ролидина, имидазола, пиперидина, морфолина, пиперазина,
бензоксазина и др.; 5) оксиды аминов RR’R : N + O — (начато пром. произ-во); 6) полимерные ПАВ (II). Применяют в осн. поливинилпиридинийгалогениды.
Катионактивные ПАВ меньше снижают поверхностное натяжение, чем анионахтивные, но они могут взаимод. химически с пов-стью адсорбента, напр. с клеточными белками бактерий, обусловливая бактерицидное действие. Взаимод. полярных групп катионактивных ПАВ с гидроксильны-ми группами волокон целлюлозы приводит к гидрофобиза-ции волокон и импрегнированию тканей.
Неионогенные ПАВ не диссоциируют в воде на ионы. Их р-римость обусловлена наличием в молекулах гидрофильных эфирных и гидроксильных групп, чаще всего по-лиэтиленгликолевой цепи. По-видимому, при растворении образуются гидраты вследствие образования водородной связи между кислородными атомами полиэтиленгликоле-вого остатка и молекулами воды.
Вследствие разрыва водородной связи при повышении т-ры р-римость неионогенных ПАВ уменьшается, поэтому для них точка помутнения -верх. температурный предел мицеллообразования- является важным показателем. Mн. соед., содержащие подвижной атом H (к-ты, спирты, фенолы, амины), реагируя с этиленок-сидом, образуют неионогенные ПАВ RO (C 2 H 4 O) n H. Полярность одной оксиэтиленовой группы значительно меньше полярности любой кислотной группы в анионактивных ПАВ. Поэтому для придания молекуле требуемой гидро-фильности и значения ГЛБ в зависимости от гидрофобного радикала требуется от 7 до 50 оксиэтиленовых групп. Характерная особенность неионогенных ПАВ-жидкое состояние и малое пенообразование в водных р-рах.
Неионогенные ПАВ разделяют на группы, различающиеся строением гидрофобной части молекулы, в зависимости от того, какие в-ва послужили основой получения полигли-колевых эфиров. На основе спиртов получают оксиэтилиро-ванные спирты RO(C 2 H 4 O) n H; на основе карбоновых к-т — оксиэтилированные жирные кислоты RCOO (C 2 H 4 O) n H; на основе алкилфенолов и алкилнафтолов — оксиэтилированные алкилфенолы RC 6 H 4 O(C 2 H 4 O) n H и соед.
RC 10 H 6 O-— (C 2 H 4 O) n H; на основе аминов, амидов, имидазолинов-оксиэтилированные алкиламины RN[ (C 2 H 4 O) n H] 2 , соед. RCONH(C 2 H 4 O) n H, соед. ф-лы III; на основе сульфамидов и меркаптанов- ПАВ типа RSO 2 NC(C 2 H 4 O) n H] 2 и RS(C 2 H 4 O) n H. Отдельную группу составляют проксанолы (п л ю r о н и к и) — блоксополимеры этилен- и пропиленокси-дов НО (C 2 H 4 O) x (C 3 H 6 O) y (C 2 H 4 O) z H, где х, у и z варьируют от неск. единиц до неск. десятков, и проксамины (тетро-ники; ф-ла IV) — блоксополимеры этилен- и пропиленокси-дов, получаемые в присут. этилендиамина. Алкилацетиленгли коли служат основой получения ПАВ типа H(OC 2 H 4 ) n —OCR’R : CCCR’R»O (C 2 H 4 O) n H; эфиры фосфорной к-ты-типа (RO) 2 P(O)O(C 2 H 4 O) n H; эфиры пентаэритрита-типа V. Неионогенными ПАВ являются продукты конденсации гликозидов с жирными спиртами, карбоновыми к-тами и этиленоксидом. Выделяют также ПАВ группы сорбиталей (твинов, ф-ла VI)-продукты присоединения этиленоксида к моноэфиру сорбитона и жирной к-ты. Отдельную группу составляют кремнийорг. ПАВ, напр. (CH 3 ) 3 Si [OSi (CH 3 ) 2 ] n — (CH 2 ) 3 O(C 2 H 4 O) m H.
Оксиэтилированные спирты C 10 -C 18 с n от 4 до 9и плюро-ники образуют самопроизвольные микроэмульсии масло/вода и вода/масло. Неионогенные ПАВ хорошо совмещаются с др. ПАВ и часто включаются в рецептуры моющих средств.
Амфотерные (амфолитные) ПАВ содержат в молекуле гидрофильный радикал и гидрофобную часть, способную быть акцептором или донором протона в зависимости от рН р-ра. Обычно эти ПАВ включают одну или неск. основных и кислотных групп, могут содержать также и неионоген-ную полигликолевую группу. В зависимости от величины рН они проявляют св-ва катионактивных или анионактивных ПАВ.
При нек-рых значениях рН, наз. изоэлектрической точкой, ПАВ существуют в виде цвиттер-ионов. Константы ионизации кислотных и основных групп истинно р-римых амфотерных ПАВ весьма низки, однако чаще всего встречаются катионно-ориентированные и анионно-ориентирован-ные цвиттер-ионы. В качестве катионной группы обычно служит первичная, вторичная или третичная аммониевая группа, остаток пиридина или имидазолина. В принципе вместо N м. б. атомы S, P, As и т. п. Анионными группами являются карбоксильные, сульфонатные, сульфоэфирные или фосфатные группы.
По хим. строению и нек-рому сходству св-в амфолитные ПАВ делят на 5 осн. групп: 1) алкиламинокарбоновые к-ты RNH (CH 2 ) n COOH; алкильный радикал амина обычно нормальный (прямоцепочечный), но если он расположен между аминной группой и карбоксильной, иногда имеет разветвленный характер. К этой же группе относят алкиламино-фенилкарбоновые к-ты RNHC 6 H 4 COOH; алкиламинокарбоновые к-ты с первичной, вторичной или третичной аминогруппой RCH (NH 2 ) COOH, RCH (NHR) COOH, R(CH 3 )NCH 2 COOH; с промежут. гидроксильной, эфирной, сложноэфирной, амидной или сульфоамидной группой; в-ва с двумя и более амино- и амидогруппами, с несколькими амино- и гидроксильными группами.
