Приведите примеры химических веществ и материалов применяемых в строительстве

Содержание

КОНСТРУКЦИОННЫЕ И СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ. Понятие конструкционных и строительных материалов охватывает множество различных материалов, применяемых для изготовления деталей конструкций, зданий, мостов, дорог, транспортных средств, а также бесчисленных других сооружений, машин и технических изделий.

Возможность создания какой-либо конструкции и ее работоспособность зависят от наличия материалов с подходящими механическими свойствами. Например, для изготовления современного автомобиля необходимы легированные стали, а металлический самолет стал реальностью лишь с появлением технологичных и прочных алюминиевых сплавов. Для гидроэлектростанций необходимы те сорта бетона и цемента, из которых можно построить долговечные плотины. Современные высотные здания выглядели бы по-другому, если бы не было стеклянных материалов.

Историю культуры часто делят на каменный, бронзовый и железный века – по тем материалам, из которых изготавливались орудия труда и оружие. В наши дни в распоряжении конструктора имеется широкий спектр материалов: чугуны, стали и сплавы цветных металлов, керамические, каменные материалы, бетон, стекло и полимеры. Разработка и применение таких материалов – профессиональное занятие инженера-технолога и инженера-конструктора.

Видеоурок по химии «Знакомство с лабораторным оборудованием. Правила техники безопасности»

ЧУГУНЫ И СТАЛИ

Серый чугун, содержащий 3,5–4% углерода, около 1% кремния и столько же марганца, – самый распространенный в мире литейный материал, применяемый для изготовления блоков и головок цилиндров, редукторных корпусов, тормозных барабанов, станин металлорежущих станков и многих других изделий.

Легированные стали.

Легированные стали – это стали с добавкой элементов, улучшающих те или иные свойства: прочность, ударную вязкость, сопротивление ползучести или коррозионную стойкость. Закаленные и отпущенные стали применяются для аэрокосмических и автомобильных деталей, крупных турбин, скальпелей и ножей, режущего инструмента и других изделий, от которых требуется высокая прочность.

Отдельную группу составляют нержавеющие стали. Такие стали содержат много хрома (обычно свыше 12%) и могут содержать другие легирующие элементы, например никель и молибден. Они обладают повышенной коррозионной стойкостью. Типичная область их применения – химико-технологическая аппаратура, оборудование пищевой промышленности и всевозможные декоративные металлические изделия.

Нержавеющие стали представляют собой сложные сплавы, и некоторые из них могут быть термообработаны на высокую прочность. Они применяются в виде отливок, а также полуфабрикатов, получаемых формообразованием в холодном или нагретом состоянии – листового проката, толстых листов, труб, прутков и проволоки. См. также МЕТАЛЛОВ ТЕРМИЧЕСКАЯ ОБРАБОТКА.

К специальным сталям относятся инструментальные стали. Они содержат много углерода (0,8–2,0%) и достаточно много легирующих элементов для образования не только твердого мартенсита, но и твердых карбидов. Типичные легирующие элементы таких сталей – хром, молибден, вольфрам и ванадий. Инструментальные стали обычно термообрабатываются на высокую прочность.

ОКСИДЫ, КИСЛОТЫ, СОЛИ И ОСНОВАНИЯ ХИМИЯ 8 класс / Подготовка к ЕГЭ по Химии — INTENSIV

Некоторые из инструментальных сталей, т.н. быстрорежущие, способны сохранять свою твердость в режущих инструментах до температур, достигающих 600 ° C. Содержание легирующих элементов в инструментальных сталях обычно выше, чем в любых других легированных сталях. Прочность на растяжение таких материалов составляет 1400–2800 МПа. Ударная вязкость инструментальных сталей, как правило, низка. См. также СТАНКИ МЕТАЛЛОРЕЖУЩИЕ; МЕТАЛЛОВ ОБРАБОТКА ДАВЛЕНИЕМ; МЕТАЛЛОПОКРЫТИЯ.

ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ

Цветные металлы и их сплавы широко применяются в технике. К наиболее важным цветным металлам относятся алюминий, медь, магний, никель, титан и (в меньшей степени) мягкие металлы – олово, свинец и цинк. В сплавах часто используются такие металлы, как сурьма, висмут, кадмий, ртуть, кобальт, хром, молибден, вольфрам и ванадий. Последние четыре металла условно относят к ферросплавам, хотя они могут содержать железо лишь в виде примеси.

Алюминий.

Чистый алюминий широко применяется там, где важное значение имеет высокая электропроводность, например в проводах для линий электропередачи (ЛЭП). Алюминиевые сплавы пригодны также для опор ЛЭП, поскольку конструкции, выполненные из таких сплавов, стойки к атмосферной коррозии.

Алюминиевые сплавы можно разделить на упрочняемые и не упрочняемые термической обработкой. Сплавы, упрочнение которых термической обработкой не удается, обычно содержат кремний, магний и марганец. Сплавы же, упрочняемые термической обработкой, содержат медь, цинк и определенные сочетания магния с кремнием.

Предел текучести сплавов, не упрочняемых термообработкой, составляет 50–280 МПа, а их прочность на растяжение лежит в пределах от 100 до 350 МПа. Предел текучести термообрабатываемых сплавов может превышать 500 МПа, а прочность на растяжение – 550 МПа. Термообрабатываемые сплавы (из которых наиболее известны дуралюмины и авиаль) чаще всего применяются в аэрокосмической промышленности, где требуется высокая прочность при малой массе. Но алюминиевые сплавы широко применяются и практически во всех транспортных средствах – легковых автомобилях, автобусах, железнодорожных вагонах и даже морских и речных судах.

