Расстояние между колоннами в монолитном строительстве жилых домов

Содержание

Монолитное строительство для частных домов применяется не так часто, но положительные моменты данного способа сложно не заметить. Будущих владельцев загородных коттеджей обычно смущает высокая цена на дома такого рода. Это происходит из-за дороговизны железобетонных конструкций, из которых они состоят. При этом создание стен и других перегородок требует совсем немного средств. Наивысшей популярностью монолитная техника пользуется в районах с сейсмической активностью или если на земельном участке имеется большой уклон или требуются большое безопорные пространство.

Окончательная стоимость таких домов оказывается достаточно высокой, но, несмотря на это, они пользуются популярностью у владельцев участков. Основание в виде железобетонной конструкции дает возможность дом как в классическом, так и в современном стиле, а также воплотить креативные идеи при строительстве. Например, можно возвести здание в виде геометрической фигуры или сделать стены от пола до потолка целиком стеклянными (панорамное остекление). В любой форме конструкция будет качественной и очень прочной.

Железобетонные конструкции многоэтажного дома с подземным паркингом

Панорамное остекление

Монолитные дома можно увидеть во всех странах мира. Небоскребы и современные бизнес-центры Москвы, Парижа, Лондона и Нью-Йорка построены именно по этому методу. Когда стало понятно, что монолитным зданиям не страшны колебания до 8 баллов по шкале Рихтера при землетрясениях, их активно стали возводить в сейсмоопасных районах.

Технологии строительства железобетонных каркасов

Строительство домов возможно по двум технологиям.

  • Сборный каркас. Благодаря этому варианту конструкции приобретают дополнительную прочность. Процесс возведения каркаса производят не на самом участке, а в специальных цехах. Строят его из плит, ригелей, перекрытий и колонн. Готовую конструкцию привозят на место строительства и устанавливают на фундамент. Внутренние и внешние перегородки выполняют из легких и доступных материалов, поэтому, при желании, их можно перенести на другое место.
  • Монолитный каркас. Здание выполняется из цельных железобетонных конструкций. Производят армирование, установку опалубки и затем бетонирование. Внешнюю и внутреннюю поверхность стен обкладывают дополнительными материалами. Между ними помещают слой утепляющего и гидроизоляционного материала.

Сборный железобетонный каркас

Сборный железобетонный каркас

Железобетонный каркас невозможно собрать на участке, его изготавливают на заводе. В процесс требуется точный расчет и большое мастерство строителей.

Колонны, изготовленные за заводе, доставляют на участок строительства и ставят в гнезда фундамента. На колоннах размещают оставшиеся элементы. При создании составных частей каркаса необходимо выполнять специальную заделку технологических допусков. Нельзя забывать и об изоляции бетонных конструкций для того, чтобы устранить мостики холода.

Железобетонный каркас дома. Зачем нужен и как делать

При возведении каркасного дома сложность возникает из-за того, что для работы требуется строительный кран. Без его помощи невозможно установить железобетонные конструкции и межэтажные перекрытия.

Монолитный каркас

Монолитный каркас дома

Для монолитного здания подходит фундамент как из бетонных плит, армированных стальной решеткой, так и ленточный. В проект здания для коммуникаций закладывают специальный канал в бетонной конструкции. Если в доме планируется подвал, то вход и стены выполняются из бетона, а над ними заливается монолитное перекрытие.

Сложностью при возведении монолитного строения является необходимость иметь тяжелую строительную технику. Без нее невозможно перемещать тяжелые конструкции. Также необходим бетонный узел и вибротехника, при помощи которой уплотняют бетон. Непрерывность процесса строительства позволяет обойтись без стыков в бетоне, которые образуются из-за различия в сроках заливки.

Когда фундамент высыхает, на него укладывают арматурную сетку, а вокруг нее устанавливают опалубка. В опалубку заливают раствор бетона, сначала для основных колонн, а затем — для второстепенных. Затем бетон в колоннах следует уплотнить с помощью мощных поверхностных или глубинных вибраторов.

Это делается для того, чтобы не образовывались воздушные пробки, которые сильно влияет на качество готовых строений. Чем более тщательно будет выполнена эта работа, тем более гладкими будут стены и потолки в готовом доме. Каким окажется готовый дом, зависит от качества всех материалов, особенно бетона. Если его качество невысоко, то стены впоследствии могут промерзнуть, дать усадку или растрескаться.

Заливку бетона проводят только в теплые месяцы года. Когда он полностью засохнет, начинают делать обвязку из арматуры. Затем начинается второй этап формирования каркаса здания — заливание верхнего пояса каркаса в его опалубку.

Перекрытия между этажами также заливаются при помощи опалубки. Благодаря этому на потолках нет неприятных стыков и неровностей. Сколько бы не планировалось в доме этажей, каждый раз процесс повторяют. Монтируются арматурные колонны, вокруг них устанавливается опалубка и в нее заливают бетон, который уплотняется вибраторами.

Опалубка монолитных колон

Пространство между плитами можно заполнять как кирпичом, блоками или панелями, так и панелями ПВХ с утеплителем, деревом или даже стеклом. Менее прочные материалы используют в том случае, если на планируемый участок стены не приходится большая нагрузка.

Существуют различные варианты исполнения каркаса:

  • перекрытие на несущих колоннах;
  • несущие продольные стены;
  • несущие поперечные стены.

Армирование выполняется из стальной арматуры . Размер и количество прутьев подбирают для каждого конкретного случая, опираясь на проект дома. Части конструкции сваривают между собой. Их можно связывать, но этот способ более трудоемкий, поэтому используется гораздо реже.

В технологии монолитного строительства запланирован как съемный, так и несъемный вариант опалубки. Второй вариант часто используется при строительстве монолитных загородных коттеджей, частных домов.

Опалубочная конструкция может быть следующей:

  • мощный прочный щит (щитовая опалубка);
  • форма для отливки (туннельная опалубка).

Опалубка требуется для того, чтобы предотвратить растекание бетона, она держит его форму до полного высыхания.

Виды опалубочной системы:

  • горизонтальная;
  • вертикальная;
  • ползущая;
  • для закругленных элементов.

В зависимости от сложности здания и удаленности его от города бетонную смесь готовят на специализированном заводе или прямо на строительной площадке. С завода бетон доставляют на специальном транспорте — автомиксере. Заливают бетон при помощи крана или специального насоса для бетона.

Бетон заливается в опалубку и уплотняется при помощи глубинного или поверхностного аппарата. Опалубку можно убрать только после окончательного высыхания бетона. После этого ее можно переправлять на другой участок строительства.

Достоинства и недостатки технологии монолитно-каркасного строительства

Строительство монолитно-каркасного дома в стиле хай-тек

К преимуществам монолитного каркасного строительства относятся:

  1. Скорость возведения здания. Если сравнить с кирпичным домом, то монолитный будет построен на порядок быстрее. Это очень удобно, так как загородной дом может появиться на участке буквально месяц. На протяжении всего периода строительства поддерживается высокий темп работ. Простоев здесь практически не бывает.
  2. Большие возможности для проектирования помещений. Дома из других материалов в большинстве своем возводятся по определенному шаблону. При постройке монолитной конструкции фантазию дизайнера ничто не ограничивает. Например, комнаты могут располагаться на разных уровнях, а стены позволяется возводить из стекла.
  3. Отсутствие швов на панелях. Благодаря этой особенности появляются существенные плюсы таких домов:
  1. прекрасная звукоизоляция;
  2. улучшенные теплоизоляционные свойства;
  3. увеличение срока эксплуатации здания;
  4. высокая прочность конструкции;
  5. устойчивость к появлению трещин;
  6. небольшой вес здания.(по сравнению с полностью монолитными конструкциями )

Недостатки монолитного каркасного строительства:

  1. Увеличенные затраты на труд рабочих. Для возведения монолитного дома нужна бригада профессиональных строителей (или как их еще называют монолитчики).Для проведения работ необходимо нанимать профессионального подрядчика и опытную бригаду строителей. Потребуется также тяжелый автотранспорт.
  2. Большая восприимчивость незастывшего бетона к перепадам температур. Строительство лучше производить в теплый период. Если возникла необходимость проводить работы во время холодов, то в раствор бетона необходимо добавлять специальную смесь, не позволяющую снижать прочность бетона. Это потребует дополнительных расходов.
  3. Сложность проектирования здания. Без проекта и сложных расчетов здесь не получится.

а — столбчатый; б — ленточный; в — плитный сплошной; г — плитный ребристый; д — плитный коробчатый; е — свайный; 1 — колонны; 2 — фундаментные плиты и ленты; 3 — ребра фундаментных плит; 4 — сваи

Колонны принимают с поперечным сечением прямоугольной (квадратной), круглой и других форм.

Поперечные сечения колонн монолитных конструктивных систем

а — квадратное; б — круглое; в — прямоугольное; г — Г-образное (уголковое); д — Т-образное (тавровое); е — крестообразное

Несущие стены в плане принимают отдельно стоящими; продольными и поперечными; перекрестными, образующими вертикальные монолитные ядра жесткости и стволы.

Плиты применяют в безбалочных и балочных (в сочетании с балками) перекрытиях.

Конструкцию безбалочных перекрытий принимают в виде плоских плит, плит с капителями или в комбинированном варианте. Кроме того, допускается устройство контурных балок по свободным краям перекрытия.

В конструкциях балочных перекрытий расположение и шаг балок принимают в одном или двух направлениях с учетом шага вертикальных несущих конструкций. Ширину балок принимают преимущественно не более габаритного размера колонны и пилона, высоту балок — не менее толщины плитной части перекрытий.

Допускается для размещения инженерных сетей и звукоизоляции, устройства гладких потолков и т.п. принимать размещение балок в перекрытиях ребрами вверх. Конструкции балочных перекрытий с частым шагом балок (кессонные) следует применять преимущественно в регулярных конструктивных системах.

а — плоская плита; б — плита с балками в одном направлении; в — плита с балками в различных направлениях; г — плита с капителями; д — плита с главными и второстепенными балками; е — кессонная плита; 1 — колонны; 2 — плита сплошная; 3 — контурная балка; 4 — главная балка (в створах колонн); 5 — капитель; 6 — второстепенная балка; 7 — ребра кессонного перекрытия

Несущие железобетонные конструкции

Основные несущие элементы монолитных конструктивных систем — фундаменты, колонны, пилоны, стены, плиты и балки перекрытий и покрытий. Несущие элементы проектируют железобетонными монолитными с установкой расчетного и конструктивного продольного и поперечного армирования согласно СП 63.13330 и подразделу 6.3.

Фундаменты проектируют на естественном и свайном основаниях с учетом фактических инженерно-геологических условий участка строительства в виде отдельных (столбчатых) фундаментов под колонны, ленточных фундаментов, плитных фундаментов, свайных фундаментов и свайно-плитных (комбинированных) фундаментов.

Монолитные ленточные фундаменты выполняют в виде отдельных или перекрестных лент под вертикальные несущие конструкции нижнего этажа здания (сооружения) и имеют прямоугольное или ступенчатое поперечное сечение.

Плитные фундаменты выполняют из монолитного железобетона под всей площадью здания (сооружения). Толщину плитных фундаментов принимают постоянной или переменной и назначают по результатам инженерно-геологических изысканий, расчетов по прочности и деформативности и по конструктивным требованиям.

Ребристые и коробчатые фундаменты состоят из плитных и стеновых элементов. Такие фундаменты могут быть применены для повышения устойчивости надземной части здания (сооружения) и для использования подземного пространства в качестве технических помещений.

