Понятие “архитектура” имеет несколько смыслов. Архитектура – древнейшая сфера человеческой деятельности и ее результат. Главный смысл понятия архитектура состоит в том, что это совокупность зданий и сооружений различного назначения, это пространство, созданное человеком и необходимое для его жизни и деятельности.
Архитектура зарождается вместе с человечеством, сопровождает его в историческом развитии. В ней отражаются мировоззрение, ценности, знания людей, живших в различные исторические эпохи. В ней сосредоточены особенности культуры представителей разных национальностей.
Архитектурные памятники, дошедшие до нас из глубины веков, помогают нам понять цели, взгляды, мысли, традиции и привычки, представления о красоте, уровень знаний людей, которые когда-то жили на Земле. Для чего возводились архитектурные сооружения? Прежде всего, они возводились для удобства жизни и деятельности человека.
Они должны были служить его пользе: беречь его от холода и жары, дождей и палящего солнца. Они должны были создавать комфортные условия для различной деятельности человека – давать достаточное освещение, обеспечивать звукоизоляцию или хорошее распространение звука внутри помещения. Возводимые сооружения должны быть прочными, безопасными и долго служить людям. Но человеку свойственно еще и стремление к красоте, поэтому все, что он делает, он старается сделать красивым.
#171. МАТЕМАТИКА И АРХИТЕКТУРА
Тесная связь архитектуры и математики известна давно. В Древней Греции – геометрия считалась одним из разделов архитектуры. Современный архитектор должен быть знаком с различными соотношениями ритмических рядов, позволяющих сделать объект наиболее гармоничным и выразительным. Кроме того, он должен знать аналитическую геометрию и математический анализ, основы высшей алгебры и теории матриц, владеть методами математического моделирования и оптимизации. Не случайно при подготовке архитекторов за рубежом большое внимание уделяется математической подготовке и владению компьютером.
Порой из-за недостаточного знания математики архитектору приходится делать немало лишней работы.
1. Как математика помогает добиться прочности сооружений.
Люди с древних времен, возводя свои жилища, думали, в первую очередь, об их прочности. Прочность связана и с долговечностью. На возведение зданий люди тратили огромные усилия, а значит, были заинтересованы в том, чтобы они простояли как можно дольше. Кстати, благодаря этому, до наших дней дошли и древнегреческий Парфенон, и древнеримский Колизей.
Прочность сооружения обеспечивается не только материалом, из которого оно создано, но и конструкцией, которая используется в качестве основы при его проектировании и строительстве. Прочность сооружения напрямую связана с той геометрической формой, которая является для него базовой. Математик бы сказал, что здесь очень важна геометрическая форма (тело), в которое вписывается сооружение.
Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Как известно они имеют форму правильных четырехугольных пирамид.
Геометрия для архитектуры
Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. С другой стороны, форма пирамиды обеспечивает уменьшение массы по мере увеличения высоты над землей. Именно эти два свойства делают пирамиду устойчивой, а значит и прочной в условиях земного тяготения.
На смену пирамидам пришла стоечно-балочная система. С точки зрения геометрии она представляет собой многогранник, который получится, если мысленно на два вертикально стоящих прямоугольных параллелепипеда поставить еще один прямоугольный параллелепипед.
Это одна из первых конструкций, которая стала использоваться при возведении зданий и представляет собой сооружения, которые состоят из вертикальных стоек и покрывающих их горизонтальных балок. Первым таким сооружением было культовое сооружение – дольмен. Оно состояло из двух вертикально поставленных камней, на которые был поставлен третий вертикальный камень.
Кроме дольмена, до нас дошло еще одно сооружение, представляющее простейшую стоечно-балочную конструкцию – кромлех. Это также культовое сооружение, предположительно предназначенное для жертвоприношений и ритуальных торжеств. Кромлех состоял из отдельно стоящих камней, которые накрывались горизонтальными камнями. При этом они образовывали две или несколько концентрических окружностей.
Самый знаменитый кромлех сохранился до наших дней в местечке Стоунхендж в Англии. Некоторые ученые считают, что он был древней астрономической обсерваторией.
Нужно заметить, что до сих пор стоечно-балочная конструкция является наиболее распространенной в строительстве. Большинство современных жилых домов в своей основе имеют именно стоечно-балочную конструкцию.