2) Алкилбетаины представляют собой наиб, важную группу цвиттер-ионных ПАВ. Их можно разделить на 5 осн. групп: а) алкилбетаины -С-алкилбетаины RCH [N + (CH 3 ) 3 ] COO — и N-алкилбетаины RN + (CH 3 ) 2 СН 2 СОО — ; б) сульфит-, суль-фо-, сульфат- и фосфатбетаины RN + (CH 3 ) 2 CH 2 CH 2 RN + (CH 3 ) 2 CH 2 CH 2 , RC 6 H 4 CH 2 N + (CH 3 ) 2 CH 2 CH 2 RN + (CH 3 ) 2 CH 2 CH(OH)CH 2 OP; в) амидобетаины RCONH(CH 2 ) 3 N + (CH 3 ) 2 COO — ; г) оксиэтилированные бетаины RN + [(C 2 H 4 O) p H][(C 2 H 4 O) g H]CH 2 COO — ; д) др. цвиттер-ионные ПАВ.
3) Производные алкилимидазолинов, в молекулах к-рых анионные и катионные группы имеют примерно одинаковые константы ионизации (ф-лы VII и VIII), где R-алкил C 7 -C 17 , R’-H, Na, CH 2 COOM (M-металл). По структуре и методам синтеза выделяют бетаиновые ПАВ, включающие карбокси-, сульфо-, сульфат- или сульфоэфировую группу [ф-ла IX; R’ = (CH 2 ) n COO — , (CH 2 ) 3 , CH 2 CH(OH)CH 2 ] и прочие («небетаиновые») имидазолиновые ПАВ [ф-ла X; R’ = CH 2 COONa, (СН 2 ) 2 N (CH 2 COOH) 2 , (СН 2 ) 2 N= =CHC 6 H 4 SO 3 H, (CH 2 ) 2 OSO 3 H]. Сбалансированность ионизир. групп обеспечивает этим соед. хорошие коллоид-но-хим. и санитарно-гигиенич. св-ва.
4) Алкиламиноалкансульфонаты и сульфаты (AAAC 1 и AAAC 2 соотв.). Анионно-ориентир. в-ва легко переходят в цвиттер-ионную форму, что позволяет выделять их в чистом виде. Константа ионизации кислотной группы гораздо больше, чем основной, поэтому их применяют в щелочной среде.
Однако в случае неск. основных групп и при наличии рядом с кислотной группой др. гидрофильных групп эти в-ва по св-вам и областям применения сходны с амфолитными ПАВ и обладают бактерицидным действием. В зависимости от констант ионизации можно выделить соли AAAC 1 RN(R’)-R : —SO 3 M, AAAC 2 RN(R’)-R : — OSO 3 M, производные ароматич. аминосульфокислот RR’N—Ar—SO 3 M, аминосульфонаты с атомом N в гетероциклах (ф-ла XI); аминофосфаты, аминофосфонаты и др. аминосоед.: соед. типа RR’R : P(O)(OH) 2 , RR’R»OP(O)(OH) 2 , где R и R’-длинный и короткий углеводородные радикалы, R : -короткий двухвалентный радикал; соед. RN(CH 2 CH 2 SO 3 Na) 2 . Их отличие-хорошая способность диспергировать кальциевые мыла и устойчивость к солям жесткости воды.
5) Полимерные амфолитные ПАВ: природные (белки, нуклеиновые к-ты и т.п.); модифицированные природные (олигомерные гидролизаты белков, сульфатир. хитин); продукты ступенчатой конденсации аминов, формальдегида, альбумина, жирных к-т; производные целлюлозы, полученные введением карбоксильных и диэтаноламиноэтильных групп; синтетические, в молекулах к-рых сочетаются структурные особенности всех приведенных выше групп амфотер-ных ПАВ (см., напр., ф-лы XII-XVI).
Применение ПАВ. Мировое произ-во ПАВ составляет 2-3 кг на душу населения в год. Примерно 50% производимых ПАВ используется для бытовой химии (моющие и чистящие ср-ва, косметика), остальное-в пром-сти и с. х-ве. Одновременно с ежегодным ростом произ-ва ПАВ соотношение между их применением в быту и пром-сти изменяется в пользу пром-сти.
Применение ПАВ определяется их поверхностной активностью, структурой адсорбц. слоев и объемными св-вами р-ров. ПАВ обеих групп (истинно р-римые и коллоидные) используют в качестве диспергаторов при измельчении твердых тел, бурении твердых пород (понизители твердости), для улучшения смазочного действия, понижения трения и износа, интенсивности нефтеотдачи пластов и т. д. Др. важный аспект использования ПАВ — формирование и разрушение пен, эмульсий, микроэмульсий. Широкое применение ПАВ находят для регулирования структурообразования и устойчивости дисперсных систем с жидкой дисперсионной средой (водной и органической). Широко используются ми-целлярные системы, образуемые ПАВ как в водной, так и в неводной среде, для к-рых важны не поверхностная актив ность ПАВ и не св-ва их адсорбц. слоев, а объемные св-ва: резко выраженные аномалии вязкости с повышением концентрации ПАВ вплоть до образования, напр. в водной среде, кристаллизац. структур твердого мыла или твердо-образных структур (в пластичных смазках на основе нефтяных масел).
