Преднапряженная арматура в монолитном строительстве технология

Способность компании активно развиваться в условиях рыночной экономики во многом определяется возможностью предложить клиенту более качественный товар или услугу за меньшую плату. В долгосрочной перспективе преуспевают компании, отличающиеся высокой гибкостью в условиях меняющегося рынка. В первую очередь, это предприятия, способные предлагать принципиально новые подходы и решения, используя инновации и опыт передовых компаний мира.

Любой строительный объект, будь то многоэтажное здание или небольшой частный дом, является продуктом, обладающим вполне определенными качественными характеристиками. В современном мире именно они формируют спрос и цену реализации объекта строительства.

Качество объекта строительства – это его надежность (долговечность конструкций, обеспеченная безопасность проживания, длительный срок службы) и современность (широкий выбор планировочных решений, комфортабельность проживания, нетривиальный архитектурный облик). Качество конечной продукции и ее цена – взаимозависимые показатели.

Напряженный железобетон — принцип работы, описание технологий

Зачастую повышение качества объекта влечет за собой увеличение его стоимости, что неминуемо снижает его конкурентоспособность по цене. Для сохранения лидерства на рынке, строительная компания обязана стремиться к повышению качества своих объектов, обеспечивая при этом доступность для потребителя – конкурентоспособную цену. Получается, что любая, в т.ч. и высококачественная продукция, должна быть экономичной в производстве. Отсюда логично вытекает, что снижение себестоимости производства продукции при сохранении ее надлежащего качества – одна из основных задач строительной компании.

Рис. 1

Рис. 1

Практика показывает, что наиболее эффективно данная задача решается путем внедрения инновационных разработок и решений. Предварительно напряженный железобетон – одна из таких инноваций, которая все чаще применяется в строительной отрасли России и стран СНГ.

Суть данного метода сводится к использованию высокопрочных арматурных канатов, более чем в четыре раза превышающих по своим прочностным характеристикам стержневую арматуру. При натяжении арматурных канатов происходит обжатие бетона, наделяющего конструкцию принципиально иными свойствами. В мировой практике строительной индустрии преднапряженный железобетон занимает лидирующее положение. При этом в течение последних десятилетий его доля в общем объеме строительства продолжает неуклонно расти.

Технология возведения преднапряженных конструкций не имеет принципиальных отличий от традиционного монолитного строительства и не требует специальной квалификации основного рабочего персонала. На строительной площадке необходимо лишь присутствие одного-двух специалистов, выполняющих функцию авторского надзора при укладке арматурных канатов, и последующее натяжение с занесением данных в протоколы, предусмотренные технологическим регламентом.

Работа арматуры и бетона в монолите

Наиболее ощутимый эффект от преднапряжения достигается в плитах перекрытий, что наглядно представлено на рис. 1. Сокращение высоты плит перекрытий и покрытия позволяет существенно снизить общую высоту здания, включая и его подземную часть, где стоимость строительства намного дороже. В итоге мы имеем сокращение расхода бетона (до 30%) и стержневой арматуры (до 70%) в перекрытиях и вертикальных конструкциях (стены, перегородки, пи-лоны, колонны и т.п.). В свою очередь, уменьшение общей площади поверхности фасада здания позволяет существенно сэкономить на фасадных материалах и работах. Высокий экономический эффект от применения преднапряженного железобетона во многом обусловлен значительным снижением материалоемкости практически всех конструкций здания.

Не менее важным обстоятельством является возможность устройства плоских безбалочных перекрытий, а также существенное уменьшение количества и высоты балок на площадях с большими нагрузками. Наиболее очевиден эффект от преднапряжения в случаях с большими пролетами, которые часто встречаются как в транспортном строительстве, так и в зданиях и сооружениях коммерческого назначения, где эффективность во многом определяется свободой внутреннего пространства.