Поскольку медь довольно легко восстанавливается из руды, она явилась одним из первых металлов, которыми научился пользоваться человек. Это произошло, по-видимому, раньше 4000 до н.э. У меди высокая электропроводность, и она была первым материалом, примененным для передачи электричества. Она до сих пор широко применяется в бытовой электропроводке и электрооборудовании.

Предел текучести чистой меди составляет около 170 МПа, а прочность на растяжение – около 280 МПа; относительное удлинение обычно превышает 35%. Холодная прокатка и волочение повышают указанные характеристики меди. Жесткость меди примерно вдвое меньше, чем стали.

Высокопрочные медные сплавы содержат алюминий, кремний или бериллий. Путем термической обработки их предел текучести можно повысить до 1000 МПа и более, а прочность на растяжение – до 1300 МПа. Эти сплавы применяются там, где требуются коррозионно-стойкие, немагнитные, неискрящие материалы с высокими электропроводностью и прочностью. Многие медные сплавы, особенно с оловом и никелем, предпочитаются инженерами за их коррозионную стойкость в таком оборудовании, как теплообменники, перегонные аппараты, испарители, конденсаторы и трубопроводы. В бытовых системах для горячей воды часто используются медные трубки.

Магний.

Титан.

Титановые сплавы начали применяться в качестве конструкционных материалов лишь после Второй мировой войны. Производство титана затрудняется тем, что он очень активно взаимодействует с кислородом, водородом и азотом, а также (при высоких температурах) почти со всеми материалами плавильных тиглей.

Тем не менее в настоящее время выпускается и применяется целый ряд титановых сплавов. Благодаря своей легкости (плотность ок. 4,5 г/см 3 ) и высокой прочности, превышающей прочность алюминиевых и магниевых сплавов, титановые сплавы находят применение в ответственных деталях аэрокосмической техники. Но титан довольно дорог, что ограничивает его применение.

Технический титан имеет предел текучести более 400 МПа, прочность на растяжение от 500 до 630 МПа, относительное удлинение ок. 20%. Почти весь производимый титан используется в виде сплавов, улучшаемых термической обработкой. Обычные легирующие элементы титана – алюминий, ванадий, молибден и олово.

Самый распространенный титановый сплав – с 6% алюминия и 4% ванадия – применяется в аэрокосмической промышленности. Его предел текучести составляет ок. 900 МПа, а прочность на растяжение – более 1000 МПа. Прочность этого сплава можно повысить путем сложной термообоработки. Будучи стойкими к некоторым кислотам, титановые сплавы применяются в соответствующей аппаратуре.

Кроме того, такие сплавы находят применение как материалы трубных коммуникаций и арматуры, деталей корпуса и обшивки высокоскоростных военных самолетов.

Никель.

Никель редко применяется в чистом виде, но его сплав с хромом и молибденом широко используется для высокотемпературных деталей и элементов конструкций. Такой сплав характеризуется высоким сопротивлением ползучести и высокой коррозионной стойкостью в диапазоне температуры от 800 до 1100 ° C. Типичное применение хромомолибденовых сплавов никеля – лопатки турбин и другие высокотемпературные компоненты. Никель применяется также в некоторых медно-никелевых сплавах для повышения коррозионной стойкости меди.

Другие металлы.

Олово, цинк и свинец используются главным образом для повышения коррозионной стойкости сплавов, причем олово и цинк – чаще всего в виде антикоррозионных покрытий для стальных изделий. Принцип такой «протекторной» защиты в том, чтобы корродировало покрытие, а не сталь. Цинковые «гальванические» покрытия наносят электролитическим осаждением.

Свинец без дополнительных компонентов используется в качестве коррозионно-стойкого материала в виде труб и листов. Свинец применяется вместе с оловом в виде припоев, особенно в электронной промышленности. Содержание свинца в таких припоях может составлять от 50 до близкого к 100%.

Цинк используется в легкоплавких сплавах для литья под давлением в некоторых отраслях промышленности, особенно в автомобильной. Прочность этих сплавов невысока, зато они пригодны для литья в сложные формы. См. также СПЛАВЫ; МЕТАЛЛЫ ЧЕРНЫЕ; ПОРОШКОВАЯ МЕТАЛЛУРГИЯ.

ПОЛИМЕРНЫЕ МАТЕРИАЛЫ

Полимеры, на основе которых создаются пластмассы, все шире применяются в качестве конструкционных и строительных материалов. Длительное время они использовались почти исключительно в бытовой технике и детских игрушках. Малая относительная плотность, низкая стоимость и удовлетворительные механические характеристики конструкционных пластмасс делают их особенно привлекательными там, где важное значение имеет экономичность и где они уже заменили ряд металлов, – в транспортных средствах. Они также все шире применяются в строительстве, особенно в качестве изоляционных материалов, а также в конструкциях. Из-за низкой относительной плотности (около 1,0) они ценятся также в авиакосмической промышленности.

Полимеры часто делят на группы по их свойствам и по веществам, из которых они получаются. Их структура довольно сложна и в значительной мере зависит от химико-технологического процесса их производства. Большую группу т.н. термопластичных полимеров, или термопластов, составляют полимеры, которые размягчаются при нагревании и восстанавливают свои свойства при охлаждении.

Читайте также:  Отсев что это в строительстве

Простые термопласты – это в основном соединения углерода с водородом. Примером может служить хорошо известный полиэтилен, из которого изготавливают пленку, упаковочные материалы, сосуды и т.д. Технические полимеры – это обычно термопласты, в состав которых для улучшения механических свойств введены такие элементы, как кислород, азот и сера.

Их часто называют гетероцепными полимерами. Предел текучести таких материалов невелик, 7–35 МПа, а прочность на растяжение значительно ниже, чем у металлов: 20–70 МПа. Они применяются в производстве мебели, для изготовления слабонагружаемых деталей, в том числе зубчатых колес, подшипников, втулок, труб разного диаметра и изоляции.