ПАВ находят применение более чем в 100 отраслях народного хозяйства. Большая часть производимых ПАВ используется в составе моющих ср-в, в произ-ве тканей и изделий на основе синтетич. и прир. волокон. К крупным потребителям ПАВ относятся нефтяная, хим. пром-сти, пром-сть строит. материалов и ряд других. Наиб. важные применения ПАВ:
-бурение с глинистыми р-рами и обратимыми эмульсиями вода/масло. Для регулирования агрегативной устойчивости и реологич. характеристик р-ров применяют высо-комол. ПАВ-водорастворимые эфиры целлюлозы, поли-акриламид и др., в эмульсии вводят кальциевые соли прир. и синтетич. жирных к-т (C 16 -C 18 и выше), алкилароматич. сульфонаты, алкиламины, алкиламидоамины, алкилимида-золины;
-повышение нефтеотдачи пластов посредством мицелляр-ного заводнения (оксиэтилированные алкилфенолы и спирты, алкилароматич. сульфонаты);
-антиокислительные, противозадирные и др. присадки в произ-ве минер. масел (мыла синтетич. жирных к-т, нефтяные сульфонаты, оксиэтилир. спирты) и пластич. смазок (производные фенолов, ариламины, алкил- и арилфосфаты);
-регулирование смачивания при флотации железных и марганцевых руд (мыла прир. и синтетич. жирных к-т, высшие алифатич. амины), руд редких металлов (алкиларсо-новые и алкилфосфоновые к-ты, алкилароматич. сульфонаты);
-произ-во хим. волокон (оксиэтилир. амины и амиды, проксанолы и проксамины, высшие спирты и к-ты);
-мех. обработка металлов: адсорбц. понижение прочности, повышение скоростей резания, строгания, фрезерования (мыла прир. и синтетич. жирных к-т, алкилароматич. сульфонаты, оксиэтилир. спирты и т.д.);
-пром-сть строит. материалов: регулирование мех. и рео-логич. св-в бетонных смесей за счет адсорбц. модифицирования компонентов (эфиры синтетич. жирных к-т, сульфонаты, алкиламины, алкилсульфаты, оксиэтилир. жирные к-ты);
-улучшение структуры почв, предотвращение эрозионных процессов (ПАВ-полиэлектролиты — продукты неполного гидролиза полиакрилонитрила, продукты амидирова-ния полиакриловой и полиметакриловой к-т, причем в составе полимерной цепи варьируются амидные, циклические имидные, карбоксильные и др. группы).
Биологическое разложение ПАВ. Водные р-ры ПАВ в большей или меньшей концентрации поступают в стоки пром. вод и в конечном счете-в водоемы. Очистке сточных вод от ПАВ уделяется большое внимание, т. к. из-за низкой скорости разложения ПАВ вредные результаты их воздействия на природу и живые организмы непредсказуемы. Сточные воды, содержащие продукты гидролиза полифосфатных ПАВ, могут вызвать интенсивный рост растений, что приводит к загрязнению ранее чистых водоемов: по мере отмирания растений начинается их гниение, а вода обедняется кислородом, что в свою очередь ухудшает условия существования др. форм жизни в воде.
Среди способов очистки сточных вод в отстойниках — перевод ПАВ в пену, адсорбция активным углем, использование ионообменных смол, нейтрализация катионактивными в-вами и др. Эти методы дороги и недостаточно эффективны, поэтому предпочтительна очистка сточных вод от ПАВ в отстойниках (аэротенках) и в естеств. условиях (в водоемах) путем биол. окисления под действием гетеротрофных бактерий (преобладающий род-Pseudomonas), к-рые входят в состав активного ила.
По отношению к этому процессу ПАВ принято делить на «мягкие» и «жесткие». К жестким ПАВ относятся нек-рые алкилбензолсульфонаты (напр., тетрапропилбензолсульфонат) и оксиэтилир. изооктилфе-нолы; в настоящее время они практически не производятся. Степень биоокисления т. наз. мягких ПАВ зависит от структуры гидрофобной части молекулы ПАВ: при ее разветвлен-ности биоокисление резко ухудшается. Теоретически биоокисление идет до превращ. орг. в-в в воду и углекислый газ, практич. проблема сводится лишь к времени окисления, т. е. к кинетике процесса. Если окончат. окисление происходит медленно, ПАВ успевает произвести вредное влияние на живые организмы и прир. среду.
При биохим. очистке отработанных р-ров ПАВ окисление ведется в присут. ферментов. С увеличением т-ры скорость окисления увеличивается, но выше 35 0 C ферменты разрушаются. Анионактивные ПАВ адсорбируются на межфазных пов-стях раздела, вследствие чего снижается ферментативный гидролиз жиров, белков и углеводов, приводящий к угнетению жизнедеятельности бактерий.
Механизм биоокисления ПАВ устанавливается путем изучения промежут. продуктов распада. Так, в промежут. продуктах распада алкилбензолсульфонатов обнаружены: алкилбензолсульфонаты с короткой алкильной цепью; суль-фофенилкарбоновые к-ты в среднем с 4 атомами С в цепи; сульфокарбоновые к-ты с 5-6 атомами С; сульфодикарбоно-вые к-ты и сульфокислоты. Это позволяет предположить, что биоразложение начинается с концевой метильной группы. Чем ближе остаток продвигается к бензольному кольцу, тем окисление происходит медленнее. Конечной стадией является распад бензольного кольца на ненасыщ. соед., к-рые окисляются достаточно быстро и полно.
Алифатич. ПАВ окисляются быстрее, чем циклические, причем сульфонаты окисляются труднее, чем сульфаты.
По-видимому, это связано с тем, что сульфаты в воде гидролизуются. Прямоцепочечные первичные и вторичные алкилсульфаты за 1 ч полностью разрушаются в сточных водах. Алкилсульфаты с разветвленной цепью окисляются медленнее, а прямоцепочечные алкилбензолсульфонаты полностью распадаются лишь за 3 сут. Биоразложение катионактивных ПАВ мало изучено, нек-рые исследователи не рекомендуют сбрасывать их в сточные воды.
Рост произ-ва ПАВ привел к появлению крупных предприятий, являющихся локальными источниками загрязнения воды. Высококонцентрир. сточные воды этих предприятий м. б. очищены микробиол. методом, основанным на использовании высокоактивных культур микроорганизмов. Получены штаммы бактерий, разрушающих алкилсульфаты, алкилсульфонаты, алкилбензолсульфонаты, сульфоэтокси-латы и др.