Свайные фундаменты выполняют из отдельных железобетонных свай (забивных, буронабивных, буроинъекционных и пр.) и монолитных плитных или ленточных фундаментных ростверков под вертикальными несущими конструкциями нижнего этажа.

Свайно-плитные фундаменты выполняют из монолитного железобетона под всей площадью здания (сооружения) в виде фундаментной плиты постоянной или переменной толщины и свай (забивных, буронабивных, буроинъекционных и пр.).

Тип и расположение свай по полю фундамента следует выбирать в зависимости от конструктивной системы здания (сооружения), нагрузок, приходящихся на сваи, и инженерно-геологических условий основания.

При проектировании рекомендуется принимать оптимальные конструктивные параметры фундаментных плит, устанавливаемые на основе технико-экономического анализа. Толщину сплошных монолитных фундаментных плит рекомендуется принимать не менее 0,5 м и не более 3,0 м. Класс бетона по прочности на сжатие принимают не менее В20, коэффициент продольного армирования не менее 0,3%, а марку по водонепроницаемости — не менее W6.

В первом приближении допускается толщину плоской фундаментной плиты на естественном основании назначать равной (1/65)/(1/50H), где H — строительная высота здания (сооружения), равная расстоянию от верха фундамента до срединной плоскости плиты покрытия. Толщину плоских фундаментных плит в общем случае назначают из условия обеспечения прочности, включая прочность на продавливание (колоннами, пилонами или сваями), жесткости и трещиностойкости.

В необходимых случаях в местах расположения вертикальных несущих элементов (колонн, пилонов и свай) предусматривают поперечное армирование, определяемое расчетом, также допускается местное увеличение толщины плиты.

При проектировании рекомендуется принимать оптимальные конструктивные параметры колонн, устанавливаемые на основе технико-экономического анализа. При этом минимальный размер квадратного и круглого поперечного сечения колонн следует принимать из условия обеспечения требований по гибкости по СП 63.13330.2012, и не менее 300 мм, для колонн с вытянутым поперечным сечением и пилонов — не менее 200 мм. Класс бетона по прочности на сжатие принимают не менее В25, процент армирования в любом сечении (включая участки с нахлесточным соединением арматуры) — не более 10%.

Конструктивные параметры колонн принимают преимущественно одинаковыми на одном уровне перекрытий в регулярных конструктивных системах. В нерегулярных конструктивных системах, а также с целью оптимизации решений при соответствующем расчетном обосновании допускается предусматривать различные конструктивные параметры колонн с учетом их расположения и восприятия нагрузок (средние, крайние, угловые).

В случаях, когда технико-экономический анализ конструктивных параметров колонн показывает, что требуемое армирование превышает максимальные значение, применяют сталежелезобетонные, в том числе трубобетонные колонны.

Проектирование сталежелезобетонных конструкций, а также конструкций из высокопрочных бетонов выполняют по СП 266.1325800, СП 311.1325800.

При проектировании рекомендуется принимать оптимальные конструктивные параметры стен, устанавливаемые на основе технико-экономического анализа. Размеры поперечного сечения (толщину) стен рекомендуется принимать не менее 0,16 м и назначают из условия обеспечения требований по гибкости по СП 63.13330.2012. Класс бетона стен принимают не менее В20, процент армирования в любом сечении стены (включая участки с нахлесточным соединением арматуры) — не более 10%.

При пролетах до 6-8 м перекрытия выполняют преимущественно плоскими, при больших значениях — плоскими с капителями или балочными.

При пролетах 12-15 м применяют преимущественно кессонные или часторебристые перекрытия. При пролетах порядка 20-30 м и более также применяют пространственные конструкции перекрытий и покрытий (складки, оболочки и т.п.) согласно СП 387.1325800.

При соответствующем технико-экономическом обосновании при пролетах более 7 м применяют высокопрочную напрягаемую арматуру со сцеплением или без сцепления с бетоном .

Для снижения массы перекрытий зданий (сооружений) нормального и пониженного уровней ответственности допускается применение в перекрытиях легких бетонов, пустотелых вкладышей или вкладышей в виде плит и блоков из легких бетонов согласно СП 351.1325800.

Предварительно напряженные перекрытия из монолитного железобетона применяют с выполнением натяжения арматуры на бетон.

В системах со сцеплением напрягаемой арматуры с бетоном в одном каналообразователе укладывают несколько канатов. В таких системах сразу после натяжения арматурных канатов каналы инъецируют в построечных условиях специальными цементными растворами, которые после набора прочности обеспечивают сцепление арматуры с бетоном.

В системах без сцепления арматуры с бетоном инъецирование каналов цементными растворами не выполняют. В такой системе заполненное специальной защитной смазкой пространство между канатом и защитной оболочкой каналообразователя исключает возможность сцепления арматуры с бетоном при натяжении арматуры, а также при нагружении и дальнейшей эксплуатации конструкции.

Конструирование в монолитных перекрытиях напрягаемой арматуры без сцепления с бетоном в эксплуатационной стадии следует производить таким образом, чтобы обеспечить эффективное восприятие опорных и пролетных изгибающих моментов в плите перекрытия. Для этого напрягаемую арматуру раскладывают вдоль пролета плиты волнообразно по параболическим линиям на опоре и в пролете.

Схема раскладки напрягаемой арматуры без сцепления с бетоном в эксплуатационной стадии по высоте сечения вдоль неразрезной конструкции перекрытия

Схема раскладки напрягаемой арматуры без сцепления с бетоном в эксплуатационной стадии по высоте сечения вдоль неразрезной конструкции перекрытия

При проектировании рекомендуется принимать оптимальные конструктивные параметры перекрытий, устанавливаемые на основе технико-экономического анализа. При этом толщину плит плоских перекрытий рекомендуется принимать не менее 160 мм, класс бетона — не менее В20. Толщину ребристых и кессонных плит рекомендуется принимать не менее 250 мм и не более 500 мм, класс бетона — не менее В25.

В первом приближении толщину плоских плит перекрытия в каркасных и смешанных конструктивных системах рекомендуется назначать не менее L/30, в стеновых конструктивных системах — не менее L/35, где L — длина наибольшего пролета плиты.

В дальнейшем толщину плоских плит перекрытия при необходимости корректируют с учетом требований по ограничению деформаций (прогиба) плит и прочности на продавливание.

В плоских плитах перекрытий и покрытия на густоармированных участках, вокруг колонн, где действуют максимальные поперечные силы, изгибающие и крутящие моменты, для предотвращения продавливания, упрощения армирования и облегчения бетонирования допускается применение фибробетона класса по остаточной прочности на растяжение не менее B32. Размеры участков плиты из фибробетона в этом случае назначают из условия обеспечения прочности на продавливание по его границе с основным бетоном плиты.

В необходимых случаях в местах расположения вертикальных несущих элементов колонн, пилонов и у торцов стен в горизонтальных конструкциях безбалочных перекрытий предусматривают поперечное армирование, определяемое расчетом на продавливание.

Конструирование несущих железобетонных конструкций

Арматура (рабочая и конструктивная) в любом случае должна иметь защитный слой бетона, обеспечивающий ей защиту от коррозии, а также сцепление и совместную работу арматуры с бетоном. Толщину защитного слоя следует назначать с учетом возможных отклонений, связанных с технологией арматурных и бетонных работ согласно СП 63.13330.2012, а также с учетом требуемого предела огнестойкости для конструкции.

Минимальное расстояние между стержнями арматуры принимают с учетом обеспечения укладки и уплотнения бетона железобетонного элемента и совместной работы арматуры и бетона.

Обеспечение укладки и уплотнения бетона зависит от состава бетонной смеси (подвижности бетонной смеси, размеров крупного заполнителя) и расположения арматуры по отношению к направлению укладки бетона.

Минимальное расстояние между стержнями арматуры для обеспечения совместной работы арматуры и бетона устанавливают в зависимости от диаметра арматурных стержней согласно СП 63.13330.2012.

Максимальное расстояние между стержнями арматуры (продольной и поперечной) принимают из условий обеспечения совместной работы арматуры и бетона, эффективного вовлечения в работу бетона и арматуры — одни из основных требований применения расчетных положений СП 63.13330.

Максимальное расстояние между стержнями арматуры для различного типа железобетонных элементов устанавливают согласно подразделу СП 63.13330.2012.

На концах арматурные стержни должны иметь анкеровку, обеспечивающую восприятие усилий, действующих в арматурном стержне. Анкеровку устраивают путем заведения арматурного стержня на необходимую длину, достаточную для восприятия усилий, действующих в арматурном стержне в рассматриваемом сечении (прямая анкеровка).

В качестве базовой длины прямой анкеровки принимают ее значение, требуемое для восприятия предельного усилия в арматурном стержне, соответствующего расчетному сопротивлению арматурной стали согласно СП 63.13330.2012.

Анкеровку растянутой арматуры допускается выполнять путем загиба арматурных стержней, устройства крюков на концах арматурных стержней, приварки поперечных стержней. Кроме этого, анкеровку выполняют с помощью стальных элементов (пластин, уголков и шайб), привариваемых на концах арматурных стержней, а также с помощью специальных анкерных устройств (высаженных головок и т.п.). При таких способах анкеровки должна быть обеспечена прочность бетона на смятие под этими анкерами и прочность бетона на выкалывание, когда арматуру анкеруют за пределами рассматриваемого элемента. Расчет производят согласно СП 63.13330.2012.

Анкеровка рабочей арматуры в бетоне элемента

а — сцеплением прямых стержней с бетоном; б — крюками; в — лапками; г — петлями; д — приваркой поперечных стержней; 1 — бетон; 2 — анкеруемый стержень

При конструировании арматурных изделий и закладных деталей рекомендуется стремиться к сокращению числа их типоразмеров как в пределах железобетонного элемента, так и в пределах ряда железобетонных конструкций.

В монолитных железобетонных колоннах концы продольных рабочих стержней, не привариваемые к анкерующим деталям, должны отстоять от торца элемента на расстоянии не менее 15 мм — для колонн длиной до 6 м включительно при диаметре стержней арматуры до 40 мм включительно и 20 мм — в остальных случаях.

Стержни продольной рабочей арматуры монолитных колонн рекомендуется назначать одинакового диаметра. Диаметр рабочей продольной арматуры в колоннах рекомендуется принимать не менее 12 мм. В случае, если продольная арматура конструируется из стержней разных диаметров, стержни большего диаметра располагают в углах поперечного сечениях колонны.

При высоте этажа менее 3,6 м или при продольной арматуре диаметром более 28 мм стыки рекомендуется устраивать через этаж.

Читайте также:  Как называется строительство на воде

Выпуски стержней из колонны с большим поперечным сечением нижнего этажа в колонну с меньшим поперечным сечением верхнего этажа, а также колонн одинакового поперечного сечения рекомендуется выполнять согласно изображению ниже. При этом перевод стержней из одного этажа колонны в другой осуществляется путем их отгиба с уклоном не более 1:6 . Часть стержней колонны нижнего этажа может быть доведена до верха перекрытия и не заводится в колонну верхнего этажа, если она не требуется там по расчету. В случае значительной разницы в сечениях колонн верхнего и нижнего этажей выпуски следует устраивать установкой специальных стержней в количестве, необходимом для колонны верхнего этажа.

Анкеровка и стыки арматуры внахлестку во всех случаях должны соответствовать СП 63.13330.

