Существующие типы линий связи (ЛС) в зависимости от используемой среды распространения сигналов принято делить на проводные и линии в атмосфере ( радиолинии ).
К линиям связи предъявляются следующие основные требования:
В простейшем случае проводная ЛС — физическая цепь, образуемая парой металлических проводников. Кабельные ЛС ( кабели связи ) образованы проводами с изоляционными покрытиями, помещенными в защитные оболочки. По конструкции и взаимному расположению проводников различают симметричные (СК) и коаксиальные (КК) кабели связи (Рис. 5.1).
Рис. 5.1. Типичный вид симметричного (а) и коаксильного (б) кабеля
Симметричная цепь состоит из двух совершенно одинаковых в электрическом и конструктивном отношениях изолированных проводников. В зарубежных источниках СК часто называют «витая пара» (TP — twisted pair). Различают экранированные (shielded) и неэкранированные (unshielded) СК.
Коаксиальная цепь представляет собой два цилиндра с совмещенной осью, причем один цилиндр — сплошной внутренний проводник, концентрически расположен внутри другого полого цилиндра (внешнего проводника). Проводники изолированы друг от друга диэлектрическим материалом.
Техническое обслуживание и ремонт ВЛ
Рассмотрим основные параметры кабелей с металлическими проводниками.
Коэффициент затухания a , дБ/км. Зависит от свойств материалов проводников и изоляционного материала. Наилучшими свойствами (малым сопротивлением) обладают медь и серебро. Коэффициент затухания зависит также от геометрических размеров проводников. СК с большими диаметрами проводников обладают меньшим коэффициентом затухания.
Коэффициент затухания КК зависит от соотношения диаметров внешнего и внутреннего проводника (Рис. 5.2). Оптимальными соотношениями являются (материал внешнего проводника): для меди — 3.6, для алюминия — 3.9, для свинца — 5.2.
Рис. 5.2. Зависимость коэффициента затухания КК от соотношения диаметров проводников
Очень важной характеристикой, фактически определяющей широкополосность системы связи, является зависимость коэффициента затухания от частоты (Рис. 5.3). Если определен граничный коэффициент затухания a ГР (обычно он определяется возможностями усилителей или регенераторов (см. подраздел 6.1.4)), то данному коэффициенту соответствует граничная частота пропускания системы f ГР . Полоса пропускания системы не превышает граничной частоты пропускания.
Рис. 5.3. Частотная зависимость коэффициента затухания металлического кабеля
Скорость распространения v, км/мс. Частотная зависимость скорости распространения показана на Рис. 5.4. С ростом частоты скорость распространения увеличивается, приближаясь к скорости света в вакууме v С » 300 км/мс. Данный параметр зависит также от свойств диэлектрика, применяемого в кабеле.
Рис. 5.4. Частотная зависимость скорости распространения электромагнитной волны
Волновое сопротивление Z В (Ом) — сопротивление, которое встречает электромагнитная волна при распространении вдоль однородной линии без отражения, т.е. при условии, что на процесс передачи не влияют несогласованности на концах линии. Волновое сопротивление СК зависит от удельных значений емкости и индуктивности кабеля. Для КК волновое сопротивление определяется как , где Z Д — волновое сопротивление диэлектрика, D и d — соответственно диаметры внешнего и внутреннего проводников.
Воздушные линии напряжением 6-10 кВ. Установка опор и монтаж СИП
Основные требования к СК определены в рекомендации МСЭ-Т G.613. Диаметр жилы СК обычно составляет 0.4. 1.2 мм. СК обычно используются в диапазоне частот до 10 МГц. Основные параметры КК приведены в Табл.
5.1.
Табл.5.1
Тип КК
Диаметр проводника внешний/внутренний, мм
Рекомендация МСЭ-Т
Рабочая полоса частот, МГц
Мини-КК
0.7 / 2.9
0.2. 20
Малогабаритный КК
1.2 / 4.4
0.06. 70
Нормализованный КК
2.6 / 9.5
0.06. 300
В настоящее время выпускается широкая номенклатура кабелей, отличающихся в зависимости от назначения, области применения, условий прокладки и эксплуатации и пр.
На Рис. 5.5 приведен пример конструкции кабеля для магистральной сети КМБ-8/7. В конструкции кабеля предусмотрено несколько коаксиальных цепей разного типа, несколько симметричных пар, а также отдельные изолированные жилы. Последние обычно используются для технологических целей.