Идентифицированы промежут. продукты распада, к-рые являются аналогами прир. в-в, нетоксичны и не оказывают неблагоприятного воздействия на окружающую среду. Один из важных результатов бактериального расщепления — отсутствие среди промежут. продуктов распада в-в с явно выраженной дифильностью молекул. Метод дал положит. результаты для сточных вод, содержащих 500 мг/л ПАВ. Эффективность очистки составила 95-97% за время не более 12 ч. Среди грамотрицат. бактерий обнаружены микроорганизмы (деструкторы), к-рые усваивают ПАВ как питат. субстрат.
Лит.: Коллоидные поверхностно-активные вещества, пер. с англ. под ред. А. Б. Таубмана, 3. H. Маркиной, M., 1966; Физико-химические основы применения поверхностно-активных веществ, Ташкент, 1977; Поверхностно-активные вещества. Справочник, под ред.
А. А. Абрамзона и Г. M. Паевого, Л., 1979; Мицеллообразование, солюбилизация и микроэмульсии, пер. с англ., M., 1980; А б r а м з о н А. А., Поверхностно-активные вещества. Свойства и применение, 2 изд., Л., 1981; Успехи коллоидной химии, под ред. И. В. Петрянова-Соколова и К. С. Ахмедова, Ташкент, 1987. С. И. Файнгольд, В. П. Тихонов.
Источник: xumuk.ru
Поверхностно-активные вещества (ПАВ)
Устойчивость полимерных дисперсий обусловливается наличием в дисперсионной среде (в нашем случае воде) поверхностно-активных веществ — стабилизаторов. Поверхностно-активные вещества (ПАВ) — вещества, способные накапливаться на поверхностях соприкосновения двух тел, называемых поверхностями раздела фаз (для водных дисперсий полимера это — поверхность полимерных частиц). ПАВ создают на поверхности частиц адсорбционно-сольватный защитный слой, препятствующий их сближению и коагуляции. Препятствием к сближению частиц могут быть:
расклинивающее давление воды, связанной в адсорбционном слое молекулами или ионами стабилизатора;
электростатическое отталкивание одноименно заряженных ионов, адсорбированных на поверхности частиц и образовавших двойной электрический слой.
ПАВ могут быть двух типов: ионогенные и неионогенные. Ионо-генные ПАВ ( 1, а) распадаются в воде на ионы; при этом один ион, содержащий органическую часть молекулы ПАВ, является защитным ионом, адсорбирующимся на частице полимера своей органической частью. Заряженная часть этого иона способствует образованию вокруг частицы полимера двойного электрического слоя. Примером ионоген-ного ПАВ может служить обычное мыло — стеарат натрия, диссоциирующее в водной среде с образованием поверхностно-активного аниона: C17H3sCOONa^ C17H3sCOO- + Na+
Неионогенные ПАВ ( 1, б) имеют так называемые дифильные молекулы: одна часть молекулы — полярная — имеет сродство к воде, другая — неполярная — к полимеру.
Для стабилизации полимерных дисперсий в строительной практике обычно применяют неионогенные ПАВ — вещество ОП-7 и ОП-10 (ГОСТ 8433 — 81) или смесь этих веществ с казеинатом аммония в соотношении 1:1. Этот комплексный стабилизатор получают из смеси (мае. ч.): казеин — 1; вещество ОП-7 (ОП-10) — 1; 25%-ный водный раствор аммиака — 1; вода — 4. Казеин, раствор аммиака и воду помещают в смеситель и подогревают до 70. 80 «С при постоянном перемешивании до получения однородного продукта. Затем добавляют ОП-7 и массу повторно перемешивают.
Полученный стабилизатор совмещают с латексом из расчета 1 : 10 (по сухому веществу). Стабилизированный таким образом латекс промышленность выпускает под маркой СКС-65ГП марки „Б».
Существует два подхода при расчете необходимого количества стабилизатора для предотвращения коагуляции дисперсии, вводимой в цементное тесто. Если исходить из того, что основной причиной коагуляции дисперсии является цемент (выделение Са+2 в водную среду, адсорбция стабилизатора частицами цемента), определяют количество стабилизатора в зависимости от расхода цемента. Эта величина обычно-составляет 1 . 2 % от массы цемента.
На практике же часто пользуются дисперсиями, в которые заранее введен стабилизатор (обычно около 10% от массы полимера). Для полимерцементных композиций с П/Ц = 0,1—0,2 в этом случае мы имеем необходимую степень стабилизации по отношению к цементу (1. 2%). Однако для композиций с низким П/Ц (0,04. 0,08) количество стабилизатора в дисперсии по отношению к цементу может оказаться недостаточным и понадобится дополнительная стабилизация.
Таким образом, при приготовлении полимерцементных смесей во избежание получения материалов с плохими свойствами необходимо при всех изменениях состава смеси или ее компонентов проверять, нет ли коагуляции полимерной дисперсии. Исключение составляет ПВА дисперсия, которая, как правило, не нуждается в дополнительной стабилизации в полимерцементных материалах. Объясняется зто тем, что стабилизатором ПВА дисперсии служит поливиниловый спирт, который был применен при эмульсионной полимеризации винилаце-тата в ПВА; в щелочной же среде цементного теста количество поливинилового спирта в ПВА дисперсии увеличивается в результате поверхностного гидролиза самого ПВА. Часто в состав полимерцементных композиций вводят ускорители твердения, например хлорид кальция, так как стабилизаторы полимерных дисперсий замедляют твердение минеральных вяжущих.
Полимерная дисперсия, введенная в цементную смесь (цементное тесто, растворную или бетонную смесь), оказывает сильное пластифицирующее действие. Причин этого явления несколько.
ПАВ, стабилизирующие полимерные дисперсии, одновременно являются и пластификаторами цементных смесей, а их количество, приходящееся на цемент в полимерцементных смесях, близко к оптимальным расходам пластификаторов в обычных бетонах и растворах.
Присутствие в цементных смесях полимерных дисперсий вызывает сильное воздухововлечение в смесь, что также оказывает сильное пластифицирующее действие.
