Самые крепкие материалы в строительстве

Содержание

Если вы любите комиксы (и фильмы) Marvel, то знаете, что во вселенной, созданной Стэном Ли, самым прочным материалом на Земле является металл вибраниум. Из него, в частности, сделан щит Капитана Америки и костюм черной пантеры, в родной стране которого – Ваканде – он и был найден.

В комиксах этот материал существует в нескольких вариантах и встречается в изолированных регионах нашей планеты. Также вибраниум обладает способностью поглощать все колебания в окрестности, включая направленную прямо на него кинетическую энергию (энергию движущегося тела). В реальности, разумеется, вибраниума не существует, но это не значит, что на Земле нет ни одного материала, способного составить ему конкуренцию. Но какой материал на нашей планете является самым прочным?

Кстати, рука Зимнего солдата тоже сделана из вибраниума

От автомобиля до некоторых электронных приборов в вашем доме – как в природе, так и в лаборатории – современный мир наполнен впечатляющими материалами. Более того, ученые постоянно ищут новые материалы, которые можно было бы использовать в повседневной жизни, в лабораториях и даже в космосе. Но измерение прочности материала – не равносильно измерению твердости. Можно подумать, что эти два слова являются синонимами, но для опытного специалиста это далеко не одно и то же.

Самые прочные материалы в Мире

Прочность материала определяет его устойчивость к деформации, в то время как твердость позволяет узнать легко ли поцарапать материал.

10. Тантал

Тантал

У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.

Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.

9. Бериллий

Бериллий

А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.

Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.

Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.

Уран

5 Материалов, Которые Изменят Мир

Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.

Один из самых твердых металлов в мире имеет два коммерчески значимых применения — ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.

Железо и сталь

Железо и сталь

Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.

Сталь — это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).

Самый прочный материал во Вселенной

Наиболее прочным и одновременно легким материалом нашей Вселенной является графен. Это углеродная пластина, толщина которой всего один атом, но она прочнее алмаза, а электропроводность в сто раз выше кремния компьютерных чипов.

Самый прочный и самый легкий материал в мире - графен

Самый прочный и самый легкий материал в мире — графен

В скором времени графен покинет научные лаборатории. Все ученые мира говорят сегодня о его уникальных свойствах. Так, несколько грамм материала будет достаточно для покрытия целого футбольного поля. Графен очень гибкий, его можно складывать, изгибать, сворачивать рулоном.

Возможные сферы его использования – солнечные батареи, сотовые телефоны, сенсорные экраны, супербыстрые компьютерные чипы.

6. Титан

Титан

Титан — это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.

Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.

Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.

Титан

Открывает наш рейтинг титан – высокопрочный твердый металл, который сразу же привлек к себе внимание. Свойствами титана являются:

  • высокая удельная прочность;
  • стойкость к высоким температурам;
  • низкая плотность;
  • коррозийная стойкость;
  • механическая и химическая стойкость.

Титан применяется в военной промышленности, медицине авиации, кораблестроении, и других сферах производства.

5. Рений

Рений

Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.

Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.

Россия — третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.

Самое прочное дерево

Есть древесина, которая превосходит по прочности чугун и может сравниться с прочностью железа. Речь идет о «Березе Шмидта». Ее так же называют Железной березой. Человек не знает более прочного дерева, чем это. Открыл ее русский ученый-ботаник по фамилии Шмидт, находясь на Дальнем Востоке.

Береза Шмидта - самое прочное дерево

Береза Шмидта — самое прочное дерево

Древесина превышает по прочности чугун в полтора раза, прочность на изгиб примерно равна прочности железа. Из-за таких свойств, железная береза вполне могла бы иногда заменять металл, ведь эта древесина не подвержена коррозии и гниению. Корпус судна, сделанный из Железной березы можно даже не красить, судно не разрушит коррозия, действие кислот ему тоже не страшно.

Береза Шмидта прочнее железа

Береза Шмидта прочнее железа

Березу Шмидта невозможно пробить пулей, топором ее не срубишь. Из всех берез нашей планеты долгожителем является именно Железная береза – она живет четыреста лет. Ее место произрастания – заповедник Кедровая Падь. Это редкий охраняемый вид, который занесен в Красную Книгу. Если бы не такая редкость, сверхпрочную древесину этого дерева можно было бы повсеместно использовать.

А вот самые высокие деревья в мире секвойи не являются очень прочным материалом. Зато, по данным uznayvse.ru, могут вырастать до 150 метров в высоту.

Хром

По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.

Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.

А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).

ТОП-10 самых крепких металлов в мире

Оговоренные выше 8 показателей не являются единственно верной формулой просчета крепости металлов. Существует 10+ вспомогательных параметров, которые также реально включить в комплекс, но существенных изменений в наш топ прочности они не привнесут.
Ниже мы проанализируем, какой металл самый крепкий, а также рассмотрим 10 наиболее прочных металлов в чистом виде, найденных в мире. Начнем от самого «слабенького» и доберёмся до лидера прочности в конце статьи. Параллельно обозначим особенности каждого из веществ + расскажем в каких областях те применяются порядком на 2020 год.

1) Тантал

Распространенность ★★ (2.0 из 5.0) Общая привлекательность в промышленности ★★★ 3.0
Стоимость ★★★★ (4.0 из 5.0)
Применение ★★★ (3.0 из 5.0)

В таблице Менделеева именуется как «Та». Внешне – это серебряный + белый оттенок и плотная оксидная плёнка. Открытие металла произошло В 1802 году Экебергом, но в чистом виде вещество смогли получить только спустя 42 года, и сделал это немец Розе. В отношении промышленности, первые шаги в данном направлении были сделаны вообще в 1922 году, а его активное распространение началось в период второй мировой.

Область применения тантала:

  • при создании сплавов с высоким сопротивлением к коррозии и жару;
  • лабораторная посуда и устойчивая к коррозии тех аппаратура в химической промышленности;
  • оборудование для теплообмена для систем ядерной энергетики;
  • хирургические расходники. Проволоку из тантала используют для сшивания нервных тканей;
  • как составляющий элемент криотронов;
  • как декоративный элемент для украшений.

Тантал относят к металлам с низким уровнем распространения в природе. Если брать в качестве точки отсчета земную поверхность, его долевое вхождение в кору земли менее двух миллионных процента – это сказывается и стоимости чистого металла. За один грамм тантала на рынке просят от 250 долларов. Основные физические свойства металла – высокая температура плавления (3000+ градусов) и пластичность (как у золота), хотя по твёрдости у материала конкурентов очень мало.

2) Бериллий

Распространенность ★★★★ (4.0 из 5.0) Общая привлекательность в промышленности ★★★★ 4.0
Стоимость ★★★★ (4.0 из 5.0)
Применение ★★★★ (4.0 из 5.0)
  • твёрдость по Моосу в 5.5 балла;
  • высокая хрупкость;
  • большой модуль упругости;
  • при контакте с воздухом покрывается оксидной пленкой;
  • рекордсмен по звукопроводимости – от 12 500 метров в секунду;
  • низкая реакционная способность.

В 2021 году основными поставщиками бериллия является Америка, Китай и Казахстан. Суммарный показатель добычи всех остальных стран по бериллию менее 1%. Среднегодовой объем добычи металла составляет всего 400 000 килограмм. В России планируется запустить комбинат по добыче данного металла, в том числе, но пока завод находится на стадии разработки, и не факт, что он будет запущен вообще.

Металл хорошо себя зарекомендовал в рентгенотехнике, ядерной энергетике, акустике и даже при разработке аэрокосмической технике. Благодаря высокой проводимости тепла в связке с его прочностью, материал часто используют для изготовления лабораторных тиглей и прочих специализированных компонентов, где требуются перечисленные свойства металла.

Назначение и способы напыления металла

3) Уран

Распространенность ★★★★ (4.0 из 5.0) Общая привлекательность в промышленности ★★★★ 4.0
Стоимость ★★★★ (4.0 из 5.0)
Применение ★★★★ (4.0 из 5.0)

Уран относят к семейству актиноидов и является слабо реактивным элементом периодической системы Менделеева. Впервые об уране начали говорить всерьёз в 1789 году. В 1840 удалось выделить первый образец чистого вещества, а в 1896 был открыт всем печально известный радиоактивный распад, который послужил дальнейшему применению металла в оружейной сфере.
Физические свойства урана:

  • тяжелый;
  • поверхность глянцевая с серебристо-белым оттенком;
  • в чистом виде имеет меньшую прочность нежели сталь, что делает его более гибким;
  • небольшие парамагнитные свойства;
  • температура плавления от 1 100 градусов.