Примером применения технических полимеров не очень высокой прочности в инфраструктуре жилых домов могут служить канализационные трубы. Ранее изготавливавшиеся литьем из чугуна, они теперь все чаще выполняются из гетероцепных термопластов. Некоторые полимеры особого назначения используются благодаря их особым свойствам, например, найлон и тефлон – как прочные материалы с очень скользкой поверхностью. Тефлон (фторопласт), используемый в кухонной утвари в качестве противопригарного покрытия, применяется и для изготовления различных технических деталей (например, прокладок) как материал, стойкий к повышенным температурам.

Другую крупную группу полимеров составляют термореактивные полимеры, или реактопласты. Эти материалы полимеризуются (отверждаются) при нагревании под давлением, иногда с применением катализатора, и после этого не размягчаются при нагревании вплоть до разрушения. Они прочнее термопластов. Их типичные применения – нагружаемые зубчатые колеса, прутки, детали насосов, изоляторы и некоторые легкие детали конструкций.

И в термопластах, и в реактопластах часто используют наполнители, т.е. вещества, которые вводятся для улучшения свойств или для удешевления изделия. Наполнителем могут служить опилки, слюда, стекловолокно и стеклоткань. Стекловолокно позволяет повысить прочность полимера на растяжение до 700 МПа. Полимеры такого типа, называемые композиционными материалами, применяются для вертолетных винтов, элементов ракетно-космических конструкций и для авиационных поверхностей управления. Поскольку свойства композиционных материалов такого рода ухудшаются с повышением температуры, они редко эксплуатируются при температурах выше 150 ° C.

В технике применяется также полимерное волокно – в виде канатов и стропов. Природные полимеры, например пенька, в значительной мере вытеснены синтетическими. Классический пример технического полимера – резина. Вулканизованный каучук, т.е. каучук, термообработанный с применением серы и других добавок, уже многие десятилетия является важным техническим полимером.

Резиновая автомобильная шина представляет собой камеру высокого давления, способную поддерживать большие грузы. Транспорт как отрасль потребляет огромные количества резины только в виде шин. См. также ПЛАСТМАССЫ; КАУЧУК И РЕЗИНА.

КЕРАМИЧЕСКИЕ МАТЕРИАЛЫ

В строительных и машиностроительных конструкциях применяются различные керамические материалы. К ним в первую очередь относится стекло. Стекло выделяется своей прозрачностью, но его механические свойства оставляют желать лучшего. Однако оно может быть модифицировано на повышенную ударную прочность.

Стекла – это «сплавы», основным ингредиентом которых является диоксид кремния. Наиболее распространено натриево-кальциево-силикатное стекло, которое состоит из диоксида кремния, оксида натрия и оксида кальция.

В качестве технических керамик применяются также оксиды металлов. Их пластичность невелика, а поэтому они используются там, где исключены удары. Огромные количества керамических материалов потребляются строительной промышленностью в виде кирпича, черепицы и других обожженных изделий. См. также КЕРАМИКА ПРОМЫШЛЕННАЯ.

ВЯЖУЩИЕ МАТЕРИАЛЫ

Основные вяжущие материалы – гипсовый цемент, известь и портландцемент.

Гипсовый цемент.

Гипсовые цементы изготавливаются из природного гипсового камня путем дробления, измельчения, обжига в тигельной или непрерывно действующей печи и помола полученного продукта в тонкий порошок. Температура обжига не превышает 190 ° C, так что дегидратация гипса оказывается неполной.

При схватывании гипсового цемента происходит гидратация с возвратом к исходной форме природного гипса (гидратированного сульфата кальция). Гипс – превосходный огнестойкий материал. Под действием огня выделяется гидратационная вода, и поверхность гипса покрывается порошком, защищающим глубинные слои. Стены и потолки помещений часто облицовывают гипсовыми листами.

Известь.

Известь выпускается в двух видах: негашеная и гидратная. Негашеная известь получается обжигом известняка CaCO3 в непрерывно действующих печах (при температуре 900–1000 ° C) для удаления диоксида углерода. Гидратная известь Ca(OH)2 производится на заводах путем размельчения комовой негашеной извести, смешивания ее с водой и превращения в сухой хлопьевидный порошок.

На строительной площадке негашеную известь необходимо загасить добавлением воды, а затем выдержать (не менее двух недель) перед смешиванием с песком для образования известкового раствора. Гидратную же известь достаточно смешать с песком, чтобы получить раствор. Поскольку она имеет вид порошка, ее легче смешивать с песком.

Но раствор из гидратной извести не столь пластичен, как из негашеной. Затвердевание известкового раствора обусловлено поглощением диоксида углерода CO2 из воздуха. При этом избыточная вода испаряется, замещаясь диоксидом углерода, и гидратная известь снова превращается в CaCO3, причем эта реакция протекает только в присутствии избытка влаги.

Но известковый раствор не твердеет под водой, так как ему для этого нужен диоксид углерода из воздуха. Раствор для кирпичной кладки содержит около 2,5 части (по объему) песка на 1 часть извести. При производстве штукатурных работ известковый раствор можно наносить на протяжении нескольких дней в три слоя (обрызг, грунт и накрывка), причем последний слой часто делается смесью гидратной извести с гипсовым цементом.

Портландцемент.

Изобретение портландцемента было запатентовано в 1824 Дж.Эспдином, каменщиком из Лидса (Англия), который дал ему это название, поскольку цемент походил на природный камень, добывавшийся на о. Портленд. Портландцемент по масштабам своего применения уступает лишь стали.