Указанные факторы позволяют сильно снизить В/Ц смесей без снижения ее пластичности. Так, например, при введении латекса СКС-65 ГП „Б» в цементно-песчаный раствор состава 1:3с увеличением П/Ц равная пластичность смесей (расплыв конуса на встряхивающем столике 120 мм) достигается при все уменьшающихся значениях В/Ц:
П/Ц 0 0,06 0,09 0,12
В/Ц 0,5 0,42 0,35 0,29
Для разных видов цемента, полимерных дисперсий и стабилизирующих систем зти значения будут различные, но общая закономерность сохраняется. При снижении В/Ц прочность бетонов и растворов возрастает. Такая же зависимость наблюдается и для полимерцементных бетонов и растворов, но ее четкому проявлению мешают некоторые особенности таких бетонов и растворов.
Добиться повышения прочности и улучшения водонепроницаемости и морозостойкости полимерцементных материалов можно, применив специальные вещества — пеногасители, снижающие эффект воздухо-вовлечения до минимума. Пеногасители — зто обычно эмульсии крем-нийорганических полимерных веществ типа полиметилсилоксанов, вводимые в очень малых количествах. Например, для эффективного подавления воздухововлечения при применении латекса СКС-65, стабилизированного 10% вещества ОП-7, достаточно 0,5% пеногасителя от массы латекса (по сухому остатку).
Присутствие полимерной дисперсии в полимерцементном бетоне оказывает сложное воздействие на процесс твердения минерального вяжущего. В смесях, наносимых на пористое основание, благодаря повышенной водоудерживающей способности смесь не обезвоживается и тем самым улучшаются условия гидратации цемента.
При твердении в воздушно-сухих условиях полимерная дисперсия замедляет испарение влаги из твердеющего материала и улучшает условия гидратации минерального вяжущего. Но одновременно присутствие в твердеющей системе водорастворимых органических веществ замедляет твердение цемента. Поэтому при твердении во влажных условиях полимерцемент-ные материалы медленнее набирают прочность, чем чисто цементные. Кроме того, влажные условия препятствуют процессу пленкообразо-вания из полимерной дисперсии, т. е. замедляется формирование структуры полимерного связующего.
Все эти обстоятельства необходимо учитывать при определении оптимального режима твердения для бетона и растворов с полимерными дисперсиями. Обычно принимают следующий режим твердения: первые 7. 10 дн во влажных условиях, а далее — в воздушно-сухих. Такой режим обеспечивает формирование достаточно прочной минеральной структуры, а затем — полимерной.
Полимерцементные мастичные составы, растворы и бетоны на водных дисперсиях полимеров находят широкое применение в качестве отделочных составов при штукатурных и плиточных работах, устройстве покрытий полов, для особо прочной кладки стен, при гидроизоляции и ремонте бетонных и железобетонных конструкций (см. гл. III).
Источник: www.bibliotekar.ru
ПОВЕ́РХНОСТНО-АКТИ́ВНЫЕ ВЕЩЕСТВА́
ПОВЕ́РХНОСТНО-АКТИ́ ВНЫЕ ВЕЩЕ СТВА́ (ПАВ), химич. соединения, адсорбирующиеся на поверхности раздела фаз (тел) и образующие на ней слой повышенной концентрации (адсорбционный слой). Поверхностно-активным может быть любое вещество, являющееся компонентом жидкой или газовой фазы и под действием межмолекулярных сил скапливающееся у межфазной поверхности. Однако, следуя традиции, ПАВ обычно называют органич. соединения, адсорбция которых из растворов даже очень малой концентрации сопровождается существенным снижением свободной поверхностной энергии или поверхностного (межфазного) натяжения.
Источник: bigenc.ru
Поверхностно-активные вещества
Поверхностно-активные вещества — химические соединения, которые, концентрируясь на поверхности раздела фаз, вызывают снижение поверхностного натяжения.
Основной количественной характеристикой ПАВ является поверхностная активность — способность вещества снижать поверхностное натяжение на границе раздела фаз — это производная поверхностного натяжения по концентрации ПАВ при стремлении С к нулю.
Однако, ПАВ имеет предел растворимости (так называемую критическую концентрацию мицеллообразования или ККМ), с достижением которого при добавлении ПАВ в раствор концентрация на границе раздела фаз остается постоянной, но в то же время происходит самоорганизация молекул ПАВ в объёмном растворе (мицеллообразование или агрегация).
В результате такой агрегации образуются так называемые мицеллы.
Отличительным признаком мицеллообразования служит помутнение раствора ПАВ.
Водные растворы ПАВ, при мицеллообразовании также приобретают голубоватый оттенок (студенистый оттенок) за счёт преломления света мицеллами.
Теоретически любое химическое соединение, имеющее в молекуле гидрофильные и гидрофобные участки, будет поверхностно активным.
Однако в действительности только некоторые из них являются эффективными моющими средствами, стабилизаторамиэмульсий и пен, пленкообразователями и т. д.
По своему применению ПАВ данного класса делятся на смачиватели, солюбилизаторы, эмульгаторы, моющие агенты, пенообразователи.
По химическим свойствам они разделяются на:
-анионные ПАВ — в водном растворе распадаются с образованием отрицательно заряженных ионов;
— катионные ПАВ — в водном растворе распадаются с образованием положительно заряженных ионов;
— амфотерные ПАВ — в водном растворе, в зависимости от рН среды, могут проявлять катионные (в кислой среде рН<7) или анионные (в щелочной среде рН>7) свойства;
— неионогенные ПАВ — в водном растворе не образуют ионов.
Упрощенно действие поверхностно активных веществ можно описать следующим образом.
Благодаря тому, что ПАВ обладают поверхностной активностью, они снижают поверхностное натяжение воды, поэтому загрязнение лучше отстает от поверхности (кожи, волос).
Что и обеспечивает перевод загрязнений в раствор, т. е. отмывку загрязнений.
Происходит это благодаря тому, что молекула ПАВ имеете двойственную структуру один ее конец гидрофильный (т.е. любит воду) другой липофильный (т.е. любит жир).
Анионные ПАВ, отвечают за моющую способность любого щелочного мыла (детского, ручной работы, банного, туалетного и т.п.), а также большинства шампуней и жидких мыл.
В моющих средствах жирорастворимая часть молекулы анионного ПАВ связывает и обволакивает частицы грязи в секрете сальных желез, которые затем вымываются водой.