В химических свойствах мы здесь разбираться не будем, ибо для понимания происходящего придется углубляться в недра атомной энергетики. Только отметим, что основная сфера использования урана в промышленности – это производство ядерного топлива. Изотопы урана могут применяться для синтеза в промышленной медицине, а геологическая ценность – выявление возраста минералов или горных пород.

Отмеченные на карте страны сосредотачивают в себе 94% всей добычи урана для промышленных целей. Если по странам, то лидирующие позиции по объемам находятся у Казахстана, Австралии и Канады, а Россия занимает твердое 4-е место.

4) Железо/сталь

Распространенность ★★★★★ (5.0 из 5.0) Общая привлекательность в промышленности ★★★★★ 5.0
Стоимость ★★★★★ (5.0 из 5.0)
Применение ★★★★★ (5.0 из 5.0)

Само по себе железо не имеет высокого запаса прочности, но в комбинации с другими металлами, можно получить невероятно прочные соединения. Именно потому мы дописали в оглавлении «/сталь». Известность железа «Fe» пришла к нам еще с древних времен. Металл одним из первых начали использовать в быту древние греки, а это 4 тысячи лет до нашей эры. По содержанию в земной коре, железо является одним из самых распространенных элементов таблицы – 5% в коре, до 12% в мантии и до 90% в ядре.

  • сам по себе пластичен, но сталь может корректироваться в отношении хрупкости у уровня прочности;
  • ярко выраженные магнитные свойства;
  • полиморфизм, обусловленный 4мя кристаллическими модификациями;
  • плавиться металл начинает при 1 500+ градусах, а закипает при 2 850+.

По последним исследованиям американцев, мировые запасы железа составляют почти 180 миллиардов тонн. Крупные месторождения имеются в Бразилии, Австралии, Швеции, Индии, Польше, Украине. На территории России железо копают в Курске. О применении железа можно писать диссертацию. Его доля в рамках всей промышленности составляет 95%.

Элемент важен не только в производстве, но и для организма человека – является катализатором для процесса дыхания.

Суть технологии отжига стали, виды и назначение

5) Титан

Распространенность ★★★★ (4.0 из 5.0) Общая привлекательность в промышленности ★★★★ 4.5
Стоимость ★★★★★ (5.0 из 5.0)
Применение ★★★★ (4.0 из 5.0)

Титан одновременно открыли 2 ученых – англичанин Грегор и немец Клапрот в 1791 году. Впервые в чистом виде металл был получен в 1825 году. Сделал это швед Берцелиус. Промышленное применение металла началось только после 1940 года, когда вышел патент на его восстановление из тетрахлорида.

Область применения титана:

  • важный элемент сплавов в авиа –, судо- и ракетостроении;
  • как материал для реакторов, трубопроводов и насосов в химии;
  • броня жилетов и обшивка подлодок – титан;
  • благодаря физиологической инертности металла, титан широко применяется в медицине, при разработке различных протезов и имплантатов;
  • как добавка в легированных сталях.

Средняя стоимость 1 килограмма титана начинается с 6 долларов. Чем чище металл, тем дороже он обойдется. По физическим свойствам – это серебристо-белый металл с температурой плавления в 1 700 градусов. При температурах ниже 70, повышается хрупкость металла. Весьма пластичен, а его прочность сильно зависима от предварительной обработки.

По Виккерсу показатель твердости достигает 800 МПа.

6) Рений

Распространенность ★★ (2.0 из 5.0) Общая привлекательность в промышленности ★★ 2.5
Стоимость ★★ (2.0 из 5.0)
Применение ★★★ (3.0 из 5.0)

Название металла обусловлено местом его первой добычи – река Рейн в Германии. Элемент относится к списку таковых, что были предсказаны Менделеевым. Официальное открытие рения в чистом виде датировано 1928 годом, а переход на промышленную добычу произошел после 1930 года. Установка добывала порядка 130 килограмм металла за год, и оговоренного объема вполне хватало, чтобы закрыть мировую потребность в данном металле.

  • крайне высокая плотность – 21 грамм на сантиметр кубический;
  • расплавить рений можно только при температурах выше 3 200 Цельсия;
  • точка кипения – 5 600+ градусов, что дает возможность металлу занять твердое 2 место в рейтинге термоустойчивости;
  • относится к тугоплавким металлам;
  • при комнатной температуре обладает хорошей пластичностью;
  • способен выдерживать многократный цикл нагрева-охлаждения без потери прочности.

По распространению, рений является одним из редчайших металлов на земле. Его массовая доля составляет 7*10 в минус 8 степени на всю массу земной коры. Главный источник извлечения металла – молибденовая руда. К слову, в России имеется одно из крупнейших месторождений данного металла с запасами в почти 20 тонн. Однако рений здесь также не чистый, а как составляющая минерала ринита.

Читайте также:  Основания защиты прав граждан участников долевого строительства

Цена одного килограмма рения от 1000 до 10 000 долларов. Металл используется в нефтеперерабатывающей промышленности, электротехнике/электронике и как элемент в сплавах в ракетостроении.

7) Хром

Распространенность ★★★★ (4.0 из 5.0) Общая привлекательность в промышленности ★★★★★ 3.0
Стоимость ★★★★ (4.0 из 5.0)
Применение ★★ (2.0 из 5.0)

Нет, это не браузер, а химический элемент из металлов. Шкала Мооса присуждает хрому место в пятерке лучших. Он уступает только бору, вольфраму и конечно же алмазу. Первое упоминание более-менее чистого вещества упоминается в 1797 году, когда француз Воклен смог получить карбид хрома. Одно из важнейших применений хрома в промышленности – хромирование деталей посредством электролитического покрытия.

Физические свойства хрома:

  • металл с голубоватым оттенком и решеткой кубического объёмоцентрированного типа;
  • при температурах ниже 37 градусов, хром становится антиферромагнетиком, а выше – становится парамагнитным веществом;
  • по Моосу твердость хрома оценивается в 8.5 баллов из 10;
  • хром высокой чистоты подвержен механической обработке довольно неплохо;
  • не реагирует с азотными и серными кислотами;
  • при сгорании на температуре 2000+ градусов, образуется зеленоватый порошок – оксид хрома.

Редким в природе хром назвать нельзя. Металл составляет порядка 3 сотых от массы земной коры. В чистом виде он не встречается. Основными соединениями в природе является хромит и крокоит. Крупнейшее месторождение хрома расположено в ЮАР.

Далее идет Казахстан и Россия. Базовые месторождения хрома по территории РФ расположены в рамках Урала. Базовое применение хрома – это добавка в легированные стали. Порошок способен в 2-3 раза повысить прочность сплава и добавить материалу антикоррозийные свойства. Именно потому хромирование гальванических покрытий в РФ так популярно.

8)Иридий

Применение ★ (1.0 из 5.0) Общая привлекательность в промышленности ★★★★★ 2.0
Распространенность ★★ (2.0 из 5.0)
Стоимость ★ (1.0 из 5.0)

Что нужно знать рецензентам России в первую очередь – металл ставят в один ряд с драгоценными, а потому, его незаконное хранение, приобретение и сбыт в рамках РФ уголовно наказуемый проступок. Открытие металла произошло в 1803 году. Сделал это англичанин-химик Теннант. Происхождение самого названия от греческого, в переводе символизирующее радугу. Называть металл так стали из-за разноцветных солей, которые получались в осадке при реакциях с иридием.

Какими свойствами обладает иридий:

  • из-за высокого показателя твердости, механической обработке почти не поддается;
  • температура плавления металл составляет от 2 500+, а точка кипения достигается при температуре в 4 450+;
  • одна из лучших коррозийных устойчивостей;
  • сохраняет инертность на воздухе и при нагревании.