 Схема устройства стыков продольной рабочей арматуры монолитных колонн многоэтажных зданий Рисунок 7.2 - Схема устройства стыков продольной рабочей арматуры монолитных колонн многоэтажных зданий

а — при одинаковом поперечном сечении колонн верхнего и нижнего этажей; б — при незначительном различии в сечениях колонн верхнего и нижнего этажей; в — при значительном различии в сечениях колонн верхнего и нижнего этажей

В одном поперечном сечении колонны все продольные стержни должны быть охвачены непрерывным поясом хомутов, при этом концы хомутов должны иметь крюки и перехлестываться, а места перехлеста хомутов (в том числе по длине колонны) должны быть смещены по отношению друг к другу.

Примеры охвата поперечной вязаной арматурой нескольких продольных стержней в различных формах поперечных сечений монолитных колонн

Для продольной рабочей вязаной арматуры монолитных балок высотой сечения 400 мм и более рекомендуется применять стержни диаметром не менее 12 мм.

Продольную рабочую арматуру балок рекомендуется назначать из стержней одинакового диаметра. В случае применения стержней разных диаметров, стержни большего диаметра размещают в первом ряду, в углах сечения и в местах перегиба хомутов. Расположение вязаной арматуры в сечении монолитных балок приведено на рисунке ниже. Схемы армирования поперечных сечений монолитных балок вязаными каркасами приведены ниже, при этом закрытые хомуты перевязывают вразбежку.

Схемы армирования сечений монолитных балок вязаной арматурой

а — двухсрезными хомутами; б — четырехсрезными хомутами

Хомуты открытой конструкции допускается применять в вязаных каркасах средних балок, в том числе многопролетных неразрезных, монолитно связанных по верху плитой по всей длине при полной расчетной нагрузке на перекрытие не более 15 кН/м.

Рекомендуется, чтобы каждый хомут охватывал в одном ряду не более пяти растянутых стержней и не более трех сжатых. При большем числе стержней в одном ряду, а также при ширине монолитной балки 350 мм и более рекомендуется переходить на четырехсрезные или многосрезные хомуты.

В сечениях монолитных балок, где приложены сосредоточенные нагрузки, в т.ч. в местах опирания монолитных второстепенных балок на главные, следует предусматривать дополнительное армирование.

Дополнительное армирование балок в местах сосредоточенных нагрузок

а — сварными сетками; б — подвесками; в — с учащением шага хомутов

Отверстия значительных размеров (более 300 мм) в железобетонных элементах (плитах, стенах и т.п.) должны быть окаймлены дополнительной арматурой, сечением не менее сечения рабочей арматуры (того же направления), которая требуется по расчету элемента как сплошного.

Отверстия размером до 300 мм специальными стержнями не обрамляют. Вязаную рабочую и распределительную арматуру элементов вокруг таких отверстий сгущают путем установки двух стержней с шагом 50 мм. При армировании сварными сетками такое отверстие рекомендуется вырезать в арматуре по месту.

Отверстия (проемы) в плитах, если необходимо по расчету, обрамляют армированными ребрами. Размеры и армирование ребер принимают в зависимости от их размеров, формы, расположения в плане относительно балок перекрытия, назначения проема.

Армирование плит в местах отверстий

а — отверстие размером более 300 мм; б — отверстие размером 300 мм и менее; 1 — стержни арматуры плиты; 2 — окаймляющие стержни, образованные сгущением арматуры плиты; 3 — стержни специальной окаймляющей отверстие арматуры.

Общие положения по проектированию монолитных конструктивных систем с плитами перекрытий и покрытий с напрягаемой арматурой

При выборе конструктивных систем зданий, содержащих предварительно напряженные конструкции с натяжением на бетон, следует стремиться к соответствующей компоновке конструктивной системы.

Компоновку конструктивной системы производят для наиболее эффективного использования усилий предварительного напряжения и максимального ограничения дополнительных усилий (эффекты второго порядка), которые возникают в несущих конструкциях от усилий предварительного напряжения и должны быть учтены в расчете конструктивной системы.

Дополнительные усилия могут приводить к образованию технологических доэксплуатационных трещин в конструкциях перекрытий (рисунок А.1). Кроме того, нерациональная компоновка конструктивной системы может привести к потерям значительной части предварительного напряжения и образованию чрезмерных дополнительных усилий от обжатия в вертикальных конструкциях. Дополнительные усилия могут потребовать увеличения армирования.

1 — трещины; 2 — усилия обжатия

Для ограничения указанных негативных явлений предусматривают следующие конструктивные мероприятия:

  • у крайних и угловых колонн и стен предусматривают консольные участки перекрытий;
  • уменьшают крайние пролеты для снижения опорных моментов у крайних колонн и рационального размещения напрягаемых элементов;
  • расположение диафрагм и ядер жесткости проектируют с их максимально близким размещением к геометрическому центру плана плит перекрытий;
  • по возможности максимально снижают жесткость крайних и угловых колонн, а также пилонов и стен в направлении действия усилий обжатия;
  • применяют по возможности равнопролетные перекрытия.

Примеры рекомендуемых компоновок конструктивных систем

1 — колонны; 2 — стены; 3 — ядра жесткости

Примеры нерекомендуемых компоновок конструктивных систем

1 — колонны; 2 — ядра жесткости; 3 — стены

Что говорят про технологию на форумах?

Только вернулся из Греции. Практически все частные дома построены с по каркасно-монолитной технологии (сейсмичность). Изучал опыт в том числе и «самостроя». Но даже в этом случае себестоимость велика по отношению к другим конструктивам. Подумайте.
Стандарное решение:
1. Монолитный цоколь
2. Колоны с помощью профессиональной опалубки (аренда опалубки там распостронена там также как Ренткар)
3. Заполнение теплоэфективной керамикой или газобеном (сырье лучшее в Европе, поэтому качество и цены приемлемые)
4. Монолитные пояса и перекрытия
5. Все бетонные элементы утепляются 50мм ЭППС под общую с кирпичом штукатурку (ужас на побережье зимой бывают минусовые температуры)
6. Армирование очень серьезное. Продаются готовые сварные конструкции арматурин с сертификатами расчетов.
7. Контроль строительных чиновников очень жесткий (сейсмичность, теплоэффективность, теплоемкость).

AFA Forumhouse

Я посмотрел как делают в Ростове. Тут конечно немного теплее, чем в Москве, но все равно бывает и -30 и -20 иногда держится неделями. А минусовая бывает и всю зиму. Глубина промерзания — считается меньше метра. Так вот — льется плита фундамента, 30см примерно армирование верх и низ.
Сразу выводятся прутки в местах будущих столбов. Потом погнали сразу столбы до перекрытия. Перекрытие — 20 см, аримирование — 2 сетки верх и низ. Специальные подпорки раздвижные (в магазине такие 690 р/штука), на них или брусья или швелера или даже что то похожее на рельсы. Далее укладываются щиты что то вроде «финской» фанеры толстой или просто листы ДСП. (это опалубка перекрытия).

Заливка обычно бетононасосом 7тыс. на 3 часа. Каждый дополнительный 2,5 т. Перекрытие сразу имеет выводы арматуры столбов на след. этаж. После того как перекрытие схватывается — опалубка переносится на него и т.д.
Сразу льется лестница, также бетонные стены лифта или т.п.
На большие высоты конечно подача краном всего, но это уже не наш случай.
Аренда опалубки вместе с теми кто все соберет и зальет = примерно стоимость бетона. (это для каркаса, фундамент дешевле). Rostselmash Forumhouse

Размеры колонн унифицированы для удобства применения опалубки, если по прочности колонна 300х300 не проходит, никто не будет принимать сечение 330х330, примут 400х400. Армирование и сечение колонны может изменяться по мере увеличения высоты здания, причем количество и диаметр стержней арматуры в многоэтажном строительстве определяется строго расчетом.
На вскидку могу сказать, что сечение колонны 200х200 для двухэтажного дома, скорее всего, окажется достаточным, а вот арматуру желательно рассчитать, чтобы не промахнуться с прочностью и не слишком переплатить.
Есть, например, в SCADe приложение по расчету колонны, попробуйте посмотреть его, т.к. «вручную» у человека, не имеющего строительного образования, рассчитать не получится.

Linalen Forumhouse

Да, каркас надо считать. Уверен, расчет стоит на порядки дешевле, чем лишняя опалубка в случае полного монолита и работ по стенам. Кладка ГБ у меня была 1500 за куб с армированием. Сам ГБ 2900 за куб. ЖБ стоило 3700 за куб работы + 4300 за куб смесь + опалубка стоила дофига + мехнизацию тоже надо считать.По фундаменту надо смотреть нагрузки конкретного дома.

Каркас сильно легче сплошного монолита, потому к фундаменту требование может ограничиться лишь фоновым армированием в местах прихода нагрузки с колонн. Что абсолютно точно меньше стоимости доп монолита. А в случае одноэтажника, например, думаю разницы никакой не будет по фундаменту.Насчёт Эфиопии — не мучте себя уже, съездите, если так навязчиво. Закройте гештальт. По теплотехнике же 200 монолита утопленного на 200 в ГСБ в местах колонн и торцов перекрытий будет отличаться от просто 400 ГСБ (которое по Москве вполне себе с газом) процентов на 8-10.
То есть, это получится уже полноценная утепленная коробка. Монолит же помимо более дорогой работы, материалов и лишней опалубки + механизации надо будет ещё и утеплять.Из плюсов вижу только отказоустойчивость при работах и возможность сажать на практически любой фундамент без расчета. Дальше плюсы заканчиваются. basilio123 Forumhouse

Есть владельцы, и много — все жители современных высотных новостроек
В принципе, то же самое. У монолитного жб этажность мало на что влияет. Вообще, технология имеет много плюсов, главный из которых в том, что функция несущих опор и функция стен разделена. Это позволяет делать несущие колонны из дорогого качественного материала (М500), а стены из недорогого менее прочного (полистиролбетон, например).

Есть куча мелких плюсов: 1) не нужен подъемный кран; 2) полы сразу ровные; 3) широкие возможности по экономии, так как стены из пено/полистиролбетонных блоков можно ложить самому; 4) высокая прочность, негорючесть, шумонепроницаемость и т.п. Технология во многом повторяет современные торговые центры. Как и у них, можно сделать вентилируемые фасады из керамоганита — будет очень понтово на зависть владельцам кирпичных домиков. Из недостатков — нужен хороший фундамент. Sergey_G. Mastergrad

Главная особенность монолитного ж/б заключается в одном: расширенные архитектурно-планировочные возможности по сравнению с «традиционными» конструктивными материалами. Но для использования этой возможности требуется определенная эээ… культура производства и знания проектирования и работ.
В малоэтажке разделять стены и каркас, как правило, не оказывается нужным. В многоквартирных домах деваться некуда — кирпич на нижних этажах просто не понесет. И стены будут «недецкой» толщины. Автору:
Начинать Вам надо не с выбора материала, а с выбора архитектуры и функционала дома. Вполне может оказаться, что Вам окажется достаточно дачи 5Х6 из бревен (может быть оооочень капитальным) или, наоборот, выйдете на комплекс «дом-хоздвор-бассейн-и еще понадкусываю».

ac_52 Mastergrad

Источник: svoydom.info

Все о монолитных железобетонных колоннах – назначение, виды и типы, тонкости монтажа конструкций. Как сделать своими руками?