Рис. 5.5. Пример конструкции кабеля (кабель КМБ-8/7)
Воздушные ЛС (ВЛС) не имеют изолирующего покрытия между проводниками, роль изолятора играет слой воздуха. Проводники выполняются, в основном, из биметаллической сталемедной (сталеалюминевой) проволоки. Внутренний диаметр стальной проволоки обычно составляет 1.2. 4 мм, толщина внешнего слоя меди (алюминия) — 0.04. 0.2 мм.
Проволока подвешивается на деревянных или железобетонных опорах с помощью фарфоровых изоляторов. Используемый частотный диапазон ВЛС не превышает 150 кГц.
Источник: kunegin.com
Обозначение линий связи на местности
За пределами населенных пунктов подземные кабельные линии обозначаются специальными замерными столбиками или предупредительными аншлагами.
Типы линий связи, требующие обозначения на местности:
- прямая телефонная связь.
- телефонная связь по линиям спецсвязи
- телефонная связь по городской телефонной сети
- соединительные линии устройств громкоговорящей связи.
- линии телеграфной связи.
- линии фототелеграфной (факсимильной) связи.
- линии сигнальной связи (дистанционного управления).
- полевая кабельная линия.
Способы обозначения линий связи на местности:
- обозначение с помощью столбиков с табличкой;
- обозначение с помощью сигнальной ленты;
- обозначение с помощью электронных маркеров.
ОБОЗНАЧЕНИЕ ПОДЗЕМНЫХ КАБЕЛЕЙ С ПОМОЩЬЮ ТАБЛИЧЕК
Замерные столбики должны быть установлены на загородных участках трассы и в сельских населенных пунктах при прокладке кабелей связи с металлическими жилами и оптических в следующих местах трассы:
- против каждой муфты;
- на поворотах трассы;
- на пересечениях автомобильных и железных дорог, водных препятствий, газопроводов, силовых и кабелей связи, водопровода, канализации и других подземных коммуникаций;
- на прямых участках трассы через промежуток от 250 до 300 м друг от друга.
Столбики устанавливают на расстоянии 0,1 м от осевой линии трассы, со стороны поля. При прокладке нескольких кабелей столбик устанавливают против середины перекрытия концов строительных длин кабеля. На стыках строительных длин в процессе прокладки кабеля могут устанавливаться временные деревянные замерные столбики с временными надписями. В процессе монтажа эти-столбики должны быть заменены на железобетонные с постоянной нумерацией.
ОБОЗНАЧЕНИЕ ПОДЗЕМНЫХ КАБЕЛЕЙ С ПОМОЩЬЮ МАРКЕРОВ
Система электронной маркировки кабельных линий связи предназначена для облегчения поиска ключевых точек последних а также трассировки не бронированных волоконно-оптических кабелей.
Интеллектуальный маркер рекомендуется к закладке в следующих случаях:
- в местах магистральных линий связи;
- в зоновых линий связи;
- в случае их прохождения линий связи через населенные пункты;
- в случае их прохождения линий связи через железнодорожные станции;
- в других сложных случаях.
Маркироваться при помощи пассивных электронных маркеров могут:
- места установки кабельных муфт;
- выводы контрольно-измерительных пунктов;
- необслуживаемые усилительные пункты;
- точки пересечения с другими коммуникациями или инженерными сооружениями;
- повороты трассы или точки изменения глубины монтажа кабеля;
- прямолинейные участки не бронированных волоконно-оптических кабелей;
- точки ввода в здание и др.
Данные маркеры позволяют осуществлять абсолютную идентификацию кабельных линий связи и специальных точек на них (соединительных, ответвительных муфт, поворотов, люков смотровых колодцев, пересечений с другими коммуникациями).
Источник: www.intmarker.ru
Транспозиция проводов воздушной линии электропередачи
Изобретение относится к области железных дорог, электрифицированных на переменном токе, и направлено на обеспечение нормального функционирования высоковольтных линий с изолированной нейтралью в условиях интенсивного воздействия электромагнитного поля контактной сети железной дороги. Устройство транспозиционной геометрии проводов воздушной высоковольтной линии содержит: опоры линии, кронштейны для крепления в ряд двух изоляторов по углам основания условного пространственного равностороннего треугольника, стороны которого увеличены в минимально допустимый размер сближения.