Особой значимости иридий в промышленности не имеет. Свечи зажигания, основа электродов и прочие мелочи применимы с иридием, но из-за его высокой стоимости, от 50 долларов за грамм, массовое производство оговорённых деталей низкорентабельно.

9) Осмий

Применение ★★★ (3.0 из 5.0) Общая привлекательность в промышленности ★★★★★ 3.0
Распространенность ★★★ (3.0 из 5.0)
Стоимость ★★★★ (4.0 из 5.0)

Металл открыт англичанином Теннантом в 1803 году. Его получили как осадок от растворения платины в царской водке. По своему внешнему виду, осмий является серо-голубым металлом высокой прочности. Высокая удельная масса + сохранении блеска даже при влиянии высоких температур в совокупности с оттенком голубого, делают химический элемент привлекательным внешне. Массовая доля осмия в природе — 5•10 в −6 степени % по массе.

Где можно найти осмий:

  • растворы с иридием;
  • полиметаллические руды;
  • минералы платины;
  • в переработках от золотосодержащих руд.

Главные точки добычи осмия сосредоточены в Сибири и Урале, если мы говорим о РФ. Немалый объем металла добывается также США, Колумбией, Канадой и некоторыми странами в Южной Африке.

Распространённость осмия в земной коре – 7 тысячных грамма на тонну, а его получение происходит через обогащение сырья от платиновых металлов через прокаливание при температурном режиме от 800 Цельсия. Тугоплавкость металла позволяет его использовать в узлах трения, а благодаря близким свойствам к драгоценным металлам, элемент используют для украшений.

Обзорное видео по самому крепкому металлу на земном шаре:

10) Вольфрам

Применение ★★★★ (4.0 из 5.0) Общая привлекательность в промышленности ★★★★★ 4.0
Распространенность ★★★ (3.0 из 5.0)
Стоимость ★★★★★ (5.0 из 5.0)

История вольфрама туманная. Его вывели еще в 1750 годах, но официальное признание произошло только после 1780, когда за исследование элемента всерьез взялись испанские химики-братья Элюар. В природе металл распространяется в нечистом виде (преимущественно окисленные сложные соединения), а как кларк в отношении 1.3 грамма на тонну земной массы.

Крупнейшими месторождениями вольфрама являются Казахстан, Китай, США и Канада. Россия также имеет пару точек поставок. Годовой объем добычи самого крепкого металла в мире – до 50 000 тонн. Для обработки вольфрама приходится использовать метод порошковой металлургии. Проблема в прочности металла.

Химические/физические свойства вольфрама:

  • плотность составляет 19.3 грамма на сантиметр кубический;
  • самый термостойкий металл в мире. Плавиться начинает после достижения температуры в 2 450 градусов Цельсия. Точка кипения – 5 600 градусов (только вдумайтесь!);
  • имеет парамагнитные свойства;
  • твердость по Бринеллю 488 килограмм на миллиметр квадратный;
  • хорошо проводит звук – от 4300 метров в секунду.

Ключевая область вольфрама – основа тугоплавких металлов в металлургии. Посмотрите на нить накаливания лампочки – она состоит из сплава с вольфрамом. Вакуумные трубки, электроды, прочие нагревательные элементы, где нужно выдерживать высокие температуры, представить без вольфрама нереально.

Таким образом, элемент не только самый крепкий метал в мире, но и один из незаменимых компонентов повседневной жизни и промышленности.

3. Иридий

Иридий

Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.

Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.

2. Осмий

Осмий

Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.

Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.

Что такое твердые материалы?

Прежде всего, давайте объясним, что мы обсуждаем, когда говорим о твердости конкретного материала.

Проще говоря, мы имеем в виду способность определенного материала противостоять разным степеням внешней силы, которая воздействует на материал. Сверхтвердые материалы измеряются по шкале, известной как испытание на твердость по Виккерсу. Единица измерения, показывающая, какое давление может выдержать элемент до того, как он сломается, называется гигапаскалями (ГПа). Например, самый прочный из известных нам природных материалов — это алмазы, и их прочность составляет от 70 до 150 ГПа. Все, что измеряется выше 40 ГПа, считается сверхтвердым материалом.

1. Вольфрам

Вольфрам – самый прочный металл в мире

Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).

Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых — Хуана Хосе и Фаусто д’Эльхуяра — к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.

Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.

Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности — для изготовления ракетных сопел.

Как производят металлы?

Металлы добывают из руд. Для определения их месторождения применяются разные наработанные методики, системы расчетов. Производство металлов выполняется в несколько этапов:

  1. Разработка рудного месторождения. Она может быть открытой или закрытой. Иногда способы добычи руды комбинируются. Открытый способ менее опасен.
  2. Обогащение руды. Выполняется, чтобы выделить из нее полезные компоненты (рудный концентрат), которые будут применяться в дальнейшем производстве.
  3. Извлечение металла. Проводится с помощью электролитического или химического восстановления.
  4. Выплавка металла. Выполняется в промышленных печах при нагреве расходного сырья до максимальных температур. Дополнительно используется восстановитель.

Фото 933

Разработка рудного месторождения (Фото: Instagram / polyus_official)

Таблица предела прочности металлов

Металл Обозначение Предел прочности, МПа
Свинец Pb 18
Олово Sn 20
Кадмий Cd 62
Алюминий Al 80
Бериллий Be 140
Магний Mg 170
Медь Cu 220
Кобальт Co 240
Железо Fe 250
Ниобий Nb 340
Никель Ni 400
Титан Ti 600
Молибден Mo 700
Цирконий Zr 950
Вольфрам W 1200

Сплавы против металлов

Сплавы

Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.

Чем выше прочность сплава — тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.

А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.

Самый прочный сплав

Самые твердые сплавы в мире — вольфрамовые. Основу составляют порошки, состоящие из нескольких карбидов металлов и кобальта. Смешивание ведется в определенной пропорции. Разработанная учеными технология позволяет получать сплавы высокой степени твердости.

Физические и химические свойства

Основные физические свойства вольфрамовых сплавов:

  1. Характерной особенностью является красностойкость. Она составляет 800 градусов. Термин означает, что режущая кромка в состоянии выдерживать такую температуру. Это обеспечивается высокой теплопроводностью. Благодаря чему идет отвод тепла.
  2. Высокая твердость, которая составляет 90 единицы по Роквеллу.
  3. Температура плавления достигает 2780 градусов.

Химическая стойкость к внешней среде повышается с увеличением процентного содержания кобальта.

Химические свойства

Химические свойства титана

Особенности изготовления и сферы применения

Технология получения твердых сплавов из вольфрама состоит из следующих этапов:

  1. Сначала формируется грубый порошок вольфрама, который затем измельчается и просеивается.
  2. Таким же образом получаются порошки карбида вольфрама и кобальта.
  3. Идет их перемешивание с добавлением клея. В этом качестве выступает каучук, растворенный в бензине.
  4. Смесь подсушивается и прессуется.
  5. Технологический процесс заканчивается двумя спеканиями.

Твердый материал используется в изготовлении следующих изделий:

  • резцов для токарных станков;
  • клейм;
  • валки для прокатки;
  • шариков и обоймы для подшипников.
  • напайки для инструмента горнодобывающего оборудования;

Любое производство нуждается в обработке изделий. Чтобы обеспечить этот процесс, необходим материал более высокой твердости. Эту функцию выполняют твердые сплавы.

Источник: sutime.ru

25 самых крепких известных материалов

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз — крепчайший минерал, но он далеко не самый крепкий.

Твёрдость — не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие — способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Алмаз

Алмаз

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 — самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.

Шёлк паука Дарвина

Шёлк паука Дарвина

Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.

Аэрографит

Аэрографит

Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.

Палладиевое микролегированное стекло

Палладиевое микролегированное стекло

Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.

Карбид вольфрама

Карбид вольфрама

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.

Карбид кремния

Карбид кремния

Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.

Кубический нитрид бора

Кубический нитрид бора

Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).

Dyneema

Dyneema

Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!

Титановые сплавы

Титановые сплавы

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.

Аморфные сплавы

Аморфные сплавы

Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.

Наноцеллюлоза

Наноцеллюлоза

Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.

Зубы моллюсков

Зубы моллюсков

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.

