Пэс в строительстве что это

Электростанция, преобразующая энергию морских приливов (См. Приливы) в электрическую. ПЭС использует перепад уровней «полной» и «малой» воды во время прилива и отлива.

Перекрыв плотиной залив или устье впадающей с море (океан) реки (образовав водоём, называют бассейном ПЭС), можно при достаточно высокой амплитуде прилива (> 4 м) создать напор, достаточный для вращения гидротурбин (См. Гидротурбина) и соединённых с ними Гидрогенераторов, размещенных в теле плотины.

При одном бассейне и правильном полусуточном цикле приливов ПЭС может вырабатывать электроэнергию непрерывно в течение 4—5 ч с перерывами соответственно 2—1 ч четырежды за сутки (такая ПЭС называется однобассейновой двустороннего действия). Для устранения неравномерности выработки электроэнергии бассейн ПЭС можно разделить плотиной на два или три меньших бассейна, в одном из которых поддерживается уровень «малой», а в другом — «полной» воды; третий бассейн — резервный; гидроагрегаты устанавливаются в теле разделительной плотины. Но и эта мера полностью не исключает пульсации энергии, обусловленной цикличностью приливов в течение полумесячного периода. При совместной работе в одной энергосистеме с мощными тепловыми (в т. ч. и атомными) электростанциями энергия, вырабатываемая ПЭС, может быть использована для участия в покрытии пиков нагрузки энергосистемы, а входящие в эту же систему ГЭС, имеющие водохранилища сезонного регулирования, могут компенсировать внутримесячные колебания энергии приливов.

Приливные электростанции. Страна и факты.

На ПЭС устанавливают капсульные гидроагрегаты (См. Капсульный гидроагрегат), которые могут использоваться с относительно высоким кпд в генераторном (прямом и обратном) и насосном (прямом и обратном) режимах, а также в качестве водопропускного отверстия.

В часы, когда малая нагрузка энергосистемы совпадает по времени с «малой» или «полной» водой в море, гидроагрегаты ПЭС либо отключены, либо работают в насосном режиме — подкачивают воду в бассейн выше уровня прилива (или откачивают ниже уровня отлива) и т. о. аккумулируют энергию до того момента, когда в энергосистеме наступит пик нагрузки (рис. 1).

В случае, если прилив или отлив совпадает по времени с максимумом нагрузки энергосистемы, ПЭС работает в генераторном режиме. Т. о., ПЭС может использоваться в энергосистеме как Пиковая электростанция. Так, например, работает ПЭС на 240 Мвт, построенная в 1966 в эстуарии р. Ране во Франции (рис. 2).

Использование приливной энергии ограничено главным образом высокой стоимостью сооружения ПЭС (стоимость сооружения ПЭС Ране почти в 2,5 раза больше, чем обычной речной ГЭС такой же мощности). В целях её снижения в СССР впервые в мировой практике строительства ГЭС при возведении ПЭС был предложен и успешно осуществлен т. н. наплавной способ, применяющийся в морском гидротехническом строительстве (тоннели, доки, дамбы и т.п. сооружения).

Сущность способа состоит в том, что строительство и монтаж объекта производятся в благоприятных условиях приморского промышленного центра, а затем в собранном виде объект буксируется по воде к месту его установки. Таким способом в 1963—68 на побережье Баренцева моря в губе Кислой (Шалимской) была сооружена первая в СССР опытно-промышленная ПЭС.

Президент поручил к 1 марта дать оценку возможности строительства трех приливных электростанций

Здание ПЭС (36×18×15 м) из тонкостенных элементов (толщиной 15—20 см), обеспечивающих высокую прочность при небольшой массе сооружения, было возведено в котловане на берегу Кольского залива, близ г. Мурманска. После монтажа оборудования и испытания корпуса здания на водонепроницаемость котлован был затоплен, здание на плаву вывели в море и отбуксировали в узкое горло губы Кислой.