Камень плохо работает на изгиб, но хорошо работает на сжатие. Это привело к использованию в архитектуре арок и сводов. Так возникла новая арочно-сводчатая конструкция. С появлением арочно-сводчатой конструкции в архитектуру прямых линий и плоскостей, вошли окружности, круги, сферы и круговые цилиндры.
Первоначально в архитектуре использовались только полуциркульные арки или полусферические купола. Это означает, что граница арки представляла собой полуокружность, а купол – половину сферы. Например, именно полусферический купол имеет Пантеон – храм всех богов — в Риме. Диаметр купола составляет 43 м. При этом высота стен Пантеона равна радиусу полусферы купола. В связи с этим получается, что само здание этого храма как бы “накинуто” на шар диаметром 43 м.
Этот вид конструкции был наиболее популярен в древнеримской архитектуре. Арочно-сводчатая конструкция позволяла древнеримским архитекторам возводить гигантские сооружения из камня. К ним относится знаменитый Колизей или амфитеатр Флавиев. Свое название он получил от латинского слова colosseus, которое переводится как колоссальный, или огромный.
Эта же конструкция использовалась при создании гигантских терм Каракаллы и Диоклетиана, вмещавших одновременно до 3 тысяч посетителей. Сюда же следует отнести и систему арочных водоводов-акведуков, общая протяженность которых составляла 60 км.
Следующим этапом развития архитектурных конструкций явилась каркасная система. Аркбутаны являлись каркасом, которые окружал сооружение и принимал на себя основные нагрузки. Арочная конструкция послужила прототипом каркасной конструкции, которая сегодня используется в качестве основной при возведении современных сооружений из металла, стекла и бетона. Достаточно вспомнить конструкции известных башен: Эйфелевой башни в Париже и телебашни на Шаболовке.
Телебашня на Шаболовке состоит из нескольких поставленных друг на друга частей однополостных гиперболоидов. Причем каждая часть сделана из двух семейств прямолинейных балок. Эта башня построена по проекту замечательного инженера В.Г.Шухова
Однополостный гиперболоид – это поверхность, образованная вращением в пространстве гиперболы, расположенной симметрично относительно одной из осей координат в прямоугольной системе координат, вокруг другой оси.
Обратите внимание, что любое осевое сечение однополостного гиперболоида будет ограничено двумя гиперболами.
Другой интересной для архитекторов геометрической поверхностью оказался гиперболический параболоид. Это поверхность, которая в сечении имеет параболы и гиперболу. Появление новых строительных материалов делает возможным создание тонкого железобетонного каркаса и стен из стекла.
Достаточно вспомнить американские небоскребы или, например, здание Кремлевского дворца съездов созданных из стекла и бетона. Именно эти материалы и каркасные конструкции стали преобладающими в архитектурных сооружениях XX века. Они обеспечивают зданиям высокую степень прочности.
2. Геометрические формы в разных архитектурных стилях.
Ни один из видов искусств так тесно не связан с геометрией как архитектура.
Архитектурные произведения живут в пространстве, являются его частью, вписываясь в определенные геометрические формы. Кроме того, они состоят из отдельных деталей, каждая из которых также строится на базе определенного геометрического тела. Часто геометрические формы являются комбинациями различных геометрических тел.
Здание клуба имени И.В.Русакова в Москве построено в 1929 г. по проекту архитектора К.Мельникова. Базовая часть здания представляет собой прямую невыпуклую призму. Призма является невыпуклой, благодаря выступам, которые заполнены вертикальными рядами окон. При этом гигантские нависающие объемы также являются призмами, только выпуклыми.
Геометрическая форма сооружения настолько важна, что бывают случаи, когда в имени или названии здания закрепляются названия геометрических фигур. Так, здание военного ведомства США носит название Пентагон, что означает пятиугольник. Связано это с тем, что, если посмотреть на это здание с большой высоты, то оно действительно будет иметь вид пятиугольника. На самом деле только контуры этого здания представляют пятиугольник. Само же оно имеет форму многогранника.
В Спасской башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. При более детальном рассмотрении и изучении деталей можно увидеть: круги – циферблаты курантов; шар – основание для крепления рубиновой звезды; полукруги – арки одного из рядов бойниц на фасаде башни и т.д. Таким образом, можно говорить о пространственных геометрических фигурах, которые служат основой сооружения в целом или отдельных его частей, а также плоских фигурах, которые обнаруживаются на фасадах зданий.