Для симметрирования погонных электрических параметров линии применена шестишаговая транспозиция проводов — фаз в цикле с поворотом проводов — фаз на 60° на каждой опоре и вращением проводов по всей длине линии. Геометрическое расположение проводов на опорах по углам условного пространственного равностороннего треугольника выполнено с помощью чередующихся по высоте и разных по длине кронштейнов с подвесными изоляторами, на которых крепятся провода — фазы. Технический результат заключается в снижении электромагнитного воздействия контактной сети железной дороги на функционирование высоковольтных линий с изолированной нейтралью. 2 ил.
Воздушная линия электропередачи
Воздушная линия электропередачи (ВЛ) – устройство, предназначенное для передачи или распределения электрической энергии по проводам с защитной изолирующей оболочкой (ВЛЗ) или неизолированным проводам (ВЛ), находящимся на открытом воздухе и прикрепленным с помощью траверс (кронштейнов), изоляторов и линейной арматуры к опорам или другим инженерным сооружениям (мостам, путепроводам). Главными элементами ВЛ являются:
- провода;
- защитные тросы;
- опора, поддерживающая провода и торосы на определенной высоте над уровнем земли или воды;
- изоляторы, изолирующие провода от тела опоры;
- линейная арматура.
За начало и за конец воздушной линии принимают линейные порталы распределительных устройств. По конструктивному устройству ВЛ делятся на одноцепные и многоцепные, как правило 2-цепные.
Обычно ВЛ состоит из трех фаз, поэтому опоры одноцепных ВЛ напряжением выше 1 кВ рассчитаны на подвеску трёх фазных проводов (одной цепи) (рис. 1), на опорах двухцепных ВЛ подвешивают шесть проводов (две параллельно идущие цепи). При необходимости над фазными проводами подвешивается один или два грозозащитных троса. На опорах ВЛ распределительной сети напряжением до 1 кВ подвешивается от 5 до 12 проводов для электроснабжения различных потребителей по одной ВЛ (наружное и внутреннее освещение, электросиловое хозяйство, бытовые нагрузки). ВЛ напряжением до 1 кВ с глухозаземлённой нейтралью помимо фазных снабжена нулевым проводом.
Рис. 1. Фрагменты ВЛ 220 кВ: а – одноцепной; б – двухцепной
Провода воздушных линий электропередачи в основном изготавливаются из алюминия и его сплавов, в некоторых случаях из меди и ее сплавов, выполняются из холоднотянутой проволоки, обладающей достаточной механической прочностью. Однако наибольшее распространение получили многопроволочные провода из двух металлов с хорошими механическими характеристиками и относительно невысокой стоимостью. К проводам такого типа относятся сталеалюминиевые провода с отношением площадей поперечного сечения алюминиевой и стальной части от 4,0 до 8,0. Примеры расположения фазных проводов и грозозащитных тросов показаны на рис. 2, а конструктивные параметры ВЛ стандартного ряда напряжений приведены в табл. 1.
Рис. 2. Примеры расположения фазных проводов и грозозащитных тросов на опорах: а – треугольное; б – горизонтальное; в – шестиугольное «бочкой»; г – обратной «елкой»
Таблица 1. Конструктивные параметры воздушных линий
Для всех приведенных вариантов расположения фазных проводов на опорах характерно несимметричное расположение проводов по отношению друг к другу. Соответственно это ведет к неодинаковому реактивному сопротивлению и проводимости разных фаз, обусловленных взаимной индуктивностью между проводами линии и как следствие к несимметрии фазных напряжений и падению напряжения.
Для того чтобы сделать емкость и индуктивность всех трех фаз цепи одинаковыми, на линии электропередачи применяют транспозицию проводов, т.е. взаимно меняют их расположение друг относительно друга, при этом каждый провод фазы проходит одну треть пути (рис. 3). Одно такое тройное перемещение называется циклом транспозиции.
Рис. 3. Схема полного цикла транспозиции участков воздушной линии электропередачи: 1, 2, 3 – фазные провода
Транспозицию фазных проводов воздушной линии электропередачи с неизолированными проводами применяют на напряжение 110 кВ и выше и при протяженности линии 100 км и больше. Один из вариантов монтажа проводов на транспозиционной опоре показан на рис. 4. Следует отметить, что транспозицию токопроводящих жил иногда применяют и в КЛ, кроме того современные технологии проектирования и сооружения ВЛ позволяют технически реализовать управление параметрами линии (управляемые самокомпенсирующиеся линии и компактные воздушные линии сверхвысокого напряжения).