В частности, преимущество преднапряженного бетона можно наглядно продемонстрировать на примере паркингов и стоянок, где небольшая сетка колонн существенно сокращает количество машино-мест (см. рис. 2.). Применение преднапряжения позволяет зна чительно увеличить шаг колонн (пролетов) без перерасхода материалов в конструкциях. Экономический эффект от преднапряжения здесь может достигать 35%.

Рис. 2

Рис. 2

Существует прямая зависимость между увеличением пролетов и расходом бетона и стержневой арматуры в железобетонных конструкциях. Следует также отметить, что сокращение расхода материалов ведет к уменьшению объемов работ по объекту и увеличению темпов строительства.

Дополнительным ресурсом увеличения коммерческой привлекательности технологии является возможность возведения консольных элементов с большим вылетом. Данное обстоятельство позволяет разнообразить архитектурные решения, а также увеличить площадь здания до семи метров по всему периметру (см. рис. 3).

Железобетон известен своей высокой прочностью на сжатие, а на растяжение этот показатель, к сожалению, относительно невелик. В связи с этим стойкость бетона к образованию трещин мала. Соответственно, риск образования коррозии арматурных элементов внутри бетона возрастает. За счет применения преднапряжения (обжатия) подверженность бетона к образованию трещин сводится к минимуму, прогибы плит сокращаются, а срок службы арматуры повышается в разы.

Особенно актуально использование преднапряжения в фундаментных плитах, промышленных полах, при строительстве автомобильных дорог.

Во-первых, данные конструкции подвержены большим нагрузкам и интенсивному воздействию грунтовых вод. Гидроизоляция решает проблему лишь частично. А применение высоко-прочных арматурных канатов в смазке и полиэтиленовой оболочке полностью предотвращает образование трещин и защищает саму арматуру от воздействия агрессивной среды.

Во-вторых, толщина преднапряженной плиты по сравнению с обычной сокращается пропорционально увеличению нагрузки, снижая расход стержневой арматуры и бетона до 80% и 40% со-ответственно.

В-третьих, уменьшение толщины бетонной плиты предполагает и снижение объема работ по разработке, вывозу и подготовке грунта, повышая тем самым производительность труда и стимулируя сокращение строительного цикла.

В-четвертых, за счет преднапряжения железобетонная плита более устойчива и неприхотлива в эксплуатации. Она не требует работ по стабилизации грунта, как обычная фундаментная плита. А ее устройство можно осуществлять также в зимнее время на мерзлом грунте.

Рис. 3

Рис. 3

Несмотря на все вышеперечисленные преимущества, темпы развития предварительно напряженного железо-бетона в России не так высоки, как могли бы быть. Основной причиной является низкая осведомленность и неумение проектировать преднапряженные конструкции большинством проектировщиков. Но развитие не стоит на месте, и постепенно российские строители перенимают опыт зарубежных коллег, где принято все работы, связанные с преднапряжением, заказывать специализированным компаниям. Расчет преднапряженных конструкций требует соответствующего опыта в узкой сфере, а имеет его, как правило, ограниченный круг специалистов, посвятивших этому вопросу не один десяток лет.

Читайте также:  Когда будет закончено строительство северный поток 2

На сегодняшний день технология применяется в строительстве зданий и сооружений различного назначения: жилых, офисных, производственных, складских и торговых. География применения преднапряженного железобетона также широка. За рубежом технология предварительного напряжения железобетона широко применяется и в дорожном строительстве. Кроме того, имеются примеры предварительного напряжения при реставрации исторических памятников.

Оценив преимущества технологии и практику ее эффективного внедрения на объектах различного назначения по всему миру, становится очевидным, что повсеместный переход на преднапряженные конструкции в России и странах СНГ – лишь вопрос времени. А будущее за теми строительными компаниями, которые своевременно это осознают.