Здесь во время отлива оно было установлено на подводное основание и соединено сопрягающими дамбами с берегами; тем самым было перекрыто горло губы и создан бассейн ПЭС (рис. 3). В здании ПЭС предусмотрено размещение 2 обратимых гидроагрегатов мощностью 400 квт каждый. 28 декабря 1968 ПЭС дала промышленный ток. Создание ПЭС Ране и Кислогубской ПЭС и их опытная эксплуатация позволили приступить к составлению проектов Мезенской ПЭС (6—14 Гвт) в Белом море, Пенжинской (35 Гвт) и Тугурской (10 Гвт) в Охотском море, а также ПЭС в заливах Фанди и Унгава (Канада) и в устье р. Северн (Великобритания).

Читайте также:  Перечень документов для продажи земельного участка в строительстве

Лит.: Бернштейн Л. Б., Приливные электростанции в современной энергетике, М., 1961; Жибра Р., Энергия приливов и приливные электростанции, пер. с франц., М., 1964; Кислогубская приливная электростанция, под ред. Л. Б. Бернштейна, М., 1972; Tidal power, ed. Т. J. Gray, О. К. Gashus, N. Y. — L., 1972.

Источник: dic.academic.ru

Россия построит мощнейшую в мире приливную электростанцию на Камчатке

Но самое пристальное внимание сегодня обращено на проект создания Пенжинской ПЭС и двух её «сестёр» — Тугурской и Мезенской приливных электростанций. Они могут стать основой энергосистемы Дальнего Востока, необходимой для производства экологически чистого водорода. На реализацию этого мегапроекта планируется выделить $200 миллиардов.

Человечество давно ищет максимально продуктивный и при этом экологичный способ добычи электроэнергии. Сегодня никого не удивить гидроэлектростанциями, тепловыми электростанциями и АЭС. Также наверняка многие слышали о генераторах, преобразующих ветровую и солнечную энергию в электричество. У каждого из этих вариантов есть свои плюсы и минусы.

Тепловые станции загрязняют атмосферу и расходуют углеводородный ресурс, аварии на ГЭС чреваты разрушительными последствиями для жителей прилегающих к ним территорий. Ветровые и солнечные станции зависят от времени суток. Атомные станции производят радиоактивные отходы, а в случае аварии опасны для окружающей среды и человека. Есть ещё важнейший ресурс — энергия приливов и отливов, а точнее — кинетическая энергия вращения Земли. На её использовании и базируется работа ПЭС.

Использовать энергию воды человечество додумалось ещё в XIX веке. Первая российская ГЭС — Берёзовская — построена в 1892 году. Использовать же приливную энергию стали уже в 60-е годы XX века. Первыми это сделали французы, запустив в 1966 году ПЭС La Rance в Северной Бретани. Длина плотины составляет 800 метров, вырабатываемая мощность — 240 мегаватт.

Это самая мощная на сегодняшний день приливная электростанция. В 1968 году в СССР ввели в эксплуатацию экспериментальную Кислогубскую ПЭС в Мурманской области. Гидроагрегат для неё предоставили французы. Сегодня гидротурбины для этой станции производит предприятие «Севмаш», а генераторы — ООО «Русэлпром». Благодаря Кислогубской ПЭС были изучены основные аспекты использования этой технологии.

По итогам эксплуатации разработчики сделали вывод, что ПЭС безопасны для экологии. При воздействии природных катаклизмов (землетрясения, наводнения, оползни) ПЭС, в отличие от ГЭС или АЭС, не угрожают жителям прилегающих к станциям районов. Они защищают берега от шторма и даже смягчают местный климат. ГЭС уничтожает свыше 90% планктона, ПЭС наносит минимальный урон — в 5–10%.

ПЭС оптимизируют транспортную систему, открывают новые возможности для развития туризма. Единственный минус — высокая стоимость, но при грамотном использовании вложения отобьются за несколько лет. Сегодня ПЭС стоят на передовой энергетики всех ведущих стран — Великобритании, Канады, США, Южной Кореи, Китая, Индии. У России есть шансы их всех обойти. Благодаря Пенжинской губе.

Пенжинская губа не особенно на слуху у тех, кто не вникал в эту тему. Тем не менее это уникальное место. Она находится в Охотском море у основания Камчатки — аккурат там, где полуостров стыкуется с материком. Её длина — 300 километров, средняя ширина — 65 километров, максимальная глубина — 62 метра. Во время прилива волна поднимается на 13–15 метров.