Монолитные колонны – часть монолитного каркаса здания, вертикальные несущие элементы. На колонны опирают балконы, террасы, перекрытия. Помимо основных функций, колонны являются декоративным элементом, украшают входную группу здания и фасад.

foto 1

Назначение бетонных колонн

Колонны принимают и передают нагрузку от вышерасположенных элементов на фундамент строения. Железобетонные столбы связывают конструкцию, служат опорой этажей.

Архитектурный термин «колонна» относится непосредственно к средней части, опорному столбу. Выступы в верхней части столба для опоры перекрытий или ригелей называют капителями или консолями. Иногда встречается подколонник, стакан для крепления к столбчатому фундаменту.

Виды и типы

Бетонные колонны подразделяют по типу сечения, способу производства.

По типу сечения подразделяют квадратную, круглую или прямоугольную форму.

По способу производства классифицируют элементы заводской готовности, поставляемые на объект готовыми конструкциями или возводимые на строительной площадке, монолитные колонны.

Особенности устройства монолитных колонн

foto 2

Перед производством работ подготавливают площадку, необходимые материалы, инструменты, конструкции. Площадка очищается от мусора, размечивается.

Затем переходят непосредственно к строительству:

  • собирают опалубку;
  • монтируют арматурный каркас;
  • заливают бетонную смесь;
  • осуществляют процедуры ухода за бетоном;
  • выдерживают время для набора прочности смеси;
  • распалубливают конструкции.

Монолитные железобетонные колонны рассчитывают на стадии проектирования. Сечение и форма колонны, диаметр арматуры, марка используемого бетона будут зависеть от количества планируемой нагрузки, включая собственный вес элемента.

При производстве работ рекомендуется строго следовать проекту.

[stextbox Недостатки монтажа и просчёты приводят к разрушению конструкции. При недостатке сечения возникает деформация продольного изгиба, колонна искривляется под нагрузкой.[/stextbox]

Подготовка инструментов и материалов

Потребность в материалах и инструментах выясняется на стадии подготовки к работам. Из инструментов понадобятся:

  • металлический угольник, уровень для проверки вертикальности и горизонтали поверхностей;
  • стальной прут, поможет выпустить воздух;
  • шуруповёрт для крепления опалубки;
  • вибратор уплотняет смесь;
  • сборная опалубка из щитов, подпорок.

Бетонная смесь поставляется к месту стройки в готовом виде или смешивается непосредственно перед укладкой с помощью бетономешалки. Для приготовления берут одну часть цемента, добавляют две части песка, перемешивают с двумя частями щебня и двумя частями гравия. Замешивая сухую смесь с водой, добиваются пластичного бетона однородной консистенции.

foto 3

Кроме бетонной смеси необходимы следующие материалы:

  • гвозди, саморезы для крепления опалубки;
  • арматурные стержни расчётного сечения и длины;
  • стальная проволока;

Установка опалубки

Опалубка устанавливается в проектное положение. Щиты выравниваются по вертикали и укрепляются с помощью подкосов, деревянных распорок. Подкосы якорятся с помощью опорных блоков в двух направлениях, чтобы исключить сдвиг.

При бетонировании высокой колонны процесс установки опалубки несколько отличается от обычного. Три стороны формы монтируются, а четвёртая грань закрывается по мере наполнения опалубки бетоном.

Армирование

Связывая между собой пруты, получают жёсткий объёмный каркас для укрепления бетона. Количество продольных стержней в каркасе 4-6 шт. Для квадратного сечения достаточно четырёх прутов по углам элемента, для прямоугольной формы длинную сторону дополнительно усиливают. Поперечное связывание арматуры применяют при устройстве колонн длиной до 2 метров.

foto 4

Каркас, превышающий длину 2 м, обвязывается короткими стержнями поперёк, с шагом 20-50 см, принятым при расчёте соответственно планируемой нагрузке.

Капители укрепляют арматурной сеткой.

Толщину прута сетки принимают от 15 мм, размер ячейки 10 х 10 см.

Армирование подколонника происходит укладкой сетки в каждую ступеньку, размеры и количество сеток берется из проекта.

Бетонирование

После монтажа опалубки и арматурного каркаса приступают к бетонированию, которое производят послойно, слоями толщиной 0,3-0,5 м, не допуская схватывания предыдущего слоя. До верха опалубки не доливают 50-70 мм раствора.

Для усадки бетона в колоннах выше 5 метров устраивают технологические перерывы от 40 мин до 2 часов.

При механизированной подаче готовой бетонной смеси скорость подачи снижают для избежания расслоения. Из смеси выпускают воздух стальными прутами, бетон уплотняют ручными вибраторами. В местах, недоступных для вибратора, бетон уплотняют вручную, тщательным штыкованием.

По завершению работ производят сезонный уход за бетоном.

Демонтаж опалубки

Срок набора бетоном 100% рабочей прочности составляет 28 календарных дней. Показатель может варьироваться от окружающих условий – температуры, влажности, комплекса работ по уходу. Средний период выстаивания монолитных колонн перед распалубливанием составляет 7-10 дней в летний период. Этот срок позволяет сформироваться углам и боковым граням.

[stextbox defcaption=»true»]До достижения 100% прочности бетоном монолитных колонн работы приостанавливают, либо производят смежные. Нагрузка на неотвердевший раствор приведет к разрушению конструкций.[/stextbox]

foto 5

Снятие опалубки начинают с подкосов, постепенно снимая крепления, боковые щиты.

Монолитные колонны как элемент каркаса обеспечивают пространственную жёсткость и прочность здания.

Полезные видео

Опалубка под колонны и их заливка:
[yvideo number=»5BAHUmI8Ifs»]
Посмотрите, как вяжут арматурные каркасы колонн:
[yvideo number=»Y2S_geuGyO0″]
Правила монтажа мелкощитовой опалубки для заливки монолитной бетонной колонны для частного дома, смотрим:
[yvideo number=»cEHJgznHiuc»]
Процесс бетонирования монолитного каркаса колонн дома, смотрим:
[yvideo number=»wHZ8YvXtM9E»]
Статья была полезна? Есть что добавить? Поделитесь опытом!

Источник: domavlad.ru

СВОД ПРАВИЛ
ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

2 РЕКОМЕНДОВАН К УТВЕРЖДЕНИЮ И ПРИМЕНЕНИЮ конструкторской секцией НТС НИИЖБ 27 апреля 2006 г.

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ приказом и.о. генерального директора ФГУП «НИЦ «Строительство» от 12 июля 2007 г. № 123.

4 ВВЕДЕН впервые

1 Область применения

2 Нормативные ссылки

3 Термины и определения

4 Общие указания

5 Конструктивные решения железобетонных монолитных зданий

6 Расчет несущих конструктивных систем

6.1 Расчетная схема

6.2 Требования к расчету

6.3 Методы расчета

7 Несущие железобетонные конструкции

8 Расчет несущих железобетонных конструкций

9 Конструирование основных несущих железобетонных конструкций монолитных зданий

Приложение А Основные буквенные обозначения

Приложение Б Перечень нормативной и технической документации

Введение

Настоящий Свод правил разработан в развитие СНиП 52-01-2003 «Бетонные и железобетонные конструкции. Основные положения».

Объем строительства зданий различного назначения из монолитного железобетона в последние годы значительно возрос. В то же время практика проектирования не имеет в своем распоряжении документа, где были бы объединены основные требования, выполнение которых обеспечивает надежность и безопасность такого вида зданий. Настоящий Свод правил ставит своей целью восполнить этот пробел.

Свод правил содержит рекомендации по расчету и проектированию железобетонных монолитных конструкций зданий жилого и гражданского назначения из тяжелого бетона без предварительного напряжения арматуры.

Решение вопроса о применении данного Свода правил при проектировании монолитных зданий относится к компетенции заказчика или проектной организации. В случае принятия решения о применении настоящего Свода правил должны быть выполнены все установленные в нем требования.

Свод правил разработали д-ра техн. наук А. С. Залесов, А.С. Семченков, Е.А. Чистяков, С.Б. Крылов, канд. техн. наук Р.Ш.

Шарипов (НИИЖБ — филиал ФГУП «НИЦ «Строительство»).

СП 52-103-2007

СВОД ПРАВИЛ ПО ПРОЕКТИРОВАНИЮ И СТРОИТЕЛЬСТВУ

ЖЕЛЕЗОБЕТОННЫЕ МОНОЛИТНЫЕ КОНСТРУКЦИИ ЗДАНИЙ

CONCRETE MONOLITHIC
BUILDING STRUCTURES

Дата введения 2007-07-15

1 Область применения

Настоящий Свод правил (далее — СП) распространяется на проектирование железобетонных монолитных конструкций зданий жилого и гражданского назначения из тяжелого бетона без предварительного напряжения арматуры.

2 Нормативные ссылки

В настоящем Своде правил использованы ссылки на следующие основные нормативные документы:

СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения

СП 52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры

СП 52-104-2004 Сталефибробетонные конструкции.

Другие нормативные и рекомендательные документы, ссылки на которые использованы в настоящем СП, приведены в приложении Б.

3 Термины и определения

В настоящем Своде правил использованы основные термины и определения по СНиП 52-01, СП 52-101, СП 52-104 и другим нормативным документам.

4 Общие указания

4.1 Рекомендации настоящего Свода правил распространяются на проектирование различных конструктивных систем зданий, в которых все основные несущие конструкции (колонны, стены, перекрытия, покрытия, фундаменты) выполняются из монолитного железобетона с жесткими и податливыми сопряжениями между ними.

4.2 Проектирование конструкций зданий, подвергающихся климатическим температурно-влажностным воздействиям, следует выполнять по СНиП 2.01.07.

4.3 Расчет и конструирование зданий при сейсмических воздействиях следует выполнять согласно С ниП II-7. Огнестойкость конструкций и огнесохранность зданий должны отвечать требованиям СНиП 21-01 и СТО 36554501-006.

4.4 Несущие конструкции здания следует проектировать с учетом долговечности и ремонтопригодности согласно СНиП 31-01, защиту конструкций от коррозии следует выполнять согласно указаний СНиП 2.03.11.

4.5 Значения предельных деформаций основания зданий регламентируются СНиП 2.02.01. Предельные прогибы, перемещения конструкций и перекосы вертикальных и горизонтальных ячеек зданий не должны превышать допустимых значений, приведенных в СНиП 2.01.07.

4.6 Для зданий, рассчитываемых на совместное воздействие вертикальных и горизонтальных нагрузок по недеформированной схеме, прогиб верха здания с учетом податливости основания рекомендуется принимать не более 0,001 высоты здания. При больших значениях прогибов необходимо выполнить расчет по деформированной схеме. При этом значение прогиба здания не должно превышать 0,002 его высоты.

4.7 Настоящий Свод правил следует применять совместно с СП 52-101 и СП 52-104.

4.8 Железобетонные конструкции должны быть сконструированы таким образом, чтобы с достаточной надежностью предотвратить возникновение всех видов предельных состояний. Это достигается выбором показателей качества материалов, назначением размеров и конструированием согласно рекомендациям настоящего СП и действующих нормативных документов. При этом должны быть выполнены технологические требования при изготовлении конструкций, соблюдены требования по эксплуатации зданий, а также требования по экологии, энергосбережению, противопожарной безопасности и долговечности, устанавливаемые соответствующими нормативными документами, и учтены неравномерные осадки основания.

4.9 При проектировании железобетонных конструкций их надежность должна быть установлена расчетом по предельным состояниям первой и второй групп путем использования расчетных значений нагрузок, характеристик материалов, определяемых с помощью соответствующих частных коэффициентов надежности по нормативным значениям этих характеристик с учетом степени ответственности зданий.