Мартенситностареющие стали

Мартенситностареющие стали

Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.

Осмий

Осмий

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).

Кевлар

Кевлар

Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар — это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.

Spectra

Spectra

Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.

Графен

Графен

Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!

Buckypaper

Buckypaper

Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.

Металлическая микрорешётка

Металлическая микрорешётка

в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.

Углеродные нанотрубки

Углеродные нанотрубки

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.

Аэрографен

Аэрографен

Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Неназванное вещество, находящееся в разработке в Массачусетском технологическом институте

Неназванное вещество, находящееся в разработке в Массачусетском технологическом институте

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.

Карбин

Карбин

Молекулярная структура карбина

Читайте также:  Схема строительства каркасного дома

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.

Вюрцит нитрид бора

Вюрцит нитрид бора

место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.

Лонсдейлит

Лонсдейлит

Метеориты — главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Источник: interesnosti.com

Список самых прочных материалов, известных человеку

Для непрофессионала прочность и твёрдость — это в основном одно и то же, но для инженера по материалам эти два понятия абсолютно разные. Прочность любого материала указывает на его устойчивость к деформации, а твёрдость обозначает его способность сопротивляться царапинам в целом. Вы знаете, какой самый прочный материал на Земле? Что ж, если ответ отрицательный, вы движетесь в правильном направлении, так как в нашем обзоре на thebiggest.ru представлены самые прочные материалы, известные человеку.

Но прочность — это довольно широкое понятие, под которым скрывается множество свойств и допущений. Например, материал может быть прочным только в одном направлении, а в других хрупким. Поэтому наш список нельзя считать полностью объективным.

Стекловолокно

Стекловолокно. CC0

В 1932 году Рассел Слейтер создал новый прочный материал и использовал его в качестве теплоизоляции для зданий.

Стекловолокно имеет сопоставимые механические свойства, как полимеры и углеродное волокно. Несмотря на то, что стекловолокно не так прочно, как углеродное, оно намного дешевле и менее хрупко при использовании в различных композитах.

Стекло из микролегированного палладия

Стекло из микролегированного палладия. CC0

В 2011 году исследователи материалов из Калифорнийского технологического института совместно с лабораторией Беркли разработали новый тип металлического стекла с широким спектром свойств, которое намного прочнее стали.

Как следует из названия, это металлическое стекло изготовлено из палладия — металла с высоким коэффициентом жёсткости. Палладий снижает хрупкость стекла, но увеличивает его прочность.

Титановые сплавы

Титановые сплавы. CC0

Такие сплавы чрезвычайно лёгкие и обладают высокой стойкостью к коррозии. Из-за этих свойств сплавы широко используются в кораблестроении.

При всех достоинствах титановых сплавов, они очень дорогие, а потому применение сильно ограничено в гражданском производстве. В основном материал используют в производстве военных судов и ледоколов.

Карбид вольфрама

Карбид вольфрама в сверле. CC0

Соединение карбида вольфрама состоит из равных частей атомов углерода и вольфрама. Он в основном используется для создания тяжёлых промышленных режущих инструментов и пуль большого калибра.

Лонсдейлит

Lonsdaleite

Это природный минерал, образующийся при падении на Землю метеоритов, содержащих графит. Во время удара о поверхность вырабатывается тепло, которое превращает графит в алмаз под высоким давлением. При таком превращении сохраняется гексагональная кристаллическая решётка графита.

Лонсдейлит был назван в честь прославленного кристаллографа, родом из Ирландии, Кэтлина Лонсдейла. В прессе часто сообщалось, что лонсдейлит на 58% твёрже алмаза. Но это оказалось мифом. По шкале Мооса твёрдость минерала составляет 7–8 единиц.

Мартенситностареющая сталь

Мартенситностареющая сталь. CC0

Это особая разновидность сверхвысокопрочных сталей, прочность которых определяется интерметаллическими соединениями, а не углеродом. Такие стали известны своей прочностью и твёрдостью, не теряя пластичности.

Одним из основных элементов, используемых в мартенситностареющей стали, является 25-процентная массовая доля никеля. Его лучшее соотношение веса и прочности, чем у большинства других сталей, позволяет широко использовать мартенсит в ракетах и обшивках ракет.

Вектран

Велосипед. CC0

Производится только японской корпорацией «Kuraray», а представляет собой химически стабильный полиэстер с высокой прочностью и термостойкостью.

В основном используются для закрепления электрических кабелей, канатов, а также в качестве одного из композитных материалов для высококлассных велосипедных шин. Есть и недостаток. Имея высокую прочность, материал легко трескается.

Кевлар

Кевлар

Впервые был использован в 1970-х годах не в военной технике, а в качестве замены стали в гоночных шинах. Материал получил широкое применение в промышленности, так как он в 5 раз прочнее стали.

Сейчас кевлар широко применяется в производстве велосипедных шин, парусов для гоночных яхт, пуленепробиваемых жилетов. Получил широкое применение в аэрокосмической отрасли.

Паучий шёлк

Паутина. CC0

Эти произведения искусства паука выступают одним из самых твёрдых материалов, встречающихся в природе.

Прочность паучьего шёлка зависит от вида и от ряда других внешних факторов, таких как температура и влажность, во время тестирования. Но при подходящих условиях эта нить в 10 раз прочнее кевлара на растяжение.

Это интересно: Если паучья нить была бы длиной 40 000 километров, что равно длине окружности экватора, она бы весила около 500 граммов.

Карбид кремния

Муссанит

На фото: Минерал муссанит, который является природной разновидностью карбида кремния.

Этот материал составляет основу брони многих боевых танков. Он обладает высокой твердостью и прочностью, а также очень устойчив к радиации и химическим соединениям.

Patella vulgata

Patella vulgata

Этот вид морских улиток, широко известный как «европейский блюдец», в основном встречается в Западной Европе. Их зубы — один из самых прочных материалов, обнаруженных в живой природе.

Исследование 2015 года, опубликованное в журнале «Royal Society Journal», показало, что зуб европейского моллюска может быть прочнее, чем паучий шёлк, который официально является самым прочным природным материалом на Земле.

Вюрцит борная нанотрубка

Вюрцит борная нанотрубка. CC0

Вюрцит нитрит бора — одно из самых редких веществ в мире. Они либо обнаруживаются естественным путём, либо синтезируются вручную. Материал назвали в честь прославленного французского химика Шарля Вюрца.

Различные симуляции показали, что борные нанотрубки из вюрцита могут выдерживать на 18% большее напряжение, чем алмаз. В природе они образуются во время извержений вулканов, под воздействием высоких температур и давления.

Buckypaper

Buckypaper

Уникальный материал был создан американскими и бразильскими учёными. Сделан он из углеродных нанотрубок. Считается, что этот материал примерно в 50 000 раз тоньше, чем средний человеческий волос, и в 500 раз прочнее стали.

Ещё одна интересная характеристика Buckypaper в том, что она может рассеивать тепло, как латунь или сталь, и проводить электричество, как медь или кремний.

Зилон (Zylon)

Zylon

Зилон специально разработан американским независимым институтом «SRI International» как особая разновидность термореактивного жидкокристаллического полиоксазола. Он в 1,6 раза прочнее, чем кевлар.

Zylon используется в ряде областей, где требуется очень высокая прочность и отличная термическая стабильность. Теннисные ракетки, сноуборды — вот некоторые из его известных применений.

Углеродное волокно

Углеродное волокно. CC0

Диаметр таких волокон равен 5–10 микрометров и состоят они в основном из атомов углерода. У таких волокон есть ряд преимуществ перед сталью и сплавами.

У этих волокон высокая жёсткость, высокая прочность на разрыв, малый вес и высокая химическая стойкость. Эти свойства сделали углеродное волокно очень популярным в аэрокосмической, военной отраслях. Широко используют их в производстве спортивного снаряжения.

Волокна из сверхвысокомолекулярного полиэтилена (Dyneema)

Карбон. CC0

Dyneema — это прочное и сверхлёгкое полиэтиленовое волокно, которое в основном используется в качестве композитных пластин для создания бронированных автомобилей. Оно легче воды, а останавливает пули и в 15 лучше стали.