Через её ворота каждые сутки перемещается до 500 кубических километров воды. К примеру, река Волга перенесёт столько воды за два года, Дон — за 25 лет. Самая полноводная в мире река Амазонка справится с такой нагрузкой за 25 дней. Пенжинской губе на это требуется всего лишь 24 часа.

Читайте также:  Как и где получить допуск на строительство

Работает электростанция так: в море устанавливается дамба, в неё монтируются гидроагрегаты, включающие в себя турбину и генератор. Сегодня в России производят гидроагрегаты, составляющие конкуренцию зарубежным аналогам, а в ряде случаев и превосходящие их по показателям эффективности и надёжности.

Во время прилива мощный поток воды вращает гидротурбину, вырабатывая большое количество тока. Во время отлива происходит то же самое. То есть турбина никогда не простаивает. Она также пригодна для комбинированного использования с другими типами энергосистем. Пенжинский проект состоит из двух этапов: намечено строительство Северного створа (мощность 21 гигаватт) и Южного створа (мощность 87 гигаватт).

Чтобы эффективность такого сооружения стала очевиднее, нужно сравнить будущую ПЭС с другими электростанциями. Печально известная Чернобыльская АЭС вырабатывала 1 гигаватт в час (1 миллиард Вт·ч), Саяно-​Шушенская ГЭС вырабатывает 4,6 ГВт·ч. Признанный чемпион среди мировых электростанций — китайская гравитационная плотинная ГЭС «Три ущелья» на реке Янцзы выдаёт до 22,5 ГВт·ч. Потенциально Пенженская ПЭС способна вырабатывать свыше 100 ГВт·ч. Это как 25 современных АЭС, или 40% общей мощности российской энергосистемы.

На бумаге даже среди мировых уже построенных в разных точках планеты ПЭС ей нет конкурентов — она мощнее французской La Rance в 500 раз. Специалисты отмечают, что при такой отдаче для рационального использования вырабатываемой энергии вокруг Пенжинской ПЭС нужно выстроить многоуровневую инфраструктуру.

Главная проблема состоит в том, что стоимость строительства такого объекта очень велика — ещё во времена СССР на строительство Северного створа уникальной ПЭС планировали потратить примерно 40 млрд долларов. Южный, более протяжённый район, требовал вложений примерно на 120–150 млрд. Как будут решать эту проблему инженеры и экономисты, ещё предстоит понять, однако 100 ГВт·ч электричества на дороге не валяются, и инвестиции в такой проект могут окупиться многократно.

К тому же ближайшие потребители, а именно — Камчатка, Магадан, Приморье, Сахалин, Хабаровский край, даже не выключая свет дома и на работе, столько энергии переварить не в силах. Менее мощная — проектируемая в данный момент Мезенская ПЭС — способна обеспечить электричеством семь таких городов, как Санкт-​Петербург. Потенциальными покупателями электроэнергии могут стать ближайшие соседи — Китай, Южная и Северная Корея. На поставках электроэнергии в эти страны Россия может зарабатывать постоянно, особенно с учётом того, что человечество движется к водородно-​электрическому транспорту.

Но помимо производства водорода, для которого нужно огромное количество электроэнергии, приливные электростанции могут запитать и традиционные объекты промышленности, например НПЗ, авиационные, сталелитейные и другие заводы. В перспективе, если проект доведут до ума, а хотя бы один створ на каждом направлении уникальной электростанции будет построен, россияне забудут, что такое дорогое электричество и смогут жечь света столько, сколько нужно.

Источник: www.atomic-energy.ru

Приливные электростанции: особенности, плюсы и минусы

Приливные электростанции: особенности, плюсы и минусы

Приливные электростанции считаются особым источником электроэнергии, так для её получения здесь используются отливы и приливы. ПЭС возводятся на морских побережьях. В России их можно встретить в северных частях страны, где перепады уровня воды под действием Луны самые большие.

Описание и принцип работы

Приливная станция представляет собой комплекс инженерных сооружений, который позволяет преобразить энергию движения воды (кинетическую энергию) в электроэнергию.