Нормативные значения нагрузок, коэффициентов сочетаний нагрузок и коэффициентов надежности ответственности конструкций, а также разделение нагрузок на постоянные и временные (длительные и кратковременные) следует принимать согласно СНиП 2.01.07.

Порядок приложения постоянных и длительно действующих нагрузок должен определяться графиком производства работ или по факту.

Читайте также:  Что за специальность мастер сухого строительства что это такое

4.10 Наряду с контролем прочности бетона по образцам рекомендуется контроль прочности бетона в готовой конструкции проводить с использованием неразрушающих методов по ГОСТ 22690.

4.11 При применении арматуры класса А500С с эффективным профилем, разработанным в НИИЖБ, следует пользоваться рекомендациями СТО 36554501-005. Стыковку арматуры в торец на стройплощадке следует осуществлять с помощью ванной сварки, а также винтовых и опресованных механических соединений.

Рекомендуется применение арматуры малого диаметра расширенного сортамента: 5,5; 6; 6,5; 7; 8; 9; 10; 11; 12 мм нового периодического профиля с сердечником в форме квадрата со скругленными углами в соответствии с ТУ 14-1-5500, ТУ 14-1-5501.

5 Конструктивные решения железобетонных монолитных зданий

5.1 Конструктивное решение включает строительную и конструктивную системы, а также конструктивную схему.

5.2 Строительная система здания определяется материалом, наиболее массовой конструкцией и технологией возведения несущих элементов (монолитный железобетон).

5.3 Конструктивная система (далее — КС) здания представляет собой совокупность взаимосвязанных несущих конструктивных элементов, обеспечивающих его прочность, устойчивость и необходимый уровень эксплуатационных качеств.

5.4 Несущая КС монолитного железобетонного здания состоит из фундамента, опирающихся на него вертикальных несущих элементов (колонн и стен) и объединяющих их в единую пространственную систему горизонтальных элементов (плит перекрытий и покрытия).

5.5 В зависимости от типа вертикальных несущих элементов (колонны и стены) конструктивные системы разделяют на (рис. 5.1, а, б, в):

— колонные, где основным несущим вертикальным элементом являются колонны;

— стеновые, где основным несущим элементом являются стены;

— колонно-стеновые, или смешанные, где вертикальными несущими элементами являются колонны и стены.

а — колонная КС; б — стеновая КС; в — смешанная КС;

1 — плита перекрытия; 2 — колонны; 3 — стены

Рисунок 5.1 — Фрагменты планов зданий

Нижние этажи часто решают в одной конструктивной системе, а верхние — в другой. Конструктивная система таких зданий является комбинированной.

5.6 В зависимости от инженерно-геологических условий, нагрузок и проектного задания фундаменты выполняют в виде отдельных плит переменной толщины под колонны (рис. 5.2, а), ленточных плит под колонны и стену (рис. 5.2, б) и общей фундаментной плиты по всей площади конструктивной системы (рис. 5.2, в).

При большой толщине плит применяют более экономичные, чем сплошные, ребристые и коробчатые плиты (рис. 5.2, г, д). При слабых грунтах устраивают свайные фундаменты.

а — отдельный; б — ленточный; в, г, д — плитные: сплошной, ребристый и коробчатый

Рисунок 5.2 — Фундаменты

5.7 Колонны могут иметь поперечное сечение квадратное, прямоугольное, круглое, кольцевое, уголковое, тавровое и крестовое (рис. 5.3, а- ж).

а — квадратное; б — круглое; в — кольцевое; г — прямоугольное; д — уголковое; е — тавровое; ж — крестовое

Рисунок 5.3 — Поперечные сечения колонн

Прямоугольные колонны (пилоны) с вытянутым поперечным сечением имеют соотношения b/ а hэт/ b>4. Более вытянутые в плане колонны следует относить к стенам.

5.8 Несущие стены в плане могут быть отдельно стоящими ( рис. 5.1, в); продольными и поперечными; перекрестными ( рис. 5.1, б), образующими вертикальные тонкостенные стержни открытого и замкнутого сечений.

5.9 Плиты перекрытий в колонных КС бывают:

— безбалочные в виде гладкой плиты (рис. 5.4, а); плиты с капителями (рис. 5.4, б); плиты гладкие или с капителями и с контурными балками по периметру здания;

— с межколонными балками в одном (рис. 5.5, а, б) и в двух направлениях (рис. 5.5, в, г).

5.10 Плиты перекрытий в колонных КС с балками и в стеновых КС бывают:

— сплошные, пустотные и ребристые, если балки и стены водном направлении (рис. 5.5, а, б);

— сплошные, кессонные пустотные и ребристые, если балки и стены в двух направлениях (рис. 5.5, в г);

— ребристые с ребрами вверх для устройства плавающего пола и получения гладкого потолка, укладки звукоизоляции и инженерных коммуникаций (рис. 5.5, а).

а — гладкая плита; 6 — плита с капителями

Рисунок 5.4 — Безбалочные перекрытия

а, б — балки и стены в одном направлении; в, г — балки и стены в двух направлениях;

1 — колонны; 2 — балки или стены; 3 — плита сплошная или пустотная; 4 — плита сплошная или пустотная кессонная;

5 и 6 — ребра и полки ребристой и кессонной плит

Рисунок 5.5. — Плиты перекрытий в колонных КС с балками и в стеновых КС

5.11 Ограждающие наружные стены бывают:

— несущие, передающие временную и постоянную нагрузки с этажей и собственный вес стены непосредственно на фундамент;

— самонесущие, передающие непосредственно на фундамент только собственный вес стены;

— ненесущие, опирающиеся в пределах этажа на перекрытия или вертикальные несущие элементы КС и непосредственно не передающие нагрузку на фундамент.

5.12 Конструктивные схемы в стеновых КС определяются взаимным расположением стен, а в колонных КС — взаимным расположением межколонных балок (рис. 5.5) относительно поперечных и продольных осей здания. Схемы бывают поперечные, продольные и перекрестные. В реальных монолитных зданиях конструктивные схемы обычно перекрестные (рис. 5.5, в, г; 6.2, а).

Чисто поперечные и продольные схемы (рис. 6.1, б, в) рассматриваются при разделении пространственной КС на две независимые (рис. 6.1, б, в и 6.2, б, в ) с целью упрощения расчетов.

( Опечатка, Информационный бюллетень о нормативной, методической и типовой проектной документации, № 3 2008 г.)

5.13 Горизонтальные нагрузки перераспределяются дисками перекрытий между защемленными в фундаменте вертикальными опорными консольными конструкциями (устоями) в виде:

— пространственных рам в колонных КС;

— стен в двух направлениях и образуемых стенами тонкостенных стержней открытого и замкнутого профилей в стеновых КС;

— пространственных рам, стен и тонкостенных стержней в смешанных КС.

Устои в КС воспринимают все горизонтальные и вертикальные нагрузки.

5.14 В колонных КС стыки пространственных рам-этажерок считаются жесткими при наличии капителей в плитах или вутов в главных балках. Стыки колонн с гладкой плитой или балками являются условно жесткими. После образования в стыках колонн наклонных трещин, их податливость еще более возрастает. Податливость стыков учитывают введением коэффициентов, понижающих изгибную жесткость элементов.

5.15 В многоэтажных зданиях наиболее часто применяют смешанные колонно-стеновые КС.

Стеновые, особенно перекрестные, КС обладают большей жесткостью и большим сопротивлением горизонтальным и вертикальным нагрузкам и потому более подходят для высоких зданий.

5.16 Несущие конструктивные системы могут быть регулярными, с одинаковым шагом колонн и стен по длине, ширине и высоте здания, или нерегулярными в плане и по высоте здания.

5.17 Нерегулярную несущую конструктивную систему рекомендуется проектировать таким образом, чтобы центр жесткости и центр масс конструктивной системы были как можно ближе к месту расположения равнодействующей вертикальной нагрузки.

5.18 Несущую конструктивную систему рекомендуется проектировать таким образом, чтобы вертикальные несущие элементы (колонны, стены) располагались от фундамента один над другим по высоте здания, т.е. были соосными. В тех случаях, когда колонны и стены не выполняются по одной оси, под «висячими» колоннами и стенами следует предусматривать устройство ребер жесткости и балок-стенок.

5.19 Конструктивную систему зданий рекомендуется разделять осадочными швами при различной высоте здания, а также в зависимости от длины здания — температурно-усадочными швами. Требуемые расстояния между температурно-усадочными швами по длине здания следует устанавливать расчетом. На период строительства возможно устройство временных деформационных швов, которые потом ликвидируются.

5.20 При проектировании несущих конструктивных систем следует стремиться к простым техническим решениям, в наибольшей степени обеспечивающим прочность и жесткость конструктивной системы: симметричным в плане и одинаковым по высоте, с регулярным расположением вертикальных несущих элементов в плане и по высоте, без больших консолей и проемов в плане и по высоте здания и т.п.

5.21 Отдельностоящие высокие здания рекомендуется выполнять ширококорпусными: круглыми, овальными, квадратными или прямоугольными с небольшим соотношением длинной и короткой сторон для снижения ветрового давления и затрат на отопление.

5.22 Секции здания разной высоты должны быть разделены деформационными швами. Не рекомендуется устраивать подземный гараж и стилобат, выступающие за пределы площади высокой части здания.

6 Расчет несущих конструктивных систем

6.1 Расчетная схема

6.1.1 Расчетная схема здания включает данные о нагрузках и физическую модель.

6.1.2 Физическая модель здания представляет собой трехмерную систему из колонн, стен, плит, балок и их сопряжений, а также данные о физико-механических свойствах материалов.

6.1.3 Распределение усилий в пространственно-деформируемых системах в значительной степени определяется жесткостными характеристиками элементов и их сопряжениями, которые зависят как от материала и его напряженного состояния, так и от качества изготовления и монтажа, наличия дефектов, предыстории загружения, типа конструкции, влажности материала, степени повреждения (износа), температуры и других факторов. Влияние этих факторов при проектировании учесть сложно. Поэтому геометрические параметры и физические характеристики материалов и конструкций в расчетах принимаются заданными.

6.1.4 Расчеты напряженно-деформированного состояния железобетонных линейных, плоских и объемных элементов и их сопряжений разработаны только для нормальных сечений при простых воздействиях.

Расчеты по наклонным и пространственным сечениям с трещинами имеются лишь для частных случаев, а для сложных воздействий и учета многих факторов (см. п. 6.1.3) применяют различные упрощения.

6.1.5 Сложные пространственные геометрические схемы упрощают путем замены реальной конструкции условной схемой. Ребристый и пустотный диски перекрытий, так же как и структурное покрытие из стержней, заменяются условной анизотропной пластиной постоянной толщины. Колонны и балки аппроксимируются стержнями, приведенными к оси, а плиты и стены — пластинами, приведенными к срединной плоскости.

6.1.6 Применяют континуальные, дискретно-континуальные и дискретные расчетные модели. Наиболее широкое распространение получили дискретные расчетные модели, основанные на математической и геометрической дискретизации пространственных конструкций, рассчитываемых методом конечных элементов (МКЭ).

6.2 Требования к расчету

6.2.1 Расчет несущих конструктивных систем включает:

— определение усилий в элементах конструктивной системы (колоннах, плитах перекрытий и покрытия, фундаментных плитах, стенах, ядрах) и усилий, действующих на основания фундаментов;

— определение перемещений конструктивной системы в целом и отдельных ее элементов, а также ускорений колебания перекрытий верхних этажей;

— расчет на устойчивость конструктивной системы (устойчивость формы и положения);

— оценку сопротивляемости конструктивной системы прогрессирующему разрушению;

— оценку несущей способности и деформации основания.