Одновременно водорастворимая часть молекулы ориентирует эти частицы в сторону от кожи, несущей отрицательный заряд.
При этом жирные загрязнения попадают внутрь молекулы ПАВ, благодаря чему не оседают на поверхности снова.
А уходят вместе с водой, удерживаясь в ней благодаря гидрофильной части.
Первое ПАВ — мыло — «живет» уже почти 4000 лет, однако с 1950 х гг. его несколько потеснили моющие и чистящим средства на основе алкилбензолсульфоната.
Источник: neftegaz.ru
Х и м и я
Поверхностно-активные вещества – это химические соединения, способные накапливаться на поверхности соприкосновения двух тел или двух термодинамических фаз (называемых поверхностью раздела фаз), и вызывающие снижение поверхностного натяжения веществ, образующих эти фазы.
На межфазной поверхности Поверхностно-активные вещества образуют слой повышенной концентрации — адсорбционный слой.
Строение ПАВ
Строго говоря, очень многие вещества при соответствующих условиях могут проявить поверхностную активность, т. е. адсорбироваться под действием межмолекулярных сил на той или иной поверхности, понижая её свободную энергию.
Однако поверхностно-активными обычно называются лишь те вещества, присутствие которых в растворах уже при весьма малых концентрациях (десятые и сотые доли %) приводит к резкому снижению поверхностного натяжения вещества этих растворов.
Как правило, такие вещества имеют дифильное строение молекул.
Слово дифильный можно перевести как «двояколюбящий» (от philéo — люблю). Или, выражаясь по-русски, дифильными можно назвать молекулы, имеющие сродство к веществам с разной природой.
Например, вода и масло почти не взаимодействуют друг с другом. Если их смешать в одной ёмкости, то такая смесь через некоторое время расслоится. Вода, как более тяжёлая, окажется внизу ёмкости, а масло соберётся в верхней её части.
Расслоение присходит потому, что масло и вода относятся к разным средам. Между молекулами этих сред действуют принципиально разные силы. Подробнее об этом в разделе: Взаимодействие «воды» и «масла».
Молекулы воды взаимодействуют друг с другом при помощи ориентационных сил, а молекулы масла – при помощи дисперсионных сил. Таким образом, при встрече вода и масло проявляют друг к другу безразличие.
В молекулах дифильных веществ одновременно присутствуют как полярные (гидрофильные) группы, так и неполярные (гидрофобные).
Примером полярных групп могут служить –OH, -COOH, -NO2, -NH2, -CN, -OSO3 и т.д. Неполярной частью молекулы обычно являются углеродные радикалы.
К ПАВам относятся карбоновые кислоты, их соли, спирты, амины, сульфокислоты и другие вещества.
Самым распространённым примером веществ с дифильной структурой являются мыла – натриевые и калиевые соли высших жирных кислот.
Работа ПАВ в дисперсных системах
Дифильные вещества обладают замечательным качеством. Они являются своего рода «мостиками», при помощи которых становится возможным взаимодействие фаз, до этого «игнорировавших» друг друга.
Действие таких веществ проявляется на поверхности соприкасающихся фаз и приводит к ативности сами вещества фаз, которые до этого момента не взаимодействовали.
Благодаря своим качествам ПАВы могут использоваться в составах моющих средств или стабилизаторов эмульсий.
Моющие средства — вещества или смеси веществ, применяемые в водных растворах для очистки (отмывки) поверхности твёрдых тел от загрязнений.
В моющих средствах ПАВы работают следующим образом.
Молекула ПАВ – это дифильная молекула, имеющая в своём составе, как полярные (гидрофильные) группы, так и неполярные (гидрофобные).
Таким образом, своим гидрофобным хвостом она может взаимодействовать с молекулами загрязнения (как правило, имеющего жирную, т.е гидрофобную природу), а при помощи своей полярной группы связывается с полярной молекулой воды.
Одновременно с этим молекулы ПАВ внедряются в поверхностный слой загрязнения и понижают силы взаимного притяжения между молекулами загрязнения.
Говоря по-другому, молекулы ПАВ положительно адсорбируются в поверхностном слое загрязнения и снижают поверхностное натяжение взаимодействующих фаз. Это, в свою очередь, облегчает возможность отрыва отдельных кусочков загрязнения от основной его массы. Оторванные части загрязнения уносятся водой.
Самые известные моющие средства – мыла. Мыла представляют собой натриевые и калиевые соли жирных кислот (натриевые – твёрдые, калиевые – жидкие).
CH 3 (CH 2 ) n COONa.
Эму́льсия — дисперсная система, состоящая из микроскопических капель жидкости (дисперсной фазы), распределенных в другой жидкости (дисперсионной среде).
Дисперсная фаза и дисперсионная среда – это две фазы жидкостей, имеющих разную природу, и по этой причине, не растворяющиеся одна в другой, отторгающие друг друга.
Если уже знакомые нам воду и масло тщательно перемешать друг с другом при помощи миксера, то они образуют дисперсную систему, в которой маленькие частички воды будут соседствовать с частичками масла.
Но эта дисперсная система просуществует недолго. По уже известным нам причинам произойдёт расслоение фаз. Частички воды и масла будут укрупняться, соединяясь с себе подобными. Через некоторое время произойдёт образование двух монолитных фаз: масло вверху, вода внизу. Так что такую систему нельзя назвать дисперсной.
Чтобы дисперсная система состоялась, в её состав добавляют специальные вещества – стабилизаторы эмульсий или эмульгаторы.
Эмульгаторы представляют собой поверхностно активные вещества.
Представим себе эмульсию типа «масло в воде». В такой эмульсии микроскопические капельки масла будут распределены в объёме воды.
Эмульгатор, присутствующий в эмульсии, состоит из молекул дифильной природы. Своими гидрофобными хвостами молекулы эмульгатора будут взаимодействовать с молекулами масла. В результате этого взаимодействия вытянутые молекулы эмульгатора приобретут чёткую ориентацию: гидрофобные хвосты внутрь, полярные группы наружу.