Также используется для изготовления альпинистского снаряжения, рыболовных верёвок, тетивы для лука. Он имеет высокий предел текучести 2,4 ГПа и низкий удельный вес 0,97 г/см³.

Алмаз

Алмаз. CC0

Всем читателям thebiggest.ru известно, что алмазы — самый твёрдый материал природы, если использовать для измерения шкалу Мооса. Сделать царапину на алмазе получится, если только использовать другой алмаз.

Такие свойства алмаза человек стал применять в промышленности, в качестве изоляторов и полупроводников. А алмазная крошка просто незаменима при резке высокотвёрдых материалов.

Углеродные нанотрубки

Углеродные нанотрубки. CC0

Углеродные нанотрубки, как алмаз и графит, являются производным аллотропов углерода в цилиндрической наноструктуре. Исключительная прочность и меньший вес являются причиной его ценности для электронной промышленности и нанотехнологий.

Кроме того, благодаря своей превосходной теплопроводности, электрическим и механическим свойствам углеродные нанотрубки являются основой многих отраслей промышленности.

Графен

Графен. CC0

Графен, пожалуй, самый прочный материал, известный людям. В нём один слой углерода, расположенный в треугольной решётке. Является основным структурным элементом древесного угля, графита и углеродных нанотрубок.

Хотя графен производится в небольших количествах уже более века, первое изолированное открытие материала было сделано К. Новоселовым и А. Геймом в 2004 году. Оба за свой вклад в развитие науки получили Нобелевскую премию в области физики.

Подведём итог

Самые прочные материалы. CC0

Подытоживая подборку уникальных материалов, отметим, что прочность любого материала измеряется его пределом прочности на разрыв, то есть сопротивлением любого материала перед разрушением под постоянным давлением. Сейчас в большинстве случаев прочность измеряют методом конечных элементов, который является самым эффективным.

Редакция нашего сайта TheBiggest.ru просит вас написать в комментариях какие ещё прочные материалы вы знаете.

Источник: thebiggest.ru

25 самых крепких известных материалов

Знаете ли вы, какой материал на нашей планете считается самым крепким? Со школы нам всем известно, что алмаз — крепчайший минерал, но он далеко не самый крепкий.

Твёрдость — не главное свойство, которым характеризуется материя. Одни свойства могут мешать появлению царапин, другие — способствовать эластичности. Хотите знать больше? Перед вами рейтинг материалов, которые будет очень сложно разрушить.

Алмаз

Алмаз

Бриллиант во всей своей красе

Классический пример прочности, засевший в учебниках и головах. Его твёрдость означает устойчивость к царапинам. В шкале Мооса (качественная шкала, которая измеряет сопротивление различных минералов) алмаз показывает результат в 10 (шкала идёт от 1 до 10, где 10 — самое твёрдое вещество). Алмаз настолько твёрдый, что другие алмазы должны быть использованы для его резки.

Шёлк паука Дарвина

Шёлк паука Дарвина

Паутина, способная остановить аэробус

Этот материал часто упоминается как самое сложное биологическое вещество в мире (хотя это утверждение сейчас оспаривается изобретателями), сеть паука Дарвина сильнее, чем сталь и обладает большим запасом жёсткости, чем кевлар. Её вес не менее замечателен: нить, достаточно длинная, чтобы окружить Землю, весит всего 0,5 кг.

Аэрографит

Аэрографит

Аэрографит в обычной посылке

Эта синтетическая пена является одним из самых лёгких строительных материалов в мире. Аэрографит примерно в 75 раз легче пенополистирола (но намного сильнее!). Этот материал может быть спрессован в 30 раз от его первоначального размера без ущерба для его структуры. Ещё один интересный момент: аэрографит может выдержать массу в 40 000 раз больше собственного веса.

Палладиевое микролегированное стекло

Палладиевое микролегированное стекло

Стекло во время краш-теста

Это вещество разработано учёными в Калифорнии. Микролегированное стекло имеет почти совершенное сочетание жёсткости и прочности. Причиной этого является то, что его химическая структура снижает хрупкость стекла, но сохраняет жёсткость палладия.

Карбид вольфрама

Карбид вольфрама

Карбид вольфрама невероятно твёрдый и имеет качественно высокую жёсткость, но он довольно хрупкий, его легко можно согнуть.

Карбид кремния

Карбид кремния

Карбид кремния в виде кристаллов

Этот материал используется в создании брони для боевых танков. Фактически он используется почти во всём, что может защищать от пуль. Он имеет рейтинг твёрдости Мооса 9, а также имеет низкий уровень теплового расширения.

Кубический нитрид бора

Кубический нитрид бора

Молекулярная структура нитрида бора

Примерно такой же сильный, как алмаз, кубический нитрид бора имеет одно важное преимущество: он нерастворим в никеле и железе при высоких температурах. По этой причине его можно использовать для обработки этих элементов (алмазные формы нитридов с железом и никелем при высоких температурах).

Dyneema

Dyneema

Кабель из Dyneema

Считается самым сильным волокном в мире. Возможно, вас удивит факт: «дайнима» легче воды, но она может остановить пули!

Титановые сплавы

Титановые сплавы

Титановые сплавы чрезвычайно гибкие и имеют очень высокую прочность на растяжение, но не имеют такой жёсткости, как стальные сплавы.

Аморфные сплавы

Аморфные сплавы

Аморфные металлы легко меняют форму

Liquidmetal разработан в компании Caltech. Несмотря на название, этот металл не является жидким и при комнатной температуре имеют высокий уровень прочности и износотойкости. При нагревании аморфные сплавы могут менять форму.

Наноцеллюлоза

Наноцеллюлоза

Будущая бумага может быть тверже алмазов

Это новейшее изобретение создаётся из древесной массы, при этом обладая большей степенью прочности, чем сталь! И гораздо дешевле. Многие учёные считают наноцеллюлозу дешёвой альтернативой палладиевому стеклу и углеродному волокну.

Зубы моллюсков

Зубы моллюсков

Ранее мы упоминали, что пауки Дарвина плетут нить одного из самых прочных органических материалов на Земле. Тем не менее зубы морского блюдечка оказались ещё сильнее, чем паутины. Зубы лимпетов чрезвычайно жёсткие. Причина этих удивительных характеристик в назначении: сбор водорослей с поверхности горных пород и кораллов. Учёные считают, что в будущем мы могли бы скопировать волокнистую структуру зубов лимпета и использовать её в автомобильной промышленности, кораблях и даже авиационной индустрии.

Мартенситностареющие стали

Мартенситностареющие стали

Ступень ракеты, в которой многие узлы содержат мартенситностареющие стали

Это вещество сочетает в себе высокий уровень прочности и жёсткости без потери эластичности. Стальные сплавы этого типа находят применение в аэрокосмических и промышленно-производственных технологиях.

Осмий

Осмий

Осмий чрезвычайно плотен. Его используют при изготовлении вещей, требующих высокого уровня прочности и твёрдости (электрические контакты, ручки для наконечников и т.д.).

Кевлар

Кевлар

Кевларовая каска остановила пулю

Используемый во всём, от барабанов до пуленепробиваемых жилетов, кевлар является синонимом твёрдости. Кевлар — это тип пластика, который обладает чрезвычайно высокой прочностью на растяжение. Фактически она примерно в 8 раз больше, чем у стальной проволоки! Он также может выдерживать температуры около 450 ℃.

Spectra

Spectra

Трубы из материала Spectra

Высокоэффективный полиэтилен является действительно прочным пластиком. Эта лёгкая, прочная нить может выдерживать невероятное натяжение и в десять раз прочнее стали. Подобно кевлару, Spectra также используется для баллистических устойчивых жилетов, шлемов и бронетехники.

Графен

Графен

Гибкий экран из графена

Лист графена (аллотроп углерода) толщиной в один атом в 200 раз сильнее, чем сталь. Хотя графен похож на целлофан, он действительно поражает. Понадобится школьный автобус, балансирующий на карандаше, чтобы проткнуть стандартный лист А1 из этого материала!

Buckypaper

Buckypaper

Новая технология, способная перевернуть наше представление о прочности

Эта нанотехнология изготовлена из углеродных труб, которые в 50 000 раз тоньше человеческих волос. Это объясняет, почему он в 10 раз легче, чем сталь, но в 500 раз сильнее.