Портландцемент изготавливается совместным тонким измельчением клинкера, гипса и активных добавок. (Клинкер состоит в основном из силикатов кальция и получается обжиганием до спекания сырьевой смеси из известняка и глины.) В работе с портландцементом важное значение имеет проверка качества. Она проводится с образцом чистого цементного теста, помещаемым в автоклав. По увеличению длины образца можно судить о расширении цемента при схватывании.

Прочные цементы.

Разработаны цементы, прочность которых выше, чем обычных гидравлических, в том числе и портландцементов, и в отдельных случаях приближается к прочности керамических материалов. Главным принципом при их разработке было уменьшение отношения воды к цементу при сохранении необходимой пластичности цементного теста.

БЕТОН

Бетон – один из важнейших строительных материалов. Он получается (формованием с последующим схватыванием) из смеси вяжущего вещества (цемента) с водой, мелким заполнителем (песком) и крупным заполнителем (обычно гравием, щебнем или другим крупно размолотым материалом).

Поскольку бетонная смесь до затвердевания имеет тестообразный характер, бетон пригоден для изготовления конструкций разного типа, но форма (опалубка) не должна удаляться до полного схватывания смеси. В тех случаях, когда возможны растягивающие или изгибающие напряжения, бетон армируют сталью. Таким образом, бывает неармированный бетон, железобетон, бетон с волокнистым заполнителем (фибробетон) и предварительно напряженный бетон. Он может быть изготовлен с одним из пяти типов цемента: тип I – цемент общего назначения (обычный портландцемент); тип II – модифицированный портландцемент, умеренно сульфатостойкий для сооружений в грунте; тип III – быстротвердеющий; тип IV – с низкой экзотермией; тип V – сульфатостойкий для неблагоприятных грунтовых условий.

Заполнители.

Природные заполнители бетона должны быть долговечными, твердыми и без излишнего количества глины, суглинка, ила, слюды, сланца, черта (кремнистого сланца), щелочей и органических веществ. Заполнитель должен тщательно выбираться.

Крупный песок лучше мелкого, а песок с разными зернами от крупных до умеренно мелких более предпочтителен, нежели однородно крупный или однородно мелкий. Заполнители разделяют по крупности зерен. Максимально допустимый размер зерна зависит от рода работ. В тонких стенах, а также вблизи арматурных стержней размер зерна должен быть небольшим, но в массивном бетоне допустимы зерна размером до 15–20 см. Обычно при строительстве предпочитают природные заполнители, такие, как гравий, щебень, рваный камень, но используются и искусственные заполнители, например шлак доменных печей.

Вода для бетонной смеси должна быть чистой и несоленой. Морская вода вызывает коррозию стали и поэтому не должна применяться для изготовления железобетона. Вода служит смазкой между зернами заполнителя, делая смесь пластичной и удобоукладываемой, а также реагирует с портландцементом.

Состав бетонной смеси.

Прочность и другие желательные свойства бетона определяются количеством воды в бетонной смеси. Чаще всего на мешок цемента массой 43 кг добавляется 15–23 л воды в зависимости от влажности используемого песка и от требуемой прочности и стойкости бетона, причем меньшее количество воды дает более прочный бетон.

Торкрет-бетон.

При помощи т.н. цемент-пушки раствор и бетонная смесь разбрызгиваются под давлением сжатого воздуха на поверхность конструкций и сооружений в виде торкрет-бетона. Цемент-пушка непрерывно загружается сухой смесью песка и цемента; дальность подачи раствора по горизонтали достигает 70 м. Торкрет-бетон отличается высокой плотностью и водонепроницаемостью; он применяется при возведении ответственных тонкостенных железобетонных конструкций, ремонте и усилении конструкций, устройстве покрытий и водонепроницаемых обделок (например, тоннелей).

Декоративный бетон.

Для декоративной отделки в бетон вводят окрашивающий заполнитель – молотый мрамор или молотое стекло. Терраццо – это декоративный бетон из цветных цементов и дробленого мрамора, формуемый на месте в стенах и особенно в полу. Из декоративного бетона можно изготавливать облицовочные детали любой формы и любых размеров, чем они выгодно отличаются от изделий из керамики и естественного камня.

Бетон с воздухововлекающими добавками.

Вовлечение воздуха повышает долговечность бетона, в частности его стойкость к замерзанию-оттаиванию и крошению. Это особенно важно для дорожных покрытий и панельных конструкций, подвергающихся воздействию неблагоприятных погодных условий. Промышленность выпускает много различных воздухововлекающих добавок, а также воздухововлекающий цемент.

Тяжелый бетон.

Тяжелый бетон применяется в качестве биологической защиты от гамма-излучения ядерных реакторов. Из такого бетона выполняются, например, стены, окружающие активную зону реактора. Для тяжелого бетона используются заполнители с высокой относительной плотностью (вплоть до стальных отходов штамповки с магнетитом) и цемент, не вовлекающий воздуха, причем обязательно производится виброуплотнение бетонной смеси после укладки.

Читайте также:  Можно ли закрыть материнским капиталом ипотеку на строительство дома

Специальные бетоны.

Поскольку прочность на растяжение обычного бетона значительно меньше, чем на сжатие, разработан фибробетон – бетон с волокнистым заполнителем. При его изготовлении в бетоносмеситель вводится стальное, углеродное, стеклянное, асбестовое, полипропиленовое или бамбуковое волокно. Волокно повышает прочность бетона на растяжение и на изгиб, а также ударную прочность. К специальным бетонам относятся также бетоны, пропитываемые полимером после удаления влаги (с последующим отверждением), получаемые добавлением мономера или полимера в бетоносмеситель, и бетоны с полной заменой цемента полимером. Они применяются для ямочного ремонта и нанесения покрытий.

Испытания бетона.