Рис. 4. Транспозиционная опора
Провода и защитные тросы ВЛ в определенных местах должны быть жестко закреплены на натяжных изоляторах анкерных опор (концевые опоры 1 и 7, устанавливаемые в начале и конце ВЛ, как это показано на рис. 5 и натянуты до заданного тяжения. Между анкерными опорами устанавливают промежуточные опоры, необходимые для поддержания проводов и тросов, при помощи поддерживающих гирлянд изоляторов с поддерживающими зажимами, на заданной высоте (опоры 2, 3, 6), устанавливаемые на прямом участке ВЛ; угловые (опоры 4 и 5), устанавливаемые на поворотах трассы ВЛ; переходные (опоры 2 и 3), устанавливаемые в пролете пересечения воздушной линией какого-либо естественного препятствия или инженерного сооружения, например, железной дороги или шоссе.
Колодец транспозиции
Коробки транспозиции КТ-ОПН располагаются по трассе кабельной линии в специальных местах, защищённых от проникновения случайных лиц и называемых колодцами транспозиции. Как оказалось, конструкция колодца транспозиции очень сильно влияет на качество монтажа размещаемых в нём коробок транспозиции, а также на удобство последующей эксплуатации всей кабельной линии. Для того чтобы монтаж и эксплуатация транспозиции экранов были наиболее удачны, рекомендуется придерживаться нескольких простых, но важных правил.
1. Колодец транспозиции должен быть такого размера, чтобы был обеспечен удобный подход к коробке. Колодец не должен быть маленьким и мелким, так как в нём нельзя будет развернуться, он будет легко затопляться водой, а зимой насквозь промерзать. Лучше всего использовать железобетонные колодцы типа ККС-5, так как они просторны и позволяют разместить сразу две коробки (в случае двухцепной кабельной линии), достаточно прочны, массивны (не будут выдавлены грунтом).
2. Коробка должна размещаться в верхней части колодца, чтобы попадающие в колодец грунтовые и дождевые воды редко достигали коробки, и чтобы зимой она не вмерзала в лёд.
3. Коробка должна размещаться так, чтобы проходные изоляторы смотрели вниз, в пол колодца, ведь именно в нижней части колодца в него при помощи ППС заводятся шесть экранов кабельной линии, отходящих от транспозиционных муфт.
4. Сечение жилы провода ППС должно быть равно сечению экрана силового кабеля (как правило, до 240 мм2). Не рекомендуется применять «универсальные» провода сечением 400 мм2 , поскольку они настолько жёсткие, что при монтаже их невозможно изогнуть и ввести в проходной изолятор коробки транспозиции.
5. Монтаж и испытания кабельной линии не требуют вскрытия коробок КТ-ОПН. Открывать/закрывать крышку коробки может потребоваться лишь в случае поиска повреждений изоляции кабеля или его оболочки. На рис. 4 схематично отражены первые три из пяти названных выше простых правил обустройства колодца транспозиции.
Рис. 4. Монтаж коробки в колодце транспозиции двухцепной кабельной линии
Кабельная линия электропередачи
Кабельная линия электропередачи (КЛ) состоит из одного или нескольких кабелей и кабельной арматуры для соединения кабелей и для присоединения кабелей к электрическим аппаратам или шинам распределительных устройств.
В отличие от ВЛ кабели прокладываются не только на открытом воздухе, но и внутри помещений (рис. 8), в земле и воде. Поэтому КЛ подвержены воздействию влаги, химической агрессивности воды и почвы, механическим повреждениям при проведении земляных работ и смещении грунта во время ливневых дождей и паводков. Конструкция кабеля и сооружений для прокладки кабеля должна предусматривать защиту от указанных воздействий.
Рис. 8. Прокладка силовых кабелей в помещении и на улице
По значению номинального напряжения кабели делятся на три группы: кабели низкого напряжения (до 1 кВ), кабели среднего напряжения (6…35 кВ), кабели высокого напряжения (110 кВ и выше). По роду тока различают кабели переменного и постоянного тока.
Силовые кабели выполняются одножильными, двухжильными, трехжильными, четырехжильными и пятижильными. Одножильными выполняются кабели высокого напряжения; двухжильными – кабели постоянного тока; трехжильными – кабели среднего напряжения.