Металлическая микрорешётка

Металлическая микрорешётка

в сателлитах регулярно применяются сплавы из микрорешётки

Самый лёгкий в мире металл, металлическая микрорешётка также является одним из самых лёгких конструкционных материалов на Земле. Некоторые учёные утверждают, что он в 100 раз легче пенополистирола! Пористый, но чрезвычайно сильный материал, он используется во многих областях техники. Boeing упомянул об использовании его при изготовлении самолётов, в основном в полах, сидениях и стенах.

Углеродные нанотрубки

Углеродные нанотрубки

Углеродные нанотрубки (УНТ) можно описать как «бесшовные цилиндрические полые волокна», которые состоят из одного скатанного молекулярного листа чистого графита. В результате получается очень лёгкий материал. В наномасштабе углеродные нанотрубки имеют прочность в 200 раз больше, чем у стали.

Аэрографен

Аэрографен

Фантастический аэрографен сложно даже описать!

Также известен как графеновый аэрогель. Представьте себе прочность графена в сочетании с невообразимой лёгкостью. Аэрогель в 7 раз легче воздуха! Этот невероятный материал может полностью восстановиться после сжатия в более чем 90% и может поглощать до 900 раз больше собственного веса в масле. Есть надежда, что этот материал можно будет использовать для ликвидации разливов нефти.

Неназванное вещество, находящееся в разработке в Массачусетском технологическом институте

Неназванное вещество, находящееся в разработке в Массачусетском технологическом институте

Главный корпус политеха штата Массачусетс

На момент написания этой статьи учёные из Массачусетского технологического института полагали, что они обнаружили секрет максимизации 2-мерной прочности графена в 3-х измерениях. Их пока ещё неназванное вещество может иметь примерно 5% плотности стали, но в 10 раз больше прочности.

Карбин

Карбин

Молекулярная структура карбина

Несмотря на то что он является единой цепочкой атомов, карбин имеет удвоенную прочность на растяжение от графена и в три раза большую жёсткость, чем алмаз.

Вюрцит нитрид бора

Вюрцит нитрид бора

место рождения нитрида бора

Это природное вещество производится в жерле действующих вулканов и на 18% прочнее, чем алмаз. Это одно из двух веществ, встречающихся в природе, которые, как было установлено, в настоящее время превосходят алмазы по твёрдости. Проблема в том, что там не так много этого вещества, и сейчас трудно сказать наверняка, является ли это утверждение на 100% верным.

Лонсдейлит

Лонсдейлит

Метеориты — главные источники лонсдейлита

Также известный как гексагональный алмаз, это вещество состоит из атомов углерода, но они просто расположены по-другому. Наряду с вюрцитом нитридом бора это одно из двух природных веществ тверже алмаза. На самом деле Лондсдейлит 58% тверже! Однако, как и в случае с предыдущим веществом, он находится в относительно малых объёмах. Иногда он возникает, когда графитовые метеориты, сталкиваются с планетой Землёй.

Будущее не за горами, поэтому к концу XXI века можно ожидать появление сверхпрочных и сверхлёгких материалов, которые придут на смену кевлару и алмазам. А пока остаётся только удивляться развитию современных технологий.

Самые прочные материалы в мире, известные человеку (ТОП-19)

Алмаз оценивается по шкале твердости Мооса на 10 баллов, что говорит о том, что это самый твердый природный материал, когда он подвергается царапинам. Однако, по прогнозам, лонсдейлит, вещество, обнаруженное в метеоритах, будет еще более твердым, чем алмаз.

Спросите любого любителя науки: «какой самый твердый материал?» — и он, несомненно, ответит: «Алмаз».

Читайте также:  Недвижимое имущество это капитальное строительство

На протяжении десятилетий люди использовали безупречную твердость алмаза для интенсивной резки. Кроме того, учитывая его способность красиво взаимодействовать со светом, бриллианты являются крайне желанным украшением для женщин. Но действительно ли алмаз — самый твердый материал на Земле?

Ну, почти… ученые обнаружили потенциального соперника, который, как полагают, даже тверже, чем алмаз.

Стекловолокно

Самые прочные материалы в мире, известные человеку (ТОП-19)

В 1932 году Рассел Слейтер создал новый прочный материал и использовал его в качестве теплоизоляции для зданий.

Стекловолокно имеет сопоставимые механические свойства, как полимеры и углеродное волокно. Несмотря на то, что стекловолокно не так прочно, как углеродное, оно намного дешевле и менее хрупко при использовании в различных композитах.

Стекло из микролегированного палладия

Самые прочные материалы в мире, известные человеку (ТОП-19)

В 2011 году исследователи материалов из Калифорнийского технологического института совместно с лабораторией Беркли разработали новый тип металлического стекла с широким спектром свойств, которое намного прочнее стали.

Как следует из названия, это металлическое стекло изготовлено из палладия — металла с высоким коэффициентом жёсткости. Палладий снижает хрупкость стекла, но увеличивает его прочность.

Титановые сплавы

Самые прочные материалы в мире, известные человеку (ТОП-19)

!!
Такие сплавы чрезвычайно лёгкие и обладают высокой стойкостью к коррозии. Из-за этих свойств сплавы широко используются в кораблестроении.

При всех достоинствах титановых сплавов, они очень дорогие, а потому применение сильно ограничено в гражданском производстве. В основном материал используют в производстве военных судов и ледоколов.

Инновационные сплавы

Существует ряд сплавов, которые появились совсем недавно, но уже успели завоевать признание благодаря своим «сверхкачествам» и активно используются в аэрокосмической сфере и медицине.

Алюминид титана – сплав титана и алюминия, который выдерживает высокие температуры и обладает антикоррозийными свойствами, но при этом он довольно хрупкий и недостаточно пластичный. Тем не менее, он нашел свое применение в производстве специальных защитных покрытий.

Сплав титана с золотом – еще один уникальный материал, который был разработан несколько лет назад группой ученых из университетов США. Основная задача, которая стояла перед учеными, создать материал крепче титана, который можно было бы применять в медицине для производства протезов, совместимых с биотканью. Дело в том, что титановые протезы, несмотря на свою прочность, изнашиваются относительно быстро, их приходится менять каждые 10 лет. А вот сплав титана с золотом оказался вчетверо более прочным, чем те сплавы, что сейчас используются в производстве протезов.

Лонсдейлит

Самые прочные материалы в мире, известные человеку (ТОП-19)

Автор фото: , CC BY 4.0, via Wikimedia Commons

Это природный минерал, образующийся при падении на Землю метеоритов, содержащих графит. Во время удара о поверхность вырабатывается тепло, которое превращает графит в алмаз под высоким давлением. При таком превращении сохраняется гексагональная кристаллическая решётка графита.

Лонсдейлит был назван в честь прославленного кристаллографа, родом из Ирландии, Кэтлина Лонсдейла. В прессе часто сообщалось, что лонсдейлит на 58% твёрже алмаза. Но это оказалось мифом. По шкале Мооса твёрдость минерала составляет 7–8 единиц.

Мартенситностареющая сталь

Самые прочные материалы в мире, известные человеку (ТОП-19)

Это особая разновидность сверхвысокопрочных сталей, прочность которых определяется интерметаллическими соединениями, а не углеродом. Такие стали известны своей прочностью и твёрдостью, не теряя пластичности.

Одним из основных элементов, используемых в мартенситностареющей стали, является 25-процентная массовая доля никеля. Его лучшее соотношение веса и прочности, чем у большинства других сталей, позволяет широко использовать мартенсит в ракетах и обшивках ракет.

Вектран

Самые прочные материалы в мире, известные человеку (ТОП-19)

Производится только японской корпорацией «Kuraray», а представляет собой химически стабильный полиэстер с высокой прочностью и термостойкостью.

В основном используются для закрепления электрических кабелей, канатов, а также в качестве одного из композитных материалов для высококлассных велосипедных шин. Есть и недостаток. Имея высокую прочность, материал легко трескается.

Самые твердые материалы на Земле

Самые твердые материалы на Земле

Самый прочный материал в мире, который тверже алмаза, – полимеризованный фуллерит. Этим материалом можно запросто поцарапать алмаз, с такой легкостью, будто это не драгоценный алмаз, а обычный пластик.