Испытания на сжатие проводятся с цилиндрическими образцами диаметром 15 см и высотой 30 см. Равномерно нагружаемый цилиндр при разрушении обычно образует двойной конус с общей вершиной в средней точке цилиндра. Прочность на сжатие имеет важное значение при проектировании массивных сооружений. При проектировании дорожных и защитных покрытий важна прочность на изгиб, которая определяется путем нагружения модельных балок.

Огнестойкость.

Бетон – это материал с высокой огнестойкостью и низкой теплопроводностью. Он особенно подходит для защиты стальных конструкций, поскольку его коэффициент теплового расширения (около 0,00001 на 1 ° C для обычных смесей) почти такой же, как и у стали.

Предварительно напряженный железобетон.

В предварительно напряженном железобетоне растягивающие напряжения от нагрузки устраняются путем предварительного создания напряжений сжатия. При изготовлении железобетона прокладывается арматура из стали с высокой прочностью на растяжение, затем сталь натягивается механическим устройством и заливается бетонной смесью. После схватывания сила предварительного натяжения освобожденной стальной проволоки или троса передается окружающему бетону, так что он оказывается сжатым. Предварительное напряжение железобетона может производиться не только до, но и после схватывания бетонной смеси.

СТРОИТЕЛЬНЫЙ КАМЕНЬ

Наиболее важные виды строительного камня – гранит, известняк, мрамор и песчаник.

Гранит.

Относится к вулканическим горным породам, состоит из зерен трех минералов: кварца, слюды и полевого шпата. В зависимости от окраски полевого шпата гранит имеет голубовато-серый, розовый, красный или (реже) черный цвет. Он тверд и плохо поддается обработке.

Поскольку гранит отличается малой пористостью и большой морозоустойчивостью, его применяют для наружной облицовки стен, цоколей и колонн. Из него устраивают также фундаменты особо тяжелых сооружений – мостовых опор, колонн и т.д. Он долговечен, но не огнестоек, растрескивается и крошится под действием огня и воды. См. также ГРАНИТ.

Известняк.

Относится к осадочным горным породам, содержащим карбонат кальция. Весьма ценный материал для сооружения фундаментов (применяется в виде бутового камня), а также для облицовки зданий. Качество известняка можно определить по виду его излома: матовая поверхность излома свидетельствует о низком качестве камня. Известняк огнестоек до ~600 ° С. См. также ИЗВЕСТНЯК.

Мрамор.

Природный камень, образовавшийся из осадочных пород – известняка и доломита – при местных сжатиях земной коры. Мрамор в виде пиленых полированных плит применяют главным образом для внутренних облицовок общественных зданий, а также для полов, ступеней, подоконных досок и других изделий. Его не рекомендуется применять для наружных облицовок в больших и промышленных городах, так как атмосферный сернистый газ в присутствии влаги превращает наружный слой мрамора в гипс, в результате чего поверхность камня тускнеет и быстро разрушается. См. также МРАМОР.

Песчаник.

Состоит из зерен кварца, сцементированных, как правило, кремнеземом, кальцитом или гипсом. Наиболее прочные песчаники используют в виде плит для облицовки стен, для полов и т.д. Песчаник – очень теплопроводный материал, и для стен отапливаемых зданий он не применяется. Качество песчаника определяют по роду и количеству связующего вещества, угловатости зерен и виду поверхности излома. См. также ПЕСЧАНИК.

СТРОИТЕЛЬНАЯ КЕРАМИКА

Типичными изделиями из строительной керамики являются керамический кирпич, полнотелый и пустотелый стеновые камни, терракота, канализационные и дренажные трубы, шамотный кирпич и дорожный клинкер. В производстве таких изделий используются глина и сланцы.

Стеновые камни.

Размеры и важнейшие характеристики (такие, как предел прочности при сжатии) керамических стеновых камней (полнотелых и пустотелых), к которым относится и обычный керамический кирпич, определяются государственными стандартами. См. также КАМЕННАЯ КЛАДКА.

Облицовочный кирпич.

Применяется для облицовки наружных поверхностей стен. К стабильности размеров и качеству поверхности облицовочного кирпича предъявляются более жесткие требования, чем в случае обычного кирпича.

Архитектурная терракота.

Архитектурно-керамические детали постоянного профиля изготавливаются в виде пустотелых блоков путем пластического прессования. Используются они для устройства карнизов, тяг, поясков и других элементов при облицовке фасадов зданий.

Кровельная черепица.

Отличается высокой твердостью, прочностью и плотностью, а также широкими возможностями применения. Черепица должна быть единообразной формы без короблений, способных приводить к протечкам.

Канализационная труба.

Изготавливается из плотноспеченной глины без пор, с оглазурованной поверхностью. Секции обычно выполняются с монтажным раструбом на одном конце. Канализационная труба предназначена для бытовых и промышленных сточных вод. Дренажная труба, используемая для дренажа при избыточном увлажнении в сельском хозяйстве, изготавливается из пористой глины и не имеет раструбов.

Шамотный кирпич.

Огнеупорный материал (обожженный каолин) для дымоходов, печей, конвертеров и тиглей. Обжигается при температурах до 1650 ° C и поэтому способен выдерживать высокие температуры. Он не вступает в реакцию с газами, шлаками, металлами и колошниковой пылью.

Дорожный клинкер.

Это кирпич пластического формования из сланцев, сланцевой и неочищенной огнеупорной глин. Для увеличения плотности подвергается вакуумной сушке. Спекается обжигом при высокой температуре. Дорожный клинкер – твердый, жесткий, не поглощает влаги, применяется для дорожного покрытия.

ТЕПЛОИЗОЛЯЦИОННЫЕ МАТЕРИАЛЫ

К ним относятся материалы, используемые для сохранения тепла, предотвращающие конденсацию на трубах и защищающие стальные конструкции от огня. В теплоизолированном здании летом прохладнее, а зимой теплее, чем в здании без теплоизоляции. Теплоизоляция обеспечивает более равномерное распределение температуры в зданиях, камерах холодильного хранения, топках и печах.