Источник: stefs.ru

Преднапряженные конструкции в каркасном строительстве

Современные методы карксного строительства используют технологию предварительного напряжения железобетонных конструкций. Преднапряженные конструкции – железобетонные конструкции, напряжение в которых искусственно создаётся во время изготовления, путём натяжения части или всей рабочей арматуры (обжатия части или всего бетона).

Обжатие бетона в преднапряженных конструкциях на заданную величину осуществляется посредством натяжения арматурных элементов, стремящихся после их фиксации и отпуска натяжных устройств возвратиться в первоначальное состояние. При этом, проскальзывание арматуры в бетоне исключается их взаимным естественным сцеплением, или без сцепления арматуры с бетоном – специальной искусственной анкеровкой торцов арматуры в бетоне.

Трещиностойкость преднапряженных конструкций в 2–3 раза больше трещиностойкости железобетонных конструкций без предварительного напряжения. Это обусловлено тем, что предварительное обжатие арматурой бетона, значительно превосходит предельную деформацию натяжения бетона.

Преднапряженный бетон позволяет в среднем до 50% сокращать расход дефицитной стали в строительстве. Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.

Преимущества технологии преднапряжения железобетона

Преднапряженные конструкции оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций.

Предварительное напряжение, увеличивающее жесткость и сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные преднапряженные конструкции и здания безопасны в эксплуатации и более надежны, особенно в сейсмических зонах. С возрастанием процента армирования сейсмостойкость предварительно напряженных конструкций во многих случаях повышается. Это объясняется тем, что благодаря применению более прочных и легких материалов сечения преднапряженных конструкций в большинстве случаев оказываются меньшими по сравнению с железобетонными конструкциями без предварительного напряжения той же несущей способности, а, следовательно, более гибкими и легкими.

В большинстве развитых зарубежных стран из предварительно напряженного железобетона во все возрастающих объемах изготавливают конструкции перекрытий и покрытий зданий различного назначения, значительную часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий.

Мировой опыт использования технологии преднапряжения

В мире монолитный железобетон большей частью является предварительно напряженным. В первую очередь, таким способом возводятся большепролетные сооружения, жилые здания, плотины, энергетические комплексы, телебашни и многое другое. Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м.

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн.куб.м. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс.куб.м.

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн.куб.м. Значительный объем таких перекрытий сооружается в Канаде.

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Таким образом возводятся мосты, большепролетные здания, высотные сооружения и другие подобные объекты.

Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков.

Построенная в 1995 г. в Норвегии платформа «Тролл» имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс.куб.м. высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок.

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа.

Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко де Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали).

Читайте также:  Какие документы для строительства балкона

Технология преднапряжения монолитного железобетона в России

В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м2.

В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300-600 т. Сегодня разработаны различные системы без-опалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плит «Спэнкрит» применяют в США более 15 млн. м2 ежегодно.

В свое время длинные стенды для безопалубочного формования по технологии «Макс Рот» появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило, методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в Скандинавских странах и в США.

Позднее в России появились линии «Партек» (на заводе ЖБК-17 в Москве, Санкт-Петербурге, Барнауле), что свидетельствует о появлении спроса на такие плиты. Совершенствование конструктивных систем зданий, безусловно, даст толчок к развитию технологии производства плитных изделий.

Затянувшийся российский застой в области применения преднапряженного железобетона частично связан еще и с тем, что у нас не получили должного изучения и применения предварительно-напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях.

«Энерпром» начинает развивать это направление и предлагает ряд оборудования собственной разработки для реализации такой технологии.

Источник: www.enerprom.ru

Что такое напрягаемая арматура и где используется?

Бетонный фундамент, который лежит в основании каждого здания, должен быть прочным и надежным. Однако у него тоже есть свои слабые места, поэтому строители разрабатывают различные технологии, чтобы свести их на нет.

Один из способов сделать железобетон более прочным и долговечным — это использовать стальную арматуру с предварительным напряжением. Такой вариант позволяет изделию прослужить дольше и взять на себя большую нагрузку, однако при этом нуждается в более крупном вложении сил и средств.