ПЭС отличается своей цикличностью, которая обуславливается периодичностью приливов и отливов. Когда турбина находится в спокойном состоянии (это происходит после отлива сразу после начала прилива), кинетической энергии воды становится недостаточно. Длится это, как правило, не более 2-ух часов. Активный же период обычно длится до 4-х часов – в это время энергия воды и преобразуется в электроэнергию.

Читайте также:  Схема для строительства дома 1 этаж

Основным элементом любой станции, который позволяет получить электричество, является генератор. Однако механизм, приводящий генератор в движение, у каждой электростанции разный. Здесь им является гидротурбина.

Производительность приливной электростанции зависит от следующих факторов:

  1. Характер и мощность приливов и отливов.
  2. Количество и объём резервных водоёмов.
  3. Количество и мощность турбин.

Раньше электростанции такого рода пользовались малой популярностью и считались ненадёжными, однако сегодня, с развитием новых технологий, они стали отличным источником электричества. Теперь они оснащаются большими современными турбинами, которые по своей конструкции напоминают ветряки. Только здесь лопасти приводятся в движение при помощи воды, а у ветряков – при помощи ветра.

Приливная электростанция

Преимущества ПЭС

К преимуществам приливных электростанций относят следующие пункты:

  • Приливы, которые используются для получения электроэнергии, являются возобновляемыми, надёжными и предсказуемыми источниками.
  • Водоёмы, где большая разница между точками прилива и отлива, можно использовать для получения постоянного источника электричества.
  • При работе ПЭС не выделяется углекислый газ, углекислота и окислы азота. Имеются лишь небольшие выбросы от работы турбин, однако, они незначительные.
  • Приливные электростанции являются экзотикой для некоторых государств, что положительно влияет на развитие в них туризма.
  • Приливная плотина, являющаяся основным элементом ПЭС, может использоваться в качестве автомобильной или железной дороги через залив.
  • ПЭС имеют простоту в обслуживании. Используемые турбины обладают сроком службы от 30 лет.
  • Турбины располагаются под водой на большой глубине. Это исключает возможность создания угрозы для морского транспорта.
  • Не требуется участок земли для постройки электростанции.
  • Водность года (количество воды, которое переносится рекой с бассейна) не влияет на количество получаемой энергии.
  • Постоянное получение энергии, вне зависимости от погодных условий и сезона года.
  • Приливная плотина дополнительно защищает берег и прилегающие к нему сооружения от шторма и волн.

Также стоит отметить экологичность приливных электростанций. К слову, в бассейне ГЭС погибает примерно 83-99% планктона. У ПЭС же этот показатель редко превышает 10%. Наплавной способ строительства таких электростанций позволяет избежать сооружения дополнительных перемычек и стройбаз, которые оказывают негативное влияние на окружающую среду.

Красивая приливная электростанция

Недостатки

Несмотря на большое количество преимуществ, приливные электростанции имеют и свои недостатки. Основными из них являются следующие:

Самым главным недостатком всё же является нерегулярность работы приливных электростанций. Несмотря на то что приливы и отливы являются предсказуемыми явлениями, происходят они относительно редко.

Современная приливная станция

Причины малой распространённости приливных электростанций

Для начала стоит сказать, что мировой океан имеет огромный потенциал, энергии которого бы хватило на обеспечение почти 20% мирового энергопотребления.

Причинами, по которым приливные электростанции мало распространены, являются следующие:

  1. При строительстве ПЭС приходится изменять прибрежные территории, заменяя их резервуарным бассейном и охранными сооружениями.
  2. Такие электростанции имеют большую стоимость возведения и малую продуктивность, что объясняет долгий срок окупаемости таких сооружений.

Однако вышеперечисленные пункты постепенно начинают утрачивать свою актуальность. Дело в том, что современные ПЭС оснащаются лопастно-редукторными агрегатами, которые не требуют возведения резервуарного бассейна, что уменьшает стоимость постройки станции и срок её окупаемости. А благодаря тому, что сегодня активно разрабатываются и используются новые, более мощные генераторы, ПЭС позволяет получить довольно значимое количество электроэнергии.

Источник: plusiminusi.ru

Рейтинг
Загрузка ...