В качестве низкотемпературных (ниже 100 ° C) теплоизоляционных материалов для зданий, горячих водяных труб и холодильных камер используются минеральная вата и такие органические материалы, как пробковый лист, обработанное древесное волокно, войлок, пеностекло и др. Минеральная вата состоит из волокон, получаемых продуванием водяного пара через расплавы доменного шлака, горных пород или стекла. Ее можно укладывать навалом между стойками каркасного здания или в виде матов, обшитых огнестойким полотном. Минеральная вата выдерживает температуру до 800 ° C. Органические материалы – хорошие теплоизоляторы, но требуют обработки антипиринами, предотвращающими их воспламенение и самостоятельное горение.

Для теплоизоляции низкотемпературных печей и паровых труб (от 100 до 540 ° C) применяются минеральная вата, асбест и диатомитовая земля. Ниже 300 ° C используется смесь оксида магния с асбестовым волокном.

Высокотемпературные топки и обжиговые печи (750–900 ° C) теплоизолируются блоками из глины и диатомитовой земли. Выше 900 ° C применяются огнеупорные материалы, а некоторые виды керамического волокна, укладываемого навалом, в матах, блоками или листами, выдерживают температуру до 1200 ° C. См. также ТЕПЛОИЗОЛЯЦИЯ.

БИТУМНЫЕ МАТЕРИАЛЫ

Битумы – это твердые или жидкие водонерастворимые смеси углеводородов (природного или пирогенного происхождения), растворимые в дисульфиде углерода. Существуют два важных вида битумов – асфальт (встречающийся в природе и получающийся при переработке нефти) и гудрон (побочный продукт нефтеперегонных заводов).

Асфальтовое вяжущее.

Асфальтовое вяжущее – это смесь 13–60% нефтяного битума с известняковым порошком. Применяется в смеси с песком, гравием, щебнем для устройства полов, тротуаров, покрытий и как гидроизоляционный материал. Является составной частью асфальтобетона.

Разбавленные асфальты.

Разбавленные асфальты получают смешиванием асфальтового вяжущего с нефтяным дистиллятом, таким, как нафта, керосин и легкое дистиллятное топливо. В результате вяжущее разжижается, что облегчает его нанесение на дорожное полотно в холодном или слегка подогретом виде. После нанесения разбавленного асфальта на дорожный заполнитель избыток дистиллята теряется. Точно так же разбавляется гудрон.

Продутый битум.

Получается продуванием воздуха через расплавленный битум в перегонном кубе. Углеводороды в битуме образуют более плотные соединения. После продувки битум становится более пластичным и менее чувствительным к изменениям температуры. Поэтому он применяется для гидроизоляции крыш и других покрытий. Если при продувке добавить катализатор, то получается резиноподобный битум для облицовки каналов.

Битумные эмульсии.

Битумные эмульсии получаются интенсивным перемешиванием битума или гудрона с водой (обычно в присутствии эмульгатора) в коллоидной мельнице. Применяются в дорожном строительстве для ремонта покрытий, нанесения поверхностного слоя износа, для пропитки щебеночного основания.

Асфальтобетон.

Асфальтобетон состоит из битумного связующего (асфальтового или гудронного), мелкого минерального заполнителя (такого, как песок) и крупного заполнителя, такого, как щебень, шлак или гравий. Широко применяется для дорожных покрытий высокого класса, причем пригоден для подстилающего, промежуточного и поверхностного слоев. Обычно горячая смесь готовится на смесительном заводе и затем специальной машиной наносится на полотно дороги. На строительстве местных дорог часто применяется дорожная смесь из местных заполнителей с холодными или слегка подогретыми битумными материалами – гудроном, разбавленным асфальтом, медленно затвердевающим битумом, битумной эмульсией. Смешивание производится на месте.

Нефтяной асфальт для холодной укладки.

Существует ряд смесей для дорожных покрытий на основе нефтяного асфальта, рассчитанных на укладку в холодном виде. Одна из них такова: порошкообразный твердый асфальт смешивается с жидким остаточным нефтепродуктом и заполнителем. Смесь длительное время остается неоднородной. Но при уплотнении частицы асфальта и жидкость взаимодействуют, и образуется асфальтовое связующее, которым скрепляются зерна заполнителя.

Природный асфальт.

Это песчаник или известняк, от природы пропитанный битумом. Он перерабатывается для достижения содержания битума, необходимого для дорожных работ, укладки тротуаров и строительства теннисных кортов. Укладывается в холодном виде и укатывается до окончательной формы.

Другие области применения.

Битумные материалы применяются также для гидроизоляции, изготовления рулонного кровельного материала, для защитных покрытий на трубопроводах и как связующее для красок. Асфальт обладает высокой электрической прочностью и применяется как диэлектрик для герметизации (заливки) распределительных коробок. Электрические кабели изолируются тканью или лентой, покрытой асфальтом.

ЛЕСОМАТЕРИАЛЫ

Древесина – древнейший естественный строительный материал, находящий широкое применение и в наше время. Различают более твердую древесину лиственных пород (дуб, клен, орех) и менее твердую – хвойных (сосна, ель, кипарис, секвойя). Первая используется в основном для столярных работ и отделки интерьеров, а вторая – в виде строительных лесоматериалов.

Читайте также:  Акт рабочей комиссии строительство

Как для внутренних, так и для наружных конструкций широко применяются клееные слоистые древесные материалы. Элементы конструкции изготавливаются склеиванием листов шпона. Толщина слоев может составлять от нескольких сантиметров до 3 мм (в микроламинированных конструкциях).