23.Расчет режима лэп при заданном токе нагрузки и напряжении в конце линии.
Будем считать, что режим конца линии задан фазным напряжением U
ф=
сonst
и отстающим током нагрузки
I
2. Также заданы
Z
12=
r
12+
jx
12,
в
12.
Необходимо определить 1) напряжение в начале линии – U
1,2) ток в продольной части –
I
12, 3) потери мощности —
S
12 4) ток в начале линии –
I
1.
Расчет состоит в определении неизвестных токов и напряжений, последовательно от конца линии к началу.
Емкостный ток в конце линии 1-2, по закону Ома:
Ток в продольной части линии 1-2, по первому закону Кирхгофа:I
Напряжение в начале линии по закону Ома:U
Емкостный ток в начале линии:
Ток в начале линии по первому закону Кирхгофа:
Потери мощности в линии (в трех фазах):S
Новости
- 02.04.2021 — Лицензии на конструирование и изготовление оборудования для атомной энергетики. Истинные ценности и преимущества для .
- 01.03.2021 — Стратегия цифровой трансформации электросетей и технологии цифровых двойников силовых трансформаторов
- 01.02.2021 — Трансформаторы собственных нужд: требования, особенности
- Склад продукции
- Готовые решения
- Каталоги продукции
- Где купить?
- Оформить заказ
Значение слова «Транспозиция (в электротехнике)»
Транспозиция в электротехнике, изменение взаимного расположения проводов отдельных фаз по длине воздушной линии электропередачи
(ЛЭП) для уменьшения нежелательного влияния ЛЭП друг на друга и на близлежащие линии связи. При Т. вся ЛЭП условно разделяется на участки, число которых кратно числу фаз. При переходе с одного участка на другой фазы меняются местами так, что каждая из них попеременно занимает положение остальных. Длина участка определяется условиями надёжной работы ЛЭП, стоимостью её сооружения и требованиями симметрии её токов и напряжений, возрастающей в результате выравнивания значений индуктивности и ёмкости фаз ЛЭП при Т. Выполняют Т. на ЛЭП длиной свыше 100 км и напряжением от 110 кв и выше. Полный цикл Т. фаз осуществляется на длине не свыше 300 км.
Лит.: Мельников Н. А., Электрические сети и системы, М., 1975.
Большая Советская Энциклопедия М.: «Советская энциклопедия», 1969-1978
25.Расчет режима лэп при заданной мощности нагрузки и напряжении в конце линии.
Задано напряжение в конце линии U
2=
сonst
. Известна мощность нагрузки
S
2, напряжение
U
2, сопротивление и проводимость линии
Z
12=
r
12+
jx
12,
в
12.
Необходимо определить напряжение U
1, мощности в конце и в начале продольной части линии
S
к 12, S н 12, потери мощности
S
12, мощность в начале линии
S
1. Для проверки ограничений по нагреву иногда определяют ток в линии
I
12.
Расчет аналогичен расчету при заданном токе нагрузке (I2), и состоит в последовательном определении от конца линии к началу неизвестных мощностей и напряжений при использовании I закона Кирхгофа и закона Ома. Будем использовать мощности трех фаз и линейные напряжения.
Зарядная (емкостная) мощность трех фаз в конце линии:
Мощность в конце продольной части линии по I закону Кирхгофа:
Потери мощности в линии:S
Ток в начале и в конце продольной ветви линии одинаков.
Мощность в начале продольной ветви линии больше, чем мощность в конце, на величину потерь мощности в линии, т.е. S
Линейное напряжение в начале линии по закону Ома равно:
Емкостная мощность в начале линии: —jQ
Мощность в начале линии:
Под влиянием зарядной мощности Q
с реактивная мощность нагрузки
Q
2 в конце, схема замещения уменьшается. Аналогичное явление имеет место и в начале схемы замещения, где реактивная мощность
Q
с уменьшает реактивную мощность в начале линии.
Это свидетельствует о том, что зарядная мощность сокращает реактивную мощность, поступающую от станции в линию для питания нагрузки. Поэтому зарядная мощность условно может рассматриваться как “генератор” реактивной мощности.
В линии электрической сети имеют место как потери, так и генерация реактивной мощности.
От соотношения потерь и генерации реактивной мощности зависит различие между реактивными мощностями в начале и конце линии.
Источник: strop-snab.ru