6.2.2 Расчет несущей конструктивной системы, включающей надземные и подземные конструкции и фундамент, следует производить для всех последовательных стадий возведения (в случае существенного изменения расчетной ситуации) и для стадии эксплуатации, принимая расчетные схемы, отвечающие рассматриваемым стадиям. При этом следует учитывать:

— порядок приложения и изменения вертикальной нагрузки и жесткостей элементов в процессе монтажа и эксплуатации;

— образование трещин от температурно-усадочных деформаций бетона в процессе твердения и наличие технологических швов при бетонировании захватками;

— величину прочности и жесткости бетона в момент освобождения конструкции от опалубки и передачи нагрузки от вышележащих этажей.

6.2.3 Расчет несущей конструктивной системы в общем случае следует производить в пространственной постановке с учетом совместной работы надземных и подземных конструкций, фундамента и основания под ним.

6.2.4 Расчет несущих конструктивных систем производят с использованием линейных и нелинейных жесткостей железобетонных элементов.

Линейные жесткости железобетонных элементов определяют как для сплошного упругого тела.

Нелинейные жесткости железобетонных элементов определяют по поперечному сечению с учетом возможного образования трещин, а также с учетом развития неупругих деформаций в бетоне и арматуре, отвечающих кратковременному и длительному действиям нагрузки.

6.2.5 Значения нелинейных жесткостей железобетонных элементов следует устанавливать в зависимости от стадии расчета, требований к расчету и характера напряженно-деформированного состояния элемента.

На первой стадии расчета конструктивной системы, характеризуемой тем, что армирование железобетонных элементов неизвестно, нелинейную работу элементов рекомендуется учитывать путем понижения их жесткостей с помощью условных обобщенных коэффициентов.

На последующих стадиях расчета конструктивной системы, когда известно армирование железобетонных элементов, в расчет следует вводить уточненные значения жесткостей элементов, определяемые с учетом армирования, образования трещин и развития неупругих деформаций в бетоне и арматуре согласно указаниям действующих нормативных документов по проектированию железобетонных конструкций.

6.2.6 В результате расчета несущей конструктивной системы должны быть установлены: в колоннах — значения продольных и поперечных сил, изгибающих моментов, а в необходимых случаях — и крутящих моментов; в плоских плитах перекрытий, покрытия и фундаментов — значения изгибающих и крутящих моментов, поперечных и продольных сил; в стенах — значения нормальных и сдвигающих продольных сил, изгибающих и крутящих моментов и поперечных сил.

Определение усилий в элементах конструктивной системы следует производить от действия расчетных постоянных, длительных и кратковременных нагрузок, особых нагрузок, а также их расчетных сочетаний.

На первой стадии расчета для оценки усилий в элементах конструктивной системы допускается принимать приближенные значения жесткостей элементов, имея в виду, что распределение усилий в элементах конструктивных систем зависит не от величины, а, в основном, от соотношения жесткостей этих элементов. Для более точной оценки распределения усилий в элементах конструктивной системы рекомендуется принимать уточненные значения жесткостей с понижающими коэффициентами. При этом необходимо учитывать существенное снижение жесткостей в изгибаемых плитных элементах (в результате возможного образования трещин) по сравнению с внецентренно сжатыми элементами. В первом приближении рекомендуется принимать модуль упругости материала равным Ев с понижающими коэффициентами: 0,6 — для вертикальных сжатых элементов; 0,3 — для плит перекрытий (покрытий) с учетом длительности действия нагрузки.

На последующих стадиях расчета жесткости следует определять согласно п. 6.2.5.

6.2.7 В результате расчета несущей конструктивной системы должны быть установлены значения вертикальных перемещений (прогибов) перекрытий и покрытий, горизонтальные перемещения конструктивной системы, а также для зданий повышенной этажности — ускорения колебаний перекрытий верхних этажей. Величины указанных перемещений и ускорения колебаний не должны превышать допустимых значений, установленных соответствующими нормативными документами.

Определение горизонтальных перемещений конструктивной системы следует производить от действия расчетных (для предельных состояний второй группы* ) постоянных, длительных и кратковременных горизонтальных и вертикальных нагрузок. При этом на первой стадии расчета рекомендуется принимать пониженные значения жесткостей элементов конструктивной системы, поскольку горизонтальные перемещения напрямую зависят от жесткостных свойств элементов.

* Далее по тексту расчетные значения нагрузки и характеристик материалов, используемые для расчета по предельным состояниям второй группы, в тех случаях, когда коэффициенты надежности равны единице, названы «нормативными».

Определение вертикальных перемещений (прогибов) перекрытий и покрытий производят от действия нормативных постоянных и длительных вертикальных нагрузок. При этом на первой стадии расчета рекомендуется принимать пониженные значения жесткостей элементов конструктивной системы, в частности плит перекрытий, поскольку вертикальные перемещения (прогибы) напрямую зависят от деформационных свойств плит.

В первом приближении значения понижающих коэффициентов относительно начального модуля упругости бетона с учетом длительности действия нагрузки рекомендуется принимать: для вертикальных несущих элементов — 0,6, а для плит перекрытий (покрытий) — 0,2 при наличии трещин или 0,3 — при отсутствии трещин.

На последующих стадиях расчета при известном армировании следует принимать уточненные жесткости плит с учетом армирования, наличия трещин и неупругих деформаций в бетоне и арматуре, определяемые согласно действующим нормативным документам.

Ускорения колебаний перекрытий верхних этажей здания следует определять при действии пульсационной составляющей ветровой нагрузки.

6.2.8 При расчете на устойчивость конструктивной системы следует производить проверку устойчивости формы конструктивной системы, а также устойчивости положения конструктивной системы на опрокидывание и на сдвиг.

Расчет на устойчивость конструктивной системы следует производить на действие расчетных постоянных, длительных и кратковременных вертикальных и горизонтальных нагрузок.

При расчете устойчивости формы конструктивной системы рекомендуется принимать пониженные жесткости элементов конструктивной системы (учитывая нелинейную работу материала), поскольку устойчивость конструктивной системы связана с деформативностью системы и отдельных элементов. При этом значение понижающих коэффициентов в первом приближении рекомендуется принимать, как указано в пп. 6.2.6, 6.2.7 с учетом того, что устойчивость конструктивной системы зависит от сопротивления в основном внецентренно сжатых вертикальных элементов при длительном действии нагрузки и в стадии, приближающейся к предельной. Запас по устойчивости должен быть не менее чем двукратным.

При расчете устойчивости положения конструктивные системы следует рассматривать как жесткое недеформированное тело. При расчете на опрокидывание удерживающий момент от вертикальной нагрузки должен превышать опрокидывающий момент от горизонтальной нагрузки с коэффициентом 1,5. При расчете на сдвиг удерживающая горизонтальная сила должна превышать действующую сдвигающую силу с коэффициентом 1,2. При этом следует учитывать наиболее неблагоприятные значения коэффициентов надежности по нагрузке.

6.2.9 Расчет на прогрессирующее разрушение должен обеспечивать прочность и устойчивость конструктивной системы в целом при выходе из строя одного какого-либо элемента конструктивной системы (колонны, участка стены, участка перекрытия) и возможном последующем разрушении близлежащих элементов. Кроме того, в обоснованных случаях рассматривается расчетная ситуация с выходом из строя части основания под фундаментами (например, в случае образования карстовых провалов).

Расчет на прогрессирующее разрушение следует производить при действии нормативных вертикальных нагрузок с нормативными значениями сопротивления бетона и арматуры, принимая линейные жесткости элементов конструктивной системы.

6.2.10 Оценку несущей способности и деформации основания следует производить согласно соответствующим нормативным документам по усилиям, действующим на основание, найденным при расчете конструктивной системы здания.

6.2.11 Расчет перекосов вертикальных ячеек от неравномерных вертикальных деформаций соседних несущих конструкций (стен и колонн) следует производить с учетом фактического порядка возведения здания, а также времени и длительности приложения нагрузок для учета нелинейных деформаций в железобетонных конструкциях.

6.3 Методы расчета

6.3.1 Пространственная конструктивная система является статически неопределимой системой. Для расчета несущих конструктивных систем рекомендуется использовать дискретные расчетные модели, рассчитываемые методом конечных элементов.

Расчет регулярных (или близких к ним) колонных и стеновых КС можно производить методом заменяющих (эквивалентных) рам (рис. 6.1), а стеновых КС — путем разложения на поперечную и продольную схемы (рис. 6.2).

Для оценки максимальной несущей способности перекрытий может быть использован расчет методом предельного равновесия.

а — общая схема; 6 — поперечная схема; в — продольная схема;

1 , 4 и 2, 3 — две крайние и две средние поперечные рамы; 5, 7 и 6 — две крайние и средняя продольные рамы; l 1 , l 2 , l 3 — шаги поперечных рам; b 1 , b 2 — шаги продольных рам

Рисунок 6.1 — План типового этажа здания с регулярной колонной КС

а — общая схема; б — поперечная схема; в — продольная схема;

1 , 2 — наружные и внутренние поперечные стены; 3, 4 — наружные и внутренние продольные стены; 5 — участки примыкающих стен перпендикулярного направления

Рисунок 6.2 — К расчету стеновой конструктивной системы

6.3.2 Дискретизацию конструктивных систем производят с применением оболочечных, стержневых и объемных (если это необходимо) конечных элементов, используемых в принятой расчетной программе.

При создании пространственной модели конструктивной системы необходимо учитывать характер совместной работы стержневых, оболочечных и объемных конечных элементов, связанный с различным количеством степеней свободы для каждого из указанных элементов.

6.3.3 Деформативные свойства основания следует учитывать путем использования общепринятых расчетных моделей основания, применения различных типов конечных элементов или краевых условий с заданной податливостью, моделирования всего массива грунта под зданием из объемных конечных элементов, либо комплексно — с использованием всех вышеперечисленных методов в случае сложной совместной работы конструкции фундамента и основания.

На первой стадии расчета конструктивной системы допускается деформативность основания учитывать с помощью коэффициента постели, принимаемого по усредненным характеристикам грунтов.

При использовании свайных или свайно-плитных фундаментов сваи следует моделировать как железобетонные конструкции или учитывать их совместную работу с грунтом обобщенно, как единое основание с использованием приведенного коэффициента постели основания.

6.3.4 При отсутствии данных о порядке и времени приложения постоянных и длительно действующих нагрузок допускается проверять прочность, трещиностойкость и деформации несущей КС с обязательным учетом деформативности основания при двух крайних случаях:

1) наиболее опасном поэтажном приложении нагрузки и изменении жесткостей в процессе монтажа;

2) одновременном приложении всей нагрузки на всех этажах.

6.3.5 При построении конечно-элементной расчетной модели размеры и конфигурацию конечных элементов следует задавать, исходя из возможностей применяемых конкретных расчетных программ, и принимать такими, чтобы была обеспечена необходимая точность определения усилий подлине колонн и по площади плит перекрытий, фундаментов и стен с учетом общего числа конечных элементов в расчетной схеме, влияющего на продолжительность расчета.

6.3.6 Жесткости конечных элементов на первоначальной стадии расчета конструктивной системы, когда армирование конструкций еще не известно, следует определять с учетом рекомендаций разд. 6.2.