Клееные слоистые древесные материалы хорошо известны в современной архитектуре и применяются для изготовления элементов разной формы: прямых, искривленных, с плавными переходами. Для таких элементов подбирают древесину, наиболее подходящую по внешнему виду и механическим свойствам. Их несущая способность и размерная стабильность выше, чем у пиломатериалов.

Прочность.

Защита древесины от разрушения.

Для обеспечения долговечности деревянная конструкция должна быть защищена от гниения и разрушения насекомыми-древоточцами. Антисептическую защиту конструкций от гниения осуществляют в специализированных цехах деревообрабатывающих предприятий или непосредственно на строительной площадке. Промышленное антисептирование более качественно, так как может осуществляться под давлением в строгом технологическом режиме. На стройке производится лишь промазка или пропитка изделий. В качестве антисептиков используют каменноугольное креозотовое масло, растворы пентахлорфенола в жидких углеводородах, водные растворы фторидов и хлоридов цинка, арсенитов, арсенатов и т.п.

Для защиты древесины от разрушения насекомыми (древоточцами) используют химические вещества – инсектициды. Водные растворы инсектицидов наносят на поверхность конструкций кистями или опрыскивателями.

В связи с тем, что сухая древесина легко воспламеняется, необходимо предусматривать меры, обеспечивающие огнезащиту деревянной конструкции. Предохранение таких конструкций от возгорания достигается покрытием древесины огнезащитными материалами: штукатуркой, обмазками, окраской специальными жидкими составами. Применяется также пропитка древесины химическими веществами, повышающими ее огнестойкость, например фосфорной кислотой, фосфатами аммония или магния. Обработанная таким образом древесина обугливается при сильном нагреве, но горение прекращается, как только ослабляется нагрев. См. также СТРОИТЕЛЬСТВО ЗДАНИЙ; КРАСКИ И ПОКРЫТИЯ; СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ.

Рыбьев И.А. и др. Общий курс строительных материалов. М., 1987
Технология металлов и конструкционные материалы. М., 1989
Любарский А.Д. Технология и организация строительного производства. М., 1991

Источник: www.krugosvet.ru

химия строительных материалов
презентация к уроку по химии (11 класс)

«Человек в мире веществ, материалов и химических реакций». «Химические вещества как строительные и поделочные материалы».

Что такое глина? мелкозернистая осадочная горная порода , пылевидная в сухом состоянии, пластичная при увлажнении. Глина состоит из одного или нескольких минералов группы каолинита (происходит от названия местности Каолин в Китае ), монтм-ориллонита или других слоистых алюмосиликатов ( глинистые минералы ), но может содержать и песчаные и карбонатные частицы. Как правило, породообразующим минералом в глине является каолинит, его состав: 47 % ( мас ) оксида кремния (IV) (SiO 2 ), 39 % оксида алюминия (Al 2 О 3 ) и 14 % воды (Н 2 O). Al 2 O 3 и SiO 2 — составляют значительную часть химического состава глинообразующих минералов.

Что такое мрамор? Мра́мор ( др.-греч . μάρμαρος — «белый или блестящий камень») — метаморфическая горная порода , состоящая преимущественно из перекристаллизованного кальцита CaCO 3 или доломита CaMg (CO 3 ) 2 ( доло-митовые мраморы).

Что такое известняк? осадочная горная порода органического, реже хемогенного происхождения, состоящая преимущественно из CaCO 3 ( карбоната кальция ) в форме кристаллов кальцита различного размера. Известняк, состоящий преимущественно из раковин морских животных и их обломков, называется ракушечником ( ракушняком ). Использование в строительстве

Применение известняка Скульптуры, негашеная известь, флюсы в металлургии

Что такое мел? осадочная горная порода белого цвета, мягкая и рассыпчатая, нерастворимая в воде, органического (зоогенного) происхождения. Основу химического состава мела составляет карбонат кальция с небольшим количеством карбоната магния , но обычно присутствует и некарбонатная часть, в основном оксиды металлов . Меловые острова Нидлс у западного побережья острова Уайт

Применение мела В строительстве:

Что такое стекло? Базовый метод получения силикатного стекла заключается в плавлении смеси кварцевого песка (SiO 2 ), соды (Na 2 CO 3 ) и извести ( CaO ). В результате получается химический комплекс с составом Na 2 O* CaO *6SiO 2 .

Что такое цемент? Цемент ( лат. caementum — «щебень, битый камень») — искусственное неорганическое вяжущее вещество . Один из основных строительных материалов . При затворении водой , водными растворами солей и другими жидкостями образует пластичную массу, которая затем затвердевает и превращается в камневидное тело. В основном используется для изготовления бетона и строительных растворов .

Цемент в строительстве и не только…. Шлакоблоки: Бетонные кольца : Железобетонные плиты: Садовые скульптуры: Дизайнерский взгляд на цемент:

По теме: методические разработки, презентации и конспекты

Урок по химии на тему: «Соединения кальция применяемые как строительные материалы»

Методическая разработка урока по химии на тему: «Соединения кальция применяемые как строительные материалы», предназначен для обучающихся НПО и СПО по всем строительным специальностям. Данный урок раз.

Строительные материалы

Примерно в третьем тысячелетии до н.э. в строительстве взамен глины в качестве связующего материала стали использовать гипс.Бетон является разновидностью искусственных каменных материалов. Безусловно.

«Строительные материалы»

Наглядное пособие для уроков штукатурно-малярного дела в 5,6 классах.

Тест по теме «Облицовочные строительные материалы». МОСР.

Тест по теме «Облицовочные строительные материалы». МОСР.

Тест по теме «Физические свойства строительных материалов». МОСР.

Тест по теме «Физические свойства строительных материалов». МОСР.

Рабочая тетрадь по дисциплине Строительные материалы, детали и изделия

тетрадь для выполнения лабораторных и практических работ по дисциплине Строительные материалы, детали и изделия.