Данный материал представляет собой структурированный кристалл, узлы которого состоят из целых молекул, а не из маленьких атомов.

Лонсдейлит

Лонсдейлит также считается крепким материалом. Это модификация аллотропного углерода, который по твердости близок к алмазу. Данный материал был извлечен из метеоритного кратера. Происхождение материала – графитное.

Вам будет интересно Строительство из стеклянных бутылок: как сделать из них забор, фундамент, стены, пол, либо изготовить баню или другую постройку своими руками — Эко Жизнь

вюртцитный нитрит бора

Третью позицию в рейтинге твердости прочно занимает вюртцитный нитрит бора. Высокую степень прочности данному материалу обеспечивает кристаллическая структура.

кубонит

Наноструктурированный кубонит, или кингсонгит. Уникальные возможности данного материала обеспечили его частое использование в промышленности.

Нитрит углерода-бора

Нитрит углерода-бора занимает почетную пятую позицию в нашем рейтинге. Главными компонентами данного материала являются атомы бора, а также углерода с азотом.

Кевлар

Самые прочные материалы в мире, известные человеку (ТОП-19)

Впервые был использован в 1970-х годах не в военной технике, а в качестве замены стали в гоночных шинах. Материал получил широкое применение в промышленности, так как он в 5 раз прочнее стали.

Сейчас кевлар широко применяется в производстве велосипедных шин, парусов для гоночных яхт, пуленепробиваемых жилетов. Получил широкое применение в аэрокосмической отрасли.

Паучий шёлк

Самые прочные материалы в мире, известные человеку (ТОП-19)

Эти произведения искусства паука выступают одним из самых твёрдых материалов, встречающихся в природе.

Прочность паучьего шёлка зависит от вида и от ряда других внешних факторов, таких как температура и влажность, во время тестирования. Но при подходящих условиях эта нить в 10 раз прочнее кевлара на растяжение.

Это интересно: Если паучья нить была бы длиной 40 000 километров, что равно длине окружности экватора, она бы весила около 500 граммов.

Самый твердый металл

Среди всех известных металлов самым твердым является хром, однако его твердость во многом зависит от чистоты. Его свойства – коррозионностойкость, жаропрочность и тугоплавкость. Хром – металл беловато-голубого оттенка. Его твердость по Бринеллю равна 70-90 кгc/см2.

Температура плавления самого твердого металла – тысяча девятьсот семь градусов по Цельсию при плотности семь тысяч двести кг/м3. Этот металл находится в земной коре в размере 0,02 процента, что немало. Обычно он встречается в виде хромистого железняка. Хром добывают из силикатных горных пород.

Хром считается самым прочным металлом

Хром считается самым прочным металлом

Этот металл используют в промышленности, выплавляя хромистую сталь, нихром и так далее. Его применяют для антикоррозийных и декоративных покрытий. Хромом очень богаты падающие на Землю каменные метеориты.

Карбид кремния

Самые прочные материалы в мире, известные человеку (ТОП-19)

На фото: Минерал муссанит, который является природной разновидностью карбида кремния.

Этот материал составляет основу брони многих боевых танков. Он обладает высокой твердостью и прочностью, а также очень устойчив к радиации и химическим соединениям.

Вюртцитный нитрид бора — твердость до 114 ГПа

Вюрцитная кристаллическая структура обеспечивает высокие показатели твердости данному материалу. При локальных структурных модификациях, во время приложения нагрузки конкретного типа, связи между атомами в решетке вещества перераспределяются. В этот момент качественная твердость материала становится больше на 78 %.

Вюртцитный нитрид бора

Patella vulgata

Самые прочные материалы в мире, известные человеку (ТОП-19)

Этот вид морских улиток, широко известный как «европейский блюдец», в основном встречается в Западной Европе. Их зубы — один из самых прочных материалов, обнаруженных в живой природе.

Исследование 2015 года, опубликованное в журнале «Royal Society Journal», показало, что зуб европейского моллюска может быть прочнее, чем паучий шёлк, который официально является самым прочным природным материалом на Земле.

Самое твердое вещество природного происхождения на нашей планете

Когда дело доходит до природных твердых веществ, алмаз является явным победителем. Благодаря своей компактной структуре его очень трудно превзойти по твердости. Теперь возникает вопрос… как мы измеряем твердость?

Измерение твердости

В материаловедении очень важна оценка твердости материала. Однако определить твердость не так-то просто. Таким образом, твердость можно измерить по-разному, в зависимости от контекста и применимости.

Шкала твердости Мооса

Одна из наиболее часто используемых шкал твердости — шкала твердости Мооса, разработанная немецким минералогом Фридрихом Моосом в девятнадцатом веке. По этой шкале твердость — это мера сопротивления, проявляемого одним материалом при царапании другим материалом. Шкала твердости Мооса варьируется от 0 до 10, где 10 означает самую твердую (наименее подверженную царапинам), а 0 — наименьшую твердость.

Шкала твердости минералов Мооса.

Алмаз получил 10 баллов по этой шкале, что ясно указывает на то, что это самый твердый натуральный материал, когда его подвергают царапинам. Чтобы понять, насколько хорош алмаз, рассмотрим сталь, которая известна своей твердостью и имеет только 4,5 балла по этой шкале!

Так вот, измерение твердости по стойкости вещества к царапинам одобрялось далеко не всеми. Таким образом, ученые начали искать альтернативный метод измерения твердости. Была разработана еще одна методика определения твердости, в которой для оценки твердости использовался индентор.

Тест твердости по Виккерсу

Один из самых известных тестов для определения твердости с использованием индентора — это тест твердости по Виккерсу. При этом методе испытания на твердость индентор в форме пирамиды прижимается к материалу, твердость которого необходимо оценить. На данный материал в течение определенного времени прилагается определенное усилие.

После этого индентора измеряется степень вмятины на материале. Это делается путём измерения площади поверхности вмятины, нанесённой индентором на материал. Здесь снова было установлено, что алмаз является самым твердым природным материалом на Земле.

Что делает бриллиант таким твердым?

В этот момент вы можете спросить себя, что делает бриллиант таким твердым? Ответ кроется в молекулярной структуре этого блестящего элемента. Алмаз — это аллотроп углерода, состоящий из пяти атомов углерода, которые разделяют электроны друг с другом в структуре тетраэдрической решетки. Ковалентная связь между этими атомами углерода чрезвычайно прочна, и ее очень трудно разорвать при комнатной температуре.

Алмаз как тетраэдрическая структура углерода.

Из-за этой прочной ковалентной связи у алмазов нет свободных электронов, что делает их плохим проводником электричества, но отличным проводником тепла. Фактически, алмаз примерно в пять раз лучше по теплопроводности, чем медь. Благодаря своей фантастической теплопроводности алмазы часто присутствуют в электрических деталях, например, в радиаторах.

Вюрцит борная нанотрубка

Самые прочные материалы в мире, известные человеку (ТОП-19)

Вюрцит нитрит бора — одно из самых редких веществ в мире. Они либо обнаруживаются естественным путём, либо синтезируются вручную. Материал назвали в честь прославленного французского химика Шарля Вюрца.

Различные симуляции показали, что борные нанотрубки из вюрцита могут выдерживать на 18% большее напряжение, чем алмаз. В природе они образуются во время извержений вулканов, под воздействием высоких температур и давления.

Производство кевлара

Вы, вероятно, знаете, что натуральные материалы, такие как шерсть и хлопок, должны быть скручены в волокна, прежде чем превратиться в полезные текстильные изделия. То же самое верно и для искусственных волокон, таких как нейлон, кевлар и номекс.

Существует два основных этапа изготовления кевлара. Первый связан непосредственно с химией – сначала необходимо произвести основной пластик, из которого сделан кевлар (химическое вещество под названием поли-пара-фенилен терефталамид). Непосредственное превращение химического продукта в более полезный, практичный и прочный материал происходит в ходе второго, заключительного этапа производства.

В настоящее время более 80% кевлара в мире производится на заводе Честерфилда в Спруэнсе. Синтетическое волокно наматывается на катушки, как показано здесь, а затем превращается в другие продукты.