Для чего требуется предварительно напряжённое армирование

Арматура в изделиях может быть ненапрягаемой и напрягаемой. Первый вид выполняет функцию пассивного армирования — оно не работает, пока плита не изогнётся от собственного веса или от воздействия поперечной нагрузки. Только в этот момент нижние армирующие стержни будут противодействовать растяжению, но бетон уже получит свою долю растяжения и отреагирует сетью мелких трещин.

Чтобы избежать их появления и повысить прочность плиты при воздействии изгибающих нагрузок, армирующие конструкции при изготовлении бетонных плит предварительно напрягают. Железобетон с напряжённой арматурой находится постоянно в активном состоянии.

Визуальное описание необходимости предварительного напряженного армирования плит

Силы напряжения, сжимающие плиту в осевом направлении, компенсируют эксплуатационные силы, вызванные собственным весом и нагрузкой. Растрескивания в напряжённой плите практически не происходят, она способна выдерживать более высокие, чем ненапряжённая плита, нагрузки. Кроме того, напряжённую плиту делают тоньше (140 мм вместо 170), что снижает расход бетона.

Что из себя представляет преднапряженное ЖБИ?

В целях борьбы с низкой прочностью при растяжении искусственного бетонного камня создают напряжение на этапе производства в бетоне противоположной к эксплуатационным характеристикам, что позволяет эффективно применять свойства бетона при его сжатии. Арматурную сталь в железобетонном изделии растягивают, а по полному затвердевании залитого бетонного раствора ее избавляют от натяжения. Стальные прутья сжимаются и оказывают непосредственное влияние на слой бетона. Предварительное напряжение увеличивает предел растяжимости бетона за счет суммирования 2-х деформаций: растяжения и предсжатия.

Сжатие и растяжение материала делает его более устойчивым к нагрузкам.

Преднапряженный железобетон не подвержен растрескиванию бетонного слоя зоне конструкции с растяжением, а также при его применении сокращается количество используемой арматуры. Если при этом применять высокопрочный металл и бетон, можно добиться снижения весовых показателей железобетонных конструкций, увеличить их срок эксплуатации. Основные характеристики для этого вида ЖБИ установлены ГОСТом 26633–91, а значения и размеры арматуры установлены СП 52—101—2003.

Посмотреть «ГОСТ 26633-91-3» или

Посмотреть «СП 52-101-2003» или

Натяжение напрягаемой арматуры

При изготовлении плит (дорожных, перекрытия, аэродромных) применяют метод, называемый натяжение на упоры. Он заключается в том, что арматурные стержни, уложенные в форму до заливки бетона, подвергают растяжению. Его осуществляют двумя способами:

  • механическим;
  • электротермическим;
  • комбинированным, сочетающим оба предыдущих.

При механическом способе стержни анкеруют и растягивают гидравлическими домкратами. Заливают в форму бетон, уплотняют его и выдерживают до набора 70 %-й прочности. Затем зажимы снимают, и сила натяжения стержней через анкеры и рифление передаётся на бетон. Изделие становится плитой с предварительно напряжённой арматурой.

Механический способ натяжения арматуры

Электротермический способ заключается в пропускании через стержни тока большой силы. От его действия они разогреваются и удлиняются по оси. В этот момент заливают бетон. После его схватывания и упрочнения ток выключают, стержни остывают, но укорачиваться им мешает сцепление с бетоном, поэтому арматура напрягается. В промышленности чаще используют электротермический метод, как более простой.

Что такое напрягаемая арматура и где используется?

Самым прочным и распространенным материалом в строительстве считается бетон. Однако он имеет ряд недостатков и слабых сторон. Поэтому для того чтобы избавить материал от каких-либо слабых сторон, его стали усиливать арматурой. В свою очередь, арматура также может быть различных типов и сортов – напрягаемой или ненапрягаемой, или продольной/поперечной.