НЕОБХОДИМОСТЬ ПОВЫШЕНИЯ СТРОИТЕЛЬНОЙ ГРАМОТНОСТИ НА УРОКАХ ТЕХНОЛОГИИ В УСЛОВИЯХ ИНТЕНСИВНОГО РАЗВИТИЯ РЫНКА СОВРЕМЕННЫХ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ И ТЕХНОЛОГИЙ

В данной статье обосновывается необходимость повышения строительной грамотности на уроках технологии в средней школе.

Источник: nsportal.ru

Основные химические свойства строительных материалов

Как и любое вещество, строительные материалы имеют своими химические свойства.

Виды строительных материалов и их теплопроводность

Виды строительных материалов и их теплопроводность.

Такие характеристики строительных материалов способны показать уровень активности того или иного вещества для строительства к химическому воссоединению с реагентами, а также оставить состав константным. Следует сказать, что существуют такие вещества, которые могут самопроизвольно изменить свои химические свойства в обыкновенной атмосфере. Поэтому каждый строитель должен иметь представление о свойстве материалов.

Основные физико-химические свойства строительных материалов

К важным химическим свойствам можно отнести следующие показатели:

Сравнительные характеристики стеновых материалов

Сравнительные характеристики стеновых материалов.

  1. Химическая стойкость — представляет собой возможность противостоять разрушающему воздействию разнообразных веществ, таких как кислоты, щелочи, соли, газы и другие вещества. Например, мрамор или цемент имеют способность быстро разрушаться под воздействием кислот, но к воздействию щелочей они устойчивы. Силикатные способны противостоять кислотам, но, наоборот, не могут противостоять щелочам. В технологии обязательно используют данный показатель.
  2. Коррозионная стойкость — способность бороться с влиянием внешней атмосферы. В основном благоприятной атмосферой для образования коррозии является простая вода. Уровень минерализации, щелочности, кислотности и жесткости напрямую влияет на агрессивный показатель жидкости. Воздух аналогично предстает агрессивной атмосферой, которая способна подвергнуть объект коррозии. Они подвергаются коррозии благодаря различным газам, азоту, хлору. Зачастую можно встретить биокоррозию. Она образуется благодаря воздействию активных субъектов — грибов, растений, насекомых.
  3. Растворимость — возможность растворяться в жидкостях (бензин, вода, масло, скипидар). Данное свойство способно приносить только плюсы или являться негативным свойством. Если во время строительных работ облицовочное средство быстро растворяется под воздействием жидкости, то это отрицательное свойство.
  4. Адгезия — способность соединяться с другой поверхностью. Данное свойство характеризуется показателем прочности и схватки между потенциальными материалами. Эти данные очень важны при образовании бетона, клееных деталей.
  5. Кристаллизация — является процессом появления кристаллов из паров, растворов и расплавов. В основном проявляется она в химических реакциях с выделением тепловой энергии.
  6. Долговечность является способностью проявлять сопротивление воздействию атмосферных влияний в период использования.

Свойства строительных материалов

Классификация экологических свойств стройматериалов

Классификация экологических свойств стройматериалов.

Любой строительный объект подвержен старению. Этот процесс сопровождается ухудшением свойств во время периода использования объекта. Химические свойства необходимы для того, чтобы было легче сравнивать строительные материалы между собой. Благодаря показателям можно определить сферу применения с учетом технико-экономической целесообразности.

Так, в условиях использования гидротехнических объектов строительные материалы постоянно подвергаются воздействию жидкости. Поэтому к ним будут предъявляться только самые высокие требования по водостойкости и морозостойкости. Большое количество способно под воздействием водопоглощения проявлять повышенные пластические свойства.

Специалисты в области строительства утверждают, что правильный выбор технически прочного материала обосновывают не только его прочностные показатели, но и химические свойства. Физико химические свойства напрямую связаны со структурой. Любые проникновения химических веществ из атмосферы могут стать результатом появлений новых образований, которые способны отразиться отрицательно на структуре. Изменение структуры может привести к тому, что состав станет разрушаться.

Используемый в строительных целях материал всегда подвергается технологической обработке. Способность поддаваться обработке представляет собой главный показатель, после которого принимается решение, использовать его или нет. Например, при заготовке щебня для бетонных манипуляций берется во внимание способность горной породы измельчаться без появления плоских щебенок, поэтому при выборе строительного материала всегда проверяется его способность отвечать на разнообразные факторы:

  1. Физические воздействия.
  2. Химические воздействия.
  3. Внешняя атмосфера.
  4. Влияние неустойчивой температуры.
  5. Разнообразные технологические маневры.

Применение строительных материалов

Благодаря полученной информации о химических свойствах строители имеют возможность выбрать надежный и качественный материал, который справится с поставленной задачей.

Для осуществления подсчета нагрузок при определении веса конструкции для транспортных расчетов и выбора емкости складских помещений строителям надо иметь представление о плотности вещества, который они будут использовать. Без информации о плотности нельзя осуществить расчеты прочности и вычислить показатели устойчивости будущего объекта. Также без показателя влагоустойчивости, влияния атмосферы, перебоя температурного режима нельзя построить долговечное здание.

Все химические показатели постоянно меняются. Этому способствует в основном влияние внешних факторов, где располагается объект, который был построен из материала. Такие изменения могут происходить довольно быстро или медленно. Следовательно, строители должны использовать те вещества, которые по своей природе прочные, но и по данным подходят для строительства объекта.

Все используемые объекты для строительства должны удовлетворять показателям, которые устанавливаются государственными стандартами. Специальные лаборатории осуществляют проверку строительного материала на соответствие требованиям государственного стандарта.

Источник: 1poremontu.ru

Рейтинг
Загрузка ...