С помощью сложного процесса горячий и вязкий раствор поли-пара-фенилен терефталамида пропускается через фильеру (металлический формовщик, немного похожий на сито). В результате получаются длинные, тонкие, прочные и жесткие волокна, которые наматываются на барабаны. Затем волокна разрезаются по длине и сплетаются в жесткий коврик, известный нам как кевлар.

Buckypaper

Самые прочные материалы в мире, известные человеку (ТОП-19)

Уникальный материал был создан американскими и бразильскими учёными. Сделан он из углеродных нанотрубок. Считается, что этот материал примерно в 50 000 раз тоньше, чем средний человеческий волос, и в 500 раз прочнее стали.

Ещё одна интересная характеристика Buckypaper в том, что она может рассеивать тепло, как латунь или сталь, и проводить электричество, как медь или кремний.

Самые прочные материалы из всех, что существуют в мире

Корреспондент информационного агентства «Экспресс-Новости» расскажет о самых прочных материалах из всех, что существуют в мире.

Шелк паука

Шелк пауков вида «Caerostris darwini» считается самым прочным биологическим веществом, которое в 10 раз прочнее кевлара. Было бы достаточно 500 грамм паутины, чтобы вытянуть нить, способную опоясать Землю.

Карбид кремния

Данное соединение кремния с углеродом составляет основу современной танковой брони. В ходе операции «Буря в пустыне» ни один британский танк «Челленджер», покрытый пластинами из карбида кремния, так и не был уничтожен.

Соединение

Нано-кевлар

Самый прочный органический материал, разработанный израильскими учеными, который используется для создания бронежилетов. Существенно прочнее кевлара и пуленепробиваемого стекла.

Алмаз

Самый твердый материал на Земле, наделенный непревзойденной износостойкостью и высочайшим модулем упругости. Также этот драгоценный камень обладает самым низким коэффициентом сжатия.

Твердый материал

Нитрид бора

Соединение бора и азота по многим параметрам превосходит алмаз: например, не растворяется в железе при критически высоких температурах. Широко применяется при производстве высокотемпературного оборудования.

Лонсдейлит

Представляет собой полиморфную модификацию алмаза. В природе лонсдейлит образуется в результате падения метеоритов, содержащих графит. Искусственно получать слишком сложно и дорого. Тверже алмаза, но применения пока нет.

Дайнема

Это волокно из высокомолекулярного полиэтилена считается самым прочным волокном в мире. Материал легче воды, но в 15 раз прочнее стали и без труда останавливает пули.

Палладиевое металлическое стекло

Самое твердое, упругое и прочное стекло, созданное человеком. Ученые утверждают, что это самый долговечный материал на Земле.

Прочное стекло

Buckypaper

Это наноматериал, состоящий из углеродных нанотрубок, каждая из которых в 50 000 раз тоньше человеческого волоса. Buckypaper в 10 раз легче и в 500 раз прочнее стали.

Графен

Двумерная аллотропная модификация углерода, имеющая толщину в один атом. Несмотря на это, такой лист в 200 раз прочнее стали.

Читайте нас первыми — добавьте сайт в любимые источники.

Добавить комментарий

Комментарии

Зилон (Zylon)

Самые прочные материалы в мире, известные человеку (ТОП-19)

Зилон специально разработан американским независимым институтом «SRI International» как особая разновидность термореактивного жидкокристаллического полиоксазола. Он в 1,6 раза прочнее, чем кевлар.

Zylon используется в ряде областей, где требуется очень высокая прочность и отличная термическая стабильность. Теннисные ракетки, сноуборды — вот некоторые из его известных применений.

Углеродное волокно

Самые прочные материалы в мире, известные человеку (ТОП-19)

Диаметр таких волокон равен 5–10 микрометров и состоят они в основном из атомов углерода. У таких волокон есть ряд преимуществ перед сталью и сплавами.

У этих волокон высокая жёсткость, высокая прочность на разрыв, малый вес и высокая химическая стойкость. Эти свойства сделали углеродное волокно очень популярным в аэрокосмической, военной отраслях. Широко используют их в производстве спортивного снаряжения.

Сталь и ее сплавы

Сталь — это прочный сплав железа и углерода, с добавками других элементов, таких как кремний, марганец, ванадий, ниобий и пр. Благодаря различным системам легирования стали можно получать совершенно разный комплекс свойств новых сплавов.

Сферы применения: из углеродистой стали изготавливают различные инструменты, детали машин и сложных механизмов, элементы металлоконструкций. Важным условием применения таких изделий является неагрессивная среда.

Сплав стали, железа и никеля – один из наиболее прочных сплавов. Существует несколько его разновидностей, но в целом легирование углеродистой стали никелем увеличивает предел текучести до 1420 МПа и при этом показатель предела прочности на разрыв доходит до 1460 МПа.

Сферы применения: сплавы на никелевой основе используют в конструкциях некоторых типов мощных атомных реакторов в качестве защитных высокотемпературных оболочек для предохранения от коррозии урановых стержней.

Нержавеющая сталь – коррозионностойкий сплав стали, хрома и марганца с пределом текучести до 1560 МПа и пределом прочности на разрыв до 1600 МПа. Как и все виды стали, этот сплав обладает высокой ударопрочностью и имеет средний балл по шкале Мооса.

Сферы применения: благодаря своим антикоррозийным свойствам нержавеющую сталь широко применяют в самых разных областях – нефтехимической промышленности, машиностроении, строительстве, электроэнергетике, кораблестроении, пищевой промышленности и для изготовления бытовых приборов.

Волокна из сверхвысокомолекулярного полиэтилена (Dyneema)

Самые прочные материалы в мире, известные человеку (ТОП-19)

Dyneema — это прочное и сверхлёгкое полиэтиленовое волокно, которое в основном используется в качестве композитных пластин для создания бронированных автомобилей. Оно легче воды, а останавливает пули и в 15 лучше стали.

Также используется для изготовления альпинистского снаряжения, рыболовных верёвок, тетивы для лука. Он имеет высокий предел текучести 2,4 ГПа и низкий удельный вес 0,97 г/см³.

Лонсдейлит — твердость до 152 ГПа

Лонсдейлит является аллотропной модификацией углерода и отличается явной схожестью с алмазом. Обнаружен твердый природный материал был в метеоритном кратере, образовавшись из графита – одного из компонентов метеорита, однако рекордной степенью прочности он не обладал.

Лонсдейлит - твердость до 152 ГПа

Учеными было доказано еще в 2009 году, что отсутствие примесей способно обеспечить твердость, превышающую твердость алмаза. Высокие показатели твердости способны обеспечиваться в этом случае, как и в случае с вюртцитным нитридом бора.

Алмаз

Самые прочные материалы в мире, известные человеку (ТОП-19)

Всем читателям thebiggest.ru известно, что алмазы — самый твёрдый материал природы, если использовать для измерения шкалу Мооса. Сделать царапину на алмазе получится, если только использовать другой алмаз.

Такие свойства алмаза человек стал применять в промышленности, в качестве изоляторов и полупроводников. А алмазная крошка просто незаменима при резке высокотвёрдых материалов.

Углеродные нанотрубки

Самые прочные материалы в мире, известные человеку (ТОП-19)

Углеродные нанотрубки, как алмаз и графит, являются производным аллотропов углерода в цилиндрической наноструктуре. Исключительная прочность и меньший вес являются причиной его ценности для электронной промышленности и нанотехнологий.

Кроме того, благодаря своей превосходной теплопроводности, электрическим и механическим свойствам углеродные нанотрубки являются основой многих отраслей промышленности.

Графен

Самые прочные материалы в мире, известные человеку (ТОП-19)

Графен, пожалуй, самый прочный материал, известный людям. В нём один слой углерода, расположенный в треугольной решётке. Является основным структурным элементом древесного угля, графита и углеродных нанотрубок.

Хотя графен производится в небольших количествах уже более века, первое изолированное открытие материала было сделано К. Новоселовым и А. Геймом в 2004 году. Оба за свой вклад в развитие науки получили Нобелевскую премию в области физики.

Источник: goodhandwork.ru

Рейтинг
Загрузка ...