Такое образование, напоминающее свернувшегося ежа, называется мицеллой.
Наружная поверхность мицеллы будет образована полярными (гидрофильными) группами эмульгатора. А эти группы, как мы знаем, могут взаимодействоать с молекулами воды, притягивая к себе противоположно заряженные части этих молекул.
Эта конструкция позволяет эмульсии избежать расслоения и в течение долгого времени сохраняет её стабильной.
Классификация ПАВ
Поверхностно активные вещества можно классифицировать по разным признакам. Мы приведём три вида классификаций:
По типу гидрофильных групп:
По характеру использования:
По длине гидрофобной цепи:
Классификация по типу гидрофильных групп:
Для ПАВ эта классификация является основной.
По типу гидрофильных групп ПАВы делят на:
— ионные, или ионогенные,
— неионные, или неионогенные.
Ионные ПАВы диссоциируют в воде на ионы, одни из которых обладают адсорбционной (поверхностной) активностью, другие — неактивны.
Рабочее действие ПАВа обеспечивается именно адсорбционно активными ионами.
Если адсорбционно активны анионы (т.е. отрицательно заряженные ионы), то ПАВы называются анионными, или анионоактивными, если активны катионы (положительно заряженные ионы) — катионными, или катионо-активными.
Амфотерные (или амфолитные) ПАВ содержат в своём составе одновременно две функциональные группы, одна из которых имеет кислый, другая – основной характер. В зависимости от среды, в которой они находятся, амфотерные ПАВы могут принимать или отдавать протон и проявлять, таким образом, либо анионную либо катионную активность.
Анионные ПАВы, как говорилось выше, диссоциируют, образуя отрицательно заряженные органические анионы:
RCOONa ↔ RCOO — + Na +
По своему составу анионные ПАВы, чаще всего — это органические кислоты и их соли:
R-COOН или R-COONa, R-COOК.
Наиболее распространены натриевые и калиевые соли жирных кислот. Их называют мылами. Натриевые соли имеют твёрдую консистенцию, калиевые – жидкую.
Также, большое распространение имеют соли кислых эфиров высокомолекулярных спиртов жирного ряда и серной кислоты с общей формулой:
CH 3 (CH 2 ) n -O-SO 3 Na
Такие соли называются алкилсульфатами. Алкилсульфаты вырабатываются из спиртов с количеством углеродных атомов в цепи С12 – С14, получаемых из кокосового масла или гидрогенезацией кашалотного жира. Жирные спирты подвергаются фракционной дистилляции, и сульфатируются серной или хлорсульфоновой кислотой.
Полученный таким образом лаурилсульфат является одним из наиболее широко используемых анионных моющих средств. Его формула:
CH 3 (CH 2 ) 11 -O-SO 3 Na
К анионным ПАВам принадлежат многие классы химических соединений. В таблице ниже приведём некоторые из них:
Некоторые анионные ПАВ
Na-соль первичных алкилсульфатов
Разветвлённые вторичные сульфаты
Соли высших жирных кислот (мыла)
Сложные эфиры моноглицеридсульфатов
Сульфированные жирноароматические карбоновые кислоты
Сложные эфиры сульфоянтарнойкислоты
Бутиловый эфир сульфорицинолевой кислоты
Сложные эфиры сульфонаталкилкарбоновых кислот
Модифицированные мыла N-метил-N-карбоксиметиламиды высших кислот
Конденсат полипептида с жирными кислотами
Конденсат полипептида и алкилсульфоновых кислот
Среди ПАВов именно анионные ПАВы получили самое большое распространение. Их объём производства превышает объёмы производства всех остальных ПАВ вместе взятых.
Катионные ПАВы при диссоциации образуют положительно заряженные поверхностно-активные органические катионы:
RNH 2 Cl ↔ RNH 2 + .
Катионные ПАВы — основания, обычно амины различной степени замещения, и их соли. Они представлены следующими соединениями:
Некоторые катионные ПАВ
Соли первичных аминов
Соли вторичных аминов
Соли третичных аминов
Четвертичные аммониевые соли
Объём производства катионных ПАВ значительно ниже, чем анионных, ни их роль с каждым годом возрастает благодаря их моющему и бактерицидному действию, а некоторые их представители, например цетилпиридиний хлорид, вошли в арсенал лекарственных средств.
Амфотерные (или амфолитные) ПАВ в зависимости от условий среды могут проявлять либо анионную, либо катионную активность.
Необходимым условием амфотерности ПАВ является близость констант и основной диссоциации.
Степень превращения ПАВа в катионную или анионную форму зависит от рН среды.
К амфотерным ПАВ относят чаще всего соединения, содержащие одновременно:
Карбоксильную и аминогруппу RN + HR1COO — ;
Сульфоэфирную и аминогруппу RN + HR1ОSO — 3 ;
Сульфонатную и аминогруппу RN + HR1SO — 3.
Наиболее типичным представителем этого класса ПАВ является альфа-алкил-бетаин, получивший торговое название бетаин:
Неионные ПАВ представляют собой высокомолекулярные соединения, которые в водном растворе не образуют ионов.
Растворимость этих ПАВ в воде обусловлена наличием в молекуле неионогенных групп – эфирных или гидроксильных (чаще всего полиэтиленгликолиевый остаток).
Неионные ПАВы представляют особую ценность для медицинской промышленности. Это объясняется несколькими причинами:
1. свойства неионных ПАВ, зависящие от соотношения гидрофильной и липофильной частей молекул, можно изменять, укорачивая или удлинняя углеводородную цепочку и меняя степень полимеризации. Таким образом можно получать продукты с разнообразными, а главное, — точно заданными физическими и химическими свойствами.
2. Неионные ПАВы обладают большой устойчивостью к воздействию щелочей, кислот и солей. Они совместимы с большинством лекарственных веществ, могут смешиваться с органическими растворителями.
3. В отличие от ионных ПАВ, неионные ПАВы оказывают меньшее раздражающее действие на кожный покров и слизистые оболочки. Они не агрессивны, повышают резорбцию лекарственных веществ; эффективны как вспомогательные вещества в приготовлении лекарственных форм.