Читайте также:  Сколько метров надо отступать при строительстве дома

Кроме того, арматура может быть анкерной, монтажной или конструктивной. В этой статье мы поговорим о напрягаемой арматуре и о том, в каких целях её используют и для чего она нужна.

Для изготовления качественного, сверхпрочного железобетонного строения используют напрягаемую арматуру. По своим свойствам, от обычной прутковой арматуры она отличается более высокой прочностью и стойкостью. Изготавливают её в виде проволоки или стержня, имеющего диаметр 5-35 мм.

Любой строительный материал, в том числе напрягаемая арматура, должна пройти сертификацию и получить допуск от соответствующих органов надзора, так как именно она играет одну из важнейших ролей в строении, прочности и долговечности конструкции здания. Напрягаемая арматура помогает бетонной конструкции выдерживать очень большие растягивающие нагрузки. Поэтому, при изготовлении материала арматуру натягивают (в зависимости от технологии, различными методами).

Напряжение арматуры помогает устранить растягивающие нагрузки во время эксплуатации. Наиболее распространенными способами напряжения являются механический и электротермический способы. При механическом напряжении арматуру «вытягивают» с помощью винтового или гидравлического домкрата. Используя электротермический способ, арматура поддается воздействию высокого значения электрического тока, под воздействием которого, арматура интенсивно нагревается и удлиняется до необходимых размеров. Также, существует электротермомеханический способ, в котором объединяются оба вышеописанных способа напряжения арматуры.

Бетонная конструкция с напрягаемой арматурой широко применяется в качестве основного материала для обустройства перекрытий, в высотном и многоэтажном строительстве. Напрягаемая арматура находит применение в зданиях с повышенной нагрузкой, в промышленном строительстве – например, для строительства защитной оболочки ядерного реактора, а также для строительства мостов, переправ и судостроения.

Технологий устройства арматуры в бетоне также бывает нескольких видов. Например, напрягаемую арматуру натягивают на упоры, которые в свою очередь приводят в опалубку еще до того, как заливается бетонная смесь. Другая технология заключается в натяжении арматуры уже после заливки бетонной смеси и её предварительном наборе прочности. Причем, использование второго способа предусматривает укладку арматуры в специальных чехлах из гофрированных или пластиковых труб.

Анкеровка напряжённой арматуры

Анкеровку или установку на стержни анкерных элементов выполняют с помощью:

  • опрессованных в холодном состоянии шайб;
  • высаженных головок, получаемых разогревом и расплющиванием концов стержней;
  • привариваемых цилиндрических коротышей;
  • спиралей из проволоки;
  • инвентарных зажимов.

Схема анкеровки напряжённой арматуры

Требования к предварительно напряжённой арматуре

Для изготовления напряжённых железобетонных конструкций применяют специальные виды арматурной стали, обладающие высокими значениями рабочих напряжений (от 5000 до 7200 кгс/см²). В перечень этих материалов входят арматурные стали:

  • А600, А600С и Ат600С — 5400 кгс/см²;
  • А800 и Ат800 — 6000 кгс/см²;
  • А800 и Ат800 — 7200 кгс/см² и другие.

Классы стали на напрягаемую арматуру устанавливают нормативные документы, по которым выпускаются изделия, в частности, ГОСТ 25912-2015 и другие. Расчет напряженной арматуры производится при проектировании изделия. Отклонения замеряемых напряжений от проектных значений не должно превышать 10 %.

Железобетонные изделия с предварительно напрягаемой арматурой являются основными конструктивными элементами, аэродромов, многоэтажных и высотных зданий, и масштабных сооружений. Например, в нашем ассортименте любые плиты перекрытия доступны для вашего выбора.