После определения арматуры в плитах перекрытий и покрытий следует произвести дополнительный расчет конструктивной системы для уточнения прогибов этих конструкций, принимая уточненные значения изгибных жесткостей конечных элементов плит с учетом армирования в двух направлениях согласно действующим нормативным документам.

Аналогичный дополнительный расчет следует выполнить для более точной оценки изгибающих моментов в элементах перекрытий, покрытий и фундаментных плитах, а также продольных сил в стенах и колоннах с учетом нелинейной работы арматуры и бетона вплоть до предельных значений.

Читайте также:  Нормы отступления от границ соседей при строительстве дома

6.3.7 Расчет конструктивных систем методом конечных элементов следует производить с использованием специальных сертифицированных в России компьютерных программ, согласованных с НИИЖБ: Лира, Мономах, STARK-ES и других.

6.3.8 Расчет регулярной колонной конструктивной системы методом заменяющих (эквивалентных) рам производят путем выделения отдельных рам вертикальными сечениями, проходящими по середине шага колонн, в двух взаимно перпендикулярных направлениях ( рис. 6.1).

Расчет выделенных в каждом направлении рам, состоящих из колонн и полос плоской плиты (условного ригеля), следует производить независимо друг от друга по общим правилам строительной механики на действие вертикальных и горизонтальных нагрузок, принимая при определении усилий линейные жесткости элементов рам.

Изгибающие моменты и поперечные силы в опорных и пролетных сечениях условного ригеля распределяют между его надколонными и межколонными полосами в зависимости от расположения колонн в раме (крайняя или промежуточная колонна) и соотношения между поперечными и продольными (вдоль оси рамы) пролетами.

Расчет конструктивных систем методом заменяющих рам следует производить по специальным рекомендациям, согласованным с НИИЖБ.

6.3.9 Расчет стеновой КС ( рис. 6.2, а) на горизонтальные нагрузки можно выполнять методом разделения перекрестной КС на независимые поперечную ( рис. 6.2, б) и продольную схемы ( рис. 6.2, в).

Горизонтальные нагрузки принимают действующими в обоих направлениях. При допущении абсолютной жесткости плит перекрытий в своей плоскости горизонтальные перемещения и углы наклона всех несущих стен будут одинаковыми при симметричных в плане схемах и нагрузках. Поэтому можно принять все стены одного направления, расположенные в одной плоскости, соединенными последовательно друг с другом в уровне перекрытий шарнирными связями, абсолютно жесткими вдоль своей оси. При несущих монолитных наружных стенах следует учитывать участки примыкающих стен перпендикулярного направления ( рис. 6.2, б, в).

6.3.10 Расчет несущей способности перекрытий методом предельного равновесия следует производить, принимая в качестве критерия равенство работ внешних нагрузок и внутренних сил на возможных перемещениях в предельном равновесии плиты перекрытия с наиболее опасной схемой излома, характеризующей ее разрушение.

6.3.11 На начальной стадии расчета для ориентировочной оценки жесткости принятой конструктивной системы зданий повышенной этажности ( п. 5.12) допускается выполнить расчет системы на устойчивость и горизонтальные перемещения по условной стержневой консольной схеме, включающей только стены и колонны (с линейными деформационными характеристиками), жестко заделанные в основании и объединенные шарнирно примыкающими к ним жесткими дисками перекрытий.

7 Несущие железобетонные конструкции

7.1 Основными несущими элементами ( рис. 5.1- 5.5) конструктивной системы являются колонны, стены, плиты перекрытий и покрытий, различные фундаменты, в том числе свайные ростверки и т.п. (см. пп. 5.6- 5.11).

При проектировании рекомендуется принимать оптимальные конструктивные параметры колонн, устанавливаемые на основе технико-экономического анализа. При этом минимальный размер поперечного сечения квадратных и круглых колонн ( рис. 5.3) рекомендуется принимать не менее 30 см, для колонн с вытянутым поперечным сечением — не менее 20 см, класс бетона, как правило, — не менее В25 и не более В60, процент армирования в любом сечении (включая участки с нахлесточным соединением арматуры) — не более 10.

7.3 Конструктивные параметры колонн рекомендуется принимать одинаковыми на одном уровне перекрытий.

7.4 В тех случаях, когда технико-экономический анализ конструктивных параметров колонн показывает, что требуемое армирование превышает максимальные значения, приведенные в п. 7.3, рекомендуется применять сталежелезобетонные, в том числе трубобетонные, а также сталефибробетонные колонны.

В тех случаях, когда технико-экономический анализ конструктивных параметров колонн показывает, что требуемый класс бетона превышает В60, рекомендуется применять для колонн высокопрочный бетон классов В80 и выше. Расчет и конструирование сталежелезобетонных колонн, колонн с высокопрочным бетоном выше класса В80 следует производить по специальным документам, согласованным с НИИЖБ, а сталефибробетонных колонн — по СП 52-104.

При проектировании рекомендуется принимать оптимальные конструктивные параметры стен, устанавливаемые на основе технико-экономического анализа. При этом размеры поперечного сечения (толщину) стен рекомендуется принимать не менее 18 см, класс бетона — не менее В20, процент армирования в любом сечении стены (включая участки с нахлесточным соединением арматуры) — не более 10.

При применении высоких процентов армирования сечений должны выполняться указания СП 52-101 п. 8.3.3, при этом максимальная крупность заполнителя в бетонной смеси не должна превышать 10 мм.

7.6 При пролетах до 6-8 м перекрытия рекомендуется выполнять плоскими, при больших значениях — плоскими с капителями ( рис. 5.4, а, б) или межколонными балками и стенами ( рис. 5.5, а), а при пролетах до 12 м — с межколонными балками или стенами и ребристыми, и пустотными плитами ( рис. 5.5, а, б).

Для зальных помещений пролетом 12-15 м рекомендуются кессонные, ребристые или пустотные плиты при опирании по четырем сторонам на балки и стены ( рис. 5.5, в, г).

При проектировании рекомендуется принимать оптимальные конструктивные параметры перекрытий, устанавливаемые на основе технико-экономического анализа. При этом толщину плоских плит перекрытий сплошного сечения рекомендуется принимать не менее 16 см и не менее 1/30 длины наибольшего пролета и не более 25 см, класс бетона — не менее В20. Высота пустотных, ребристых и кессонных плит принимается не менее 25 см и не более 50 см, класс бетона — не менее В25.

7.8 При пролетах более 7 м рекомендуется применение дополнительной предварительно напряженной арматуры из высокопрочных канатов класса К-7 без сцепления с бетоном.

Для снижения массы перекрытий желательно применять легкие бетоны, пустотелые вкладыши или вкладыши в виде плит и блоков из особо легких бетонов.

7.9 В плоских плитах перекрытий, на густо армированных участках, вокруг колонн, где действуют максимальные поперечные силы, изгибающие и крутящие моменты, для предотвращения продавливания, упрощения армирования и облегчения бетонирования рекомендуется укладка фибробетона класса по прочности на растяжение не менее Bt2.

При проектировании рекомендуется принимать оптимальные конструктивные параметры фундаментных плит, устанавливаемые на основе технико-экономического анализа. При этом толщину фундаментных плит рекомендуется принимать не менее 50 см и не более 200 см, класс бетона — не менее В20, армирование — не менее 0,3 %, а марку по водонепроницаемости — не менее W6.

7.11 Ребристые и коробчатые фундаменты состоят из плитных и стеновых элементов и применяются для повышения жесткости здания, а при высоте более 2 м и для использования подземного пространства в качестве технических этажей.

7.12 Свайные фундаменты состоят из монолитных ростверков в виде общих фундаментных плит, ленточных фундаментных плит под стенами, отдельно стоящих фундаментных плит под колоннами и забивных, буронабивных, буроинъекционных и других свай.

Тип и расположение свай по полю фундаментной плиты следует выбирать в зависимости от конструктивной системы здания, нагрузок, приходящихся на сваи и инженерно-геологических условий основания.

Расчет и конструирование свайных фундаментов следует производить по специальным нормативным документам.

7.13 Для обеспечения термической трещиностойкости массивных фундаментных плит объемом до 14000 м 3 без разбивки на отдельные технологические блоки рекомендуется применять метод непрерывной укладки высокоподвижной и самоуплотняющейся смеси из модифицированных бетонов с низкой экзотермией и содержащие поликомпонентные модификаторы, разработанные в НИИЖБ.

7.14 Допускается не делать оклеечную гидроизоляцию для фундаментных плит и наружных стен подземных этажей при устройстве разработанных в НИИЖБ конструкций технологических и осадочных швов, предотвращающих протечки, и применении бетонов с компенсированной усадкой за счет добавки РД и маркой по водонепроницаемости W12-W16.

7.15 Для несущих элементов конструктивных систем зданий высотой более 75 м следует учитывать требования к конструктивным параметрам, регламентируемые специальными документами.

8 Расчет несущих железобетонных конструкций

8.1 Расчет несущих железобетонных элементов конструктивной системы (колонн, стен, плит перекрытий, покрытий и фундаментов) следует производить по предельным состояниям двух групп: по несущей способности (по прочности и устойчивости) и по эксплуатационной пригодности (по трещиностойкости и деформациям). При этом расчет на устойчивость отдельных сжатых элементов (колонн и стен) рекомендуется производить в рамках расчета по прочности этих элементов с учетом влияния продольного изгиба или в рамках расчета конструктивной системы по деформированной схеме, а расчет по деформациям элементов — в рамках расчета статически неопределимой конструктивной системы.

8.2 Расчет по прочности колонн следует производить по нормальным сечениям на действие изгибающих моментов и продольных сил и по наклонным сечениям на действие поперечных и продольных сил, полученных из расчета конструктивной системы (рис. 8.1).

Рисунок 8.1 — Схема усилий, действующих на выделенный стержневой элемент

Расчет по прочности колонн по нормальным сечениям рекомендуется производить по предельным усилиям или с использованием деформационной модели согласно СП 52-101.

Влияние продольного изгиба следует учитывать умножением изгибающих моментов, полученных из расчета конструктивной системы по недеформированной схеме, или эксцентриситета продольной силы на коэффициент, определяемый в зависимости от условной критической силы согласно СП 52-101.

8.3 Расчет по прочности плоских плит перекрытий, покрытий и фундаментных плит следует производить как плоских выделенных элементов на совместное действие изгибающих моментов в направлении взаимно перпендикулярных осей и крутящих моментов, приложенных по боковым сторонам плоского выделенного элемента, а также на действие продольных и поперечных сил, приложенных по боковым сторонам плоского элемента, полученных из статического расчета несущей конструктивной системы методом конечных элементов (рис. 8.2).

Рисунок 8.2 — Схема усилий, действующих на выделенный плоский элемент единичной ширины

Кроме того, при опирании плоских плит на колонны следует производить расчет плит на продавливание на действие сосредоточенных нормальных сил и моментов согласно СП 52-101. При применении сталефибробетона расчет производится по СП 52-104.

8.4 Расчет по прочности плоских плит в общем случае рекомендуется производить путем разделения плоского элемента на отдельные слои сжатого бетона, растянутой и сжатой арматуры и расчета каждого слоя отдельно на действие нормальных и сдвигающих сил в этом слое, полученных от действия изгибающих и крутящих моментов и нормальных сил (рис. 8.3).