К классу неионных ПАВ, не подвергающихся электролитической диссоциации принадлежат следующие соединения.
Некоторые неионные ПАВ
1. Полиэтиленоксидные производные
Эфиры полигликоля и высших жирных кислот
Алкилфениловый эфир полигликоля
2. Полиоксипроизводные
Эфир ангидросорбита и жирных кислот (спены)
Полигликолевый эфир ангидросорбита и жирных кислот (твины)
3. Алкилоламиды жирных кислот
Полигликолевый эфир полипропиленгликоля
Полигликолевый эфир этилендиаминополипропиленгликоля
Классификация по характеру использования:
Моющие средства — вещества или смеси веществ, применяемые в водных растворах для очистки (отмывки) поверхности твёрдых тел от загрязнений.
Частным случаем эмульгаторов являются пенообразователи и стабилизаторы пены.
Смачиватели – вещества, вызывающие пептизацию или диспергирование, т.е. измельчение твёрдых тел на мелкие частички или жидкой фазы на мелкие капельки.
Смачивание – первая фаза моющего действия, когда загрязнение распадается на отдельные частички или капельки и впоследствии обвалакивается ПАВом (солюблизируется), и удаляется водой.
Солюблизаторы – вещества, помогающие повысить растворение частиц другого вещества, слаборастворимого в данной жидкой среде.
Молекулы солюблизатора обвалакивают плохо растворимую в данной среде частичку и образуют вокруг неё, так называемую мицеллу.
Сама мицелла имеет сродство к среде растворителя и поэтому растворяется в нём, обеспечивая растворение изначально нерастворимой в нём частицы.
Эмульгаторы — вещества, обеспечивающие стабилизацию эмульсий из несмешивающихся жидкостей.
Смачивание, солюблизация, эмульгирование – все эти процессы являются стадиями моющего действия. Любой ПАВ, в той или иной степени, одновременно является и смачивателем, и солюблизатором, и эмульгатором, и моющим веществом. Но при этом, разные ПАВы проявляют разную эффективность на разных стадиях моющего действия. По этой причине они могут быть классифицированы на смачиватели, солюблизаторы, эмульгаторы и моющие средства.
Классификация ПАВ по длине гидрофобной цепи:
Этот вид классификации особенно важен в случаях, когда поверхностно-активные вещества выполняют роль стабилизаторов эмульсий (эмульгаторов).
Напомним, что эмульгаторы представляют собой дифильные вещества, молекулы которых имеют в своём составе, как полярную (гидрофильную) группу, так и неполярную (гидрофобную) часть.
В зависимости от длины углеводородного (гидрофобного) «хвоста» и силе полярных групп в молекуле такой молекулы, эмульгатор, в целом, будет проявлять или гидрофильные или гидрофобные качества. А от этого всецело будет менятся его роль при стабилизации разного рода эмульсий.
Гидрофильные эмульгаторы. Стабилизация эмульсий типа «вода в масле».
Эмульгаторы с относительно короткой гидрофобной частью, имеют большее сродство с водой и их, поэтому называют гидрофильными.
Гидрофильные эмульгаторы необходимы для стабилизации эмульсий типа «масло в воде». При добавлении гидрофильного эмульгатора в такую эмульсию вокруг капельки масла образуется сплошной слой эмульгатора, сообщающий ей некоторую гидрофильность и повышающий её устойчивость.
Добавление в такую же смесь гидрофобного эмульгатора, большая часть молекулы которого погружается в капельку масла, не обеспечивает устойчивости эмульсии, поскольку часть поверхности капельки остаётся «открытой» и легко может происходить слияние с другими капельками.
Гидрофобные эмульгаторы. Стабилизация эмульсий типа «вода в масле».
Эмульгаторы, молекулы которых имеют относительно длинную гидрофобную часть, обладают преимущественно гидрофобными свойствами. Такие эмульгаторы называют гидрофобными (или липофильными).
Гидрофобные эмульгаторы стабилизируют эмульсии типа «вода в масле». Их молекула, находящаяся большей своей частью в дисперсионной среде (масле), удерживается на поверхности капелек воды своей гидрофильной группировкой (Рис. а).
В результате вокруг каждой капельки воды образуется плотная оболочка из молекул эмульгатора, препятствующая слиянию дисперсной фазы (воды).
Попытка получить эмульсию такого же типа с гидрофильным эмульгатором оказалась бы безуспешной, так как молекулы эмульгатора разместились бы в основном внутри капелек воды (Рис. б).
Вместо сплошной оболочки вокруг капелек имелись бы лишь выступающие над их поверхностью отдельные гидрофобные группы эмульгатора, не препятствующие коалесценции капелек.
Таким образом, эмульгатор должен обладать сродством к дисперсионной среде.
В зависимости от типа желаемой эмульсии следует брать гидрофильные или гидрофобные эмульгаторы той или иной степени диссоциации.
Дисперсность эмульгаторов
Эмульгаторы для эмульсий типа м/в
Эмульгаторы для эмульсий типа в/м
CaCO3, CaSO4, Fe2O3, Fe(OH)3, SiO2, глина и др.
HgI2, PbO, сажа и др.
Желатин, казеин, альбумин, крахмал, декстрин, гуммиарабик, лецитин, желчные кислоты и др.
Смолы, каучук, холестерин и др.
Мыла щелочных металлов, красители
Мыла многовалентных металов
Гидрофильно-липофильный баланс ПАВ
Для количественной оценки пригодности ПАВов в разных областях использования, в том числе, в качестве эмульгаторов в различных средах был введен параметр, называемый гидрофильно-липофильным балансом (ГЛБ).
Каждому поверхно-активному веществу соответствует определённая величина ГЛБ.
Самое низкое значение ГЛБ имеет олеиновая кислота C17H33COOH (ГЛБ = 1),
а самое высокое — лаурилсульфат натрия C12H25SO4Na (ГЛБ = 40).
Для всех остальных ПАВ величина ГЛБ находится в пределах от 1 до 40.
Источник: xn—-7sbb4aandjwsmn3a8g6b.xn--p1ai