Способы напряжения

Если предварительно напрячь прокат, то растягивающая нагрузка во время использования снизится. Можно сделать это при помощи механики, применяя винтовой или гидравлический домкрат. Также применяется электротермический способ. В этом случае прутья подвергаются воздействию электротока, который разогревают металл, а потом удлиняют, то есть растягивают его.

Наконец, последний способ, самый технически совершенный — это электротермомеханический. Он соединяет в себе два первых варианта. Ток помогает разогреть и слегка удлинить металлопрокат, а механические приспособления более легко и точно вытягивают стержни.

Область применения

Чаще всего напрягаемая металлическая арматура нужна для возведения перекрытий между этажами при строительстве многоэтажного здания. Кроме того, ее часто используют для бетонных стен и колонн, которые возводятся в районе повышенной опасность, то есть, где возможен сход почв, землетрясения, взрывы и другие крупные колебания.

Напрягаемая арматура часто необходима в мостостроении, а также обязательно применяется при сооружении защитной оболочки в ядерной промышленности.

Наконец, ее можно взять просто для обустройства фундамента здания, в котором будет значительная нагрузка на основание.

Закладка бетона

Есть два способа, которыми напрягаемую арматуру встраивают в бетон. Первый, классический, заключается в обработке стержней до заливки бетона, а затем в создании обычной железобетонной конструкции.

Второй осуществляется уже после того, как блок фундамента залит и застыл. В таком случае арматура кладется внутрь в специальном чехле (например, в виде гофрированной трубы), а лишь затем проводится процедура натяжения.

Мы предлагает различные варианты и комплексный заказ металлопроката — обсудите все нюансы с нашими менеджерами!

Преимущества и недостатки

Среди основных преимуществ выделяют следующие:

  • Высокие показатели растяжения и трещиностойкости, предохранение металла от образования коррозии. Это свойство необходимо для конструкции находящихся в постоянном контакте с водой, например, плотин, труб.
  • Уменьшение сечений и веса таких элементов до 30%, как следствие, меньший расход материала.
  • Лучшее сопротивление динамическим нагрузкам. Задействуют для строений, в которых типичные ЖБИ применять не рационально, например, за счет облегченной массы и объема, упрощения в сборке (подкрановые балки, плиты).
  • Сборно-монолитные блоки конструкции. С помощью таких блоков достигается более длительная эксплуатация. При возведении таких конструкций все отдельные части соединяют так, что в процессе эксплуатации они объединяются в целое и выполняют свои функции в одном направлении.
  • Уменьшение расхода арматуры до 40% вследствие более качественному применению свойств металла, помещенного в напряженное состояние.

Производство позволяет тратить гораздо меньше арматуры на данный материал.
Предварительно напряженный железобетон имеет и свои минусы:

  • Трудоемкость процесса изготовления.
  • Трудно проводимый контроль по проверке армирования изготовленного элемента.
  • Значительный вес ЖБИ. Только применяя легкие заполнители или пустотные конструкции с тонкими стенами достигают значительного уменьшения массы.
  • Необходимость привлечения высококвалифицированных специалистов.

Применение бетона в предварительно напряженном состоянии

Преднапряженный бетон используется в разных отраслях строительства для сооружения:

Из материала можно возводить телебашни.

  • высотных башен (в т. ч. телевизионных);
  • большепролетных перекрытия без существенного увеличения расхода бетона и арматуры периодического профиля и жилые здания;
  • резервуаров в форме яйца для очистных городских сооружений (применяется техника за рубежом с использованием монолитного преднапряженного железобетона);
  • водных плотин;
  • корпусов атомных реакторов 1-го поколения и герметичного ограждения атомных электростанций;
  • мостов.

Из такого бетона создают стены, панели ограждения, лестничные марши, основу фундаментов, колонны, столбы линий электропередач, каркасы подземных тоннелей и прочее. Напрягающий цемент для производства изделий из железобетона обеспечит дополнительную водонепроницаемость и прочность конструкции.

Источник: dzgo.ru

Рейтинг
Загрузка ...