Рисунок 8.3 — Схема усилий, действующих в бетонном и арматурном слоях выделенного плоского элемента плиты (усилия на противоположных сторонах условно не показаны)

Расчет плоских элементов плит может также производиться без разделения на слои бетона и растянутой арматуры на совместное действие изгибающих и крутящих моментов из условий, основанных на обобщенных уравнениях предельного равновесия:

где Мх, М y, Mxy — изгибающие и крутящие моменты, действующие на выделенный плоский элемент;

Мх, ult, М y, ult, Mxy, ult — предельные изгибающие и крутящие моменты, воспринимаемые плоским выделенным элементом.

Значения предельных изгибающих моментов Мх, ult и М y, ult следует определять из расчета нормальных сечений, перпендикулярных осям Х и Y, плоского выделенного элемента с продольной арматурой, параллельной осям Х и Y, согласно СП 52-101.

Значения предельных крутящих моментов следует определять по бетону M bxy, ult и по растянутой продольной арматуре M sxy, ult по формулам:

Mbxy,ult = 0,1 rbb 2 h, (8.5)

где b и h — соответственно меньший и больший размеры плоского выделенного элемента;

где Asx и Asy — площади сечения продольной арматуры в направлении X и Y;

h 0 — рабочая высота поперечного сечения плиты.

Допускается применять и другие методы расчета по прочности плоского выделенного элемента, полученные на основе равновесия внешних усилий, действующих по боковым сторонам выделенного элемента и внутренних главных усилий в диагональном сечении плоского выделенного элемента.

При действии на выделенный плоский элемент плит также продольной силы расчет следует производить как для выделенного плоского элемента стен.

( Опечатка, Информационный бюллетень о нормативной, методической и типовой проектной документации, № 3 2008 г.)

8.5 Расчет плоского выделенного элемента на действие поперечных сил следует производить из условия:

где Qx и Qy — поперечные силы, действующие по боковым сторонам плоского выделенного элемента;

Qх, ult и Q y, ult — предельные поперечные силы, воспринимаемые плоским выделенным элементом.

Значения предельных поперечных сил определяют по формуле:

где Qb и Qsw — предельные поперечные силы, воспринимаемые соответственно бетоном и поперечной арматурой и определяемые по формулам:

где qsw — интенсивность поперечного армирования, определяемая по СП 52-101.

8.6 Расчет по прочности стен в общем случае следует производить как плоских выделенных элементов на совместное действие нормальных сил, изгибающих моментов, крутящих моментов, сдвигающих сил, поперечных сил, приложенных по боковым сторонам плоского выделенного элемента и полученных из расчета конструктивной системы методом конечных элементов (рис. 8.4).

Рисунок 8.4 — Схема усилий, действующих на выделенный плоский элемент единичной ширины стены (усилия на противоположных сторонах условно не показаны)

8.7 Расчет стен в общем случае рекомендуется производить путем разделения плоского элемента на отдельные слои сжатого бетона и растянутой и сжатой арматуры и расчета каждого слоя отдельно на действие нормальных и сдвигающих сил в этом слое, полученных от действия изгибающих и крутящих моментов, общих нормальных и сдвигающих сил.

Допускается производить расчет без разделения на слои бетона и растянутой арматуры отдельно из плоскости стены на совместное действие изгибающих моментов, крутящих моментов и нормальных сил и в плоскости стены на совместное действие нормальных и сдвигающих сил.

Расчет стены в своей плоскости рекомендуется производить из условий, основанных на обобщенных уравнениях предельного равновесия:

где Nх, Ny, Nxy — нормальные и сдвигающие силы, действующие по боковым сторонам плоского выделенного элемента;

N х, ult, Ny, ult, Nxy, ult — предельные нормальные и сдвигающие силы, воспринимаемые плоским выделенным элементом.

Значения предельных нормальных сил Nх, ult и Ny, ult следует определять из расчета нормальных сечений, перпендикулярных осям X и Y, плоского выделенного элемента с вертикальной и горизонтальной арматурой, параллельной осям X и Y, согласно СП 52-101.

Значения предельных сдвигающих сил следует определять по бетону Nbxy, ult и по арматуре Nsxy, ult по формулам:

где Ab — рабочая площадь поперечного сечения бетона выделенного элемента.

где Asx и Asy — площадь сечения арматуры в направлении осей X и Y в выделенном элементе.

Расчет из плоскости стены производят аналогично расчету плоских плит перекрытий, определяя значения предельных изгибающих моментов с учетом влияния нормальных сил.

Допускается применять и другие методы расчета по прочности плоского выделенного элемента, полученные на основе равновесия внешних усилий, действующих по боковым сторонам выделенного элемента, и внутренних усилий в главном диагональном сечении выделенного элемента.

8.8 Расчет по прочности плоских выделенных элементов стен на действие поперечных сил следует производить аналогично расчету плит, но с учетом влияния продольных сил.

8.9 Расчет по трещиностойкости плит (по образованию и раскрытию трещин, нормальных к продольной оси элемента) следует производить на действие изгибающих моментов (без учета крутящих моментов) согласно СП 52-101.

8.10. При использовании в расчетах объемных конечных элементов (например, в толстых фундаментных плитах) растягивающие усилия должны быть восприняты продольной, поперечной или фибровой арматурой, а сжимающие усилия — бетоном.

9 Конструирование основных несущих железобетонных конструкций монолитных зданий

9.1 При конструировании основных несущих элементов конструктивной системы (колонн, стен, плит перекрытий и покрытий, фундаментных плит) следует соблюдать общие требования по конструированию железобетонных конструкций согласно СП 52-101, а также рекомендации раздела 7 настоящего СП.

9.2 Колонны армируют продольной, как правило, симметричной арматурой, расположенной по контуру поперечного сечения и, в необходимых случаях, внутри поперечного сечения, и поперечной арматурой по высоте колонны, охватывающей все продольные стержни и расположенной по контуру и внутри поперечного сечения.

Конструкцию поперечной арматуры в пределах поперечного сечения и максимальные расстояния между хомутами и связями по высоте колонны следует принимать такими, чтобы предотвратить выпучивание сжатых продольных стержней и обеспечить равномерное восприятие поперечных сил по высоте колонны.

9.3 Стены рекомендуется армировать, как правило, вертикальной и горизонтальной арматурой, расположенной симметрично у боковых сторон стены, и поперечными связями, соединяющими вертикальную и горизонтальную арматуру, расположенную у противоположных боковых сторон стены.

Максимальное расстояние между вертикальными и горизонтальными стержнями, а также максимальное расстояние между поперечными связями следует принимать такими, чтобы предотвратить выпучивание вертикальных сжатых стержней и обеспечить равномерное восприятие усилий, действующих в стене.

9.4 На торцевых участках стены по ее высоте следует устанавливать поперечную арматуру в виде П-образных или замкнутых хомутов, создающих требуемую анкеровку концевых участков горизонтальных стержней и предохраняющих от выпучивания торцевые сжатые вертикальные стержни стен.

9.5 Сопряжения стен в местах их пересечения следует армировать по всей высоте стен пересекающимися П-образными или гнутыми хомутами, обеспечивающими восприятие концентрированных горизонтальных усилий в сопряжениях стен, а также предохраняющими вертикальные сжатые стержни в сопряжениях от выпучивания и обеспечивающими анкеровку концевых участков горизонтальных стержней.

9.6 Армирование пилонов, занимающих по своим геометрическим характеристикам промежуточное положение между стенами и колоннами, производят как для колонн или как для стен в зависимости от соотношения длины и ширины поперечного сечения пилонов.

9.7 Количество вертикальной и горизонтальной арматуры в стене следует устанавливать в соответствии с действующими в стене усилиями. При этом рекомендуется предусматривать равномерное армирование по площади стены с увеличением армирования у торцов стены и у проемов.

9.8 Армирование плоских плит следует осуществлять продольной арматурой в двух направлениях, располагаемой у нижней и верхней граней плиты, а в необходимых случаях (согласно расчету) и поперечной арматурой, располагаемой у колонн, стен и по площади плиты.

9.9 На концевых участках плоских плит следует устанавливать поперечную арматуру в виде П-образных хомутов, расположенных по краю плиты, обеспечивающих восприятие крутящих моментов у края плиты и необходимую анкеровку концевых участков продольной арматуры.

9.10 Количество верхней и нижней продольной арматуры в плите перекрытий (покрытия) следует устанавливать в соответствии с действующими усилиями. При этом рекомендуется для нерегулярных конструктивных систем с целью упрощения армирования устанавливать: нижнюю арматуру одинаковой по всей площади рассматриваемой конструкции в соответствии с максимальными значениями усилий в пролете плиты; основную верхнюю арматуру принимать такой же, как и нижнюю, а у колонн и стен устанавливать дополнительную верхнюю арматуру, которая в сумме с основной должна воспринимать опорные усилия в плите. Для регулярных конструктивных систем продольную арматуру рекомендуется устанавливать по надколонным и межколонным полосам в двух взаимно перпендикулярных направлениях в соответствии с действующими в этих полосах усилиями.

Для сокращения расхода арматуры можно также рекомендовать установку по всей площади плиты нижней и верхней арматуры, отвечающей минимальному проценту армирования, а на участках, где действующие усилия превышают усилия, воспринимаемые этой арматурой, устанавливать дополнительную арматуру, в сумме с вышеуказанной арматурой, воспринимающей действующие на этих участках усилия. Такой подход приводит к более сложному армированию перекрытий, требующему более тщательного контроля арматурных работ.

Армирование фундаментных плит следует производить аналогичным образом.

9.11 В толстых фундаментных плитах помимо продольной арматуры, устанавливаемой у верхней и нижней граней плиты, следует предусматривать продольную арматуру, располагаемую в средней зоне по толщине плиты.

Для предотвращения продавливания плиты возле колонн и стен в плиты рекомендуется дополнительно укладывать в качестве одного из возможных способов сталефибробетон по СП 52-104.

9.12 Для сталебетонных конструкций в качестве жесткой арматуры следует применять прокатные стальные профили и другие элементы, марки стали которых принимать согласно С ниП II-23 .

9.13 Для снижения расхода стали и облегчения бетонирования в колоннах, балках и фундаментных плитах вместо стыковки стержневой арматуры диаметром 20 мм и более путем перепуска рекомендуется ее стыковать в торец с помощью ванной сварки или обжимных муфт.

Приложение А

Основные буквенные обозначения

Усилия от внешних нагрузок в сечении элемента

N , Nх, Ny — продольная сила;

N xy — сдвигающая сила;

M х, My — изгибающий момент;

M xy — крутящий момент;

Qx , Q y — поперечная сила.

Характеристики материалов

R b — расчетное сопротивление бетона осевому сжатию;

Rbt — расчетное сопротивление бетона осевому растяжению;

Rs — расчетное сопротивление арматуры.

Приложение Б

Перечень нормативной и технической документации

Нагрузки и воздействия

Основания зданий и сооружений

Защита строительных конструкций от коррозии

Пожарная безопасность зданий и сооружений

Здания жилые многоквартирные

Строительство в сейсмических районах

Бетоны. Определение прочности механическими методами неразрушающего контроля

Применение арматуры класса А500 СП в железобетонных конструкциях

Правила по обеспечению огнестойкости и огнесохранности железобетонных конструкций

Прокат свариваемый периодического профиля номинальным диаметром 5,5 мм для армирования железобетонных конструкций

Прокат свариваемый периодического профиля в мотках для армирования железобетонных конструкций

Ключевые слова: конструктивная система, расчет несущих конструктивных систем, расчет несущих железобетонных конструкций, конструирование основных несущих железобетонных конструкций

Источник: znaytovar.ru

Рейтинг
Загрузка ...