Церковь Ильи Пророка в Ярославле была построена в середине XVII века. При ее создании зодчие использовали как шатровые покрытия, так и купола в виде луковок.
Рассмотрим еще один яркий архитектурный стиль – средневековая готика. Готические сооружения были устремлены ввысь, поражали величественностью, главным образом за счет высоты. И в их формах также широко использовались пирамиды и конусы, которые соответствовали общей идее – стремлению вверх. Характерными деталями для готических сооружений являются стрельчатые арки порталов, высокие стрельчатые окна, закрытые цветными витражами.
Обратимся к геометрическим формам в современной архитектуре.
Во-первых, в архитектурном стиле “Хай Тек”, где вся конструкция открыта для обозрения. Здесь мы можем видеть геометрию линий, которые идут параллельно или пересекаются, образуя ажурное пространство сооружения. Примером, своеобразной прародительницей этого стиля может служить Эйфелева башня.
Во-вторых, современный архитектурный стиль, благодаря возможностям современных материалов, использует причудливые формы, которые воспринимаются нами через их сложные, изогнутые (выпуклые и вогнутые) поверхности.
Чтобы представить эти поверхности достаточно обратиться к зданиям, возведенным Антонио Гауди.
3. Симметрия – царица архитектурного совершенства.
Слово симметрия произошло от греч. слова symmetria – соразмерность.
Рассматривая симметрию в архитектуре, нас будет интересовать геометрическая симметрия – симметрия формы как соразмерность частей целого. Замечено, что при выполнении определенных преобразований над геометрическими фигурами, их части, переместившись в новое положение, вновь будут образовывать первоначальную фигуру.
При осевой симметрии части, которые, если можно так сказать, взаимозаменяют друг друга, образованы некоторой прямой. Эту прямую принято называть осью симметрии. В пространстве аналогом оси симметрии является плоскость симметрии. Таким образом, в пространстве обычно рассматривается симметрия относительно плоскости симметрии.
Например, куб симметричен относительно плоскости, проходящей через его диагональ. Имея в виду обе случая (плоскости и пространства), этот вид симметрии иногда называют зеркальной. Название это оправдано тем, что обе части фигуры, находящиеся по разные стороны от оси симметрии или плоскости симметрии, похожи на некоторый объект и его отражение в зеркале.
Кроме зеркальной симметрии рассматривается центральная или поворотная симметрия. В этом случае переход частей в новое положение и образование исходной фигуры происходит при повороте этой фигуры на определенный угол вокруг точки, которая обычно называется центром поворота. Отсюда и приведенные выше названия указанного вида симметрии.
Поворотная симметрия может рассматриваться и в пространстве. Куб при повороте вокруг точки пересечения его диагоналей на угол 90? в плоскости, параллельной любой грани, перейдет в себя. Поэтому можно сказать, что куб является фигурой центрально симметричной или обладающей поворотной симметрией.
Еще одним видом симметрии, является переносная симметрия. Этот вид симметрии состоит в том, что части целой формы, организованы таким образом, что каждая следующая повторяет предыдущую и отстоит от нее на определенный интервал в определенном направлении. Этот интервал называют шагом симметрии. Переносная симметрия обычно используется при построении бордюров.
В произведениях архитектурного искусства ее можно увидеть в орнаментах или решетках, которые используются для их украшения. Переносная симметрия используется и в интерьерах зданий.
Архитектурные сооружения, созданные человеком, в большей своей части симметричны. Они приятны для глаза, их люди считают красивыми.
Симметрия воспринимается человеком как проявление закономерности, а значит внутреннего порядка. Внешне этот внутренний порядок воспринимается как красота.
Симметричные объекты обладают высокой степенью целесообразности – ведь симметричные предметы обладают большей устойчивостью и равной функциональностью в разных направлениях. Все это привело человека к мысли, что чтобы сооружение было красивым оно должно быть симметричным. Симметрия использовалась при сооружении культовых и бытовых сооружений в Древнем Египте.
Украшения этих сооружений тоже представляют образцы использования симметрии. Но наиболее ярко симметрия проявляется в античных сооружениях Древней Греции, предметах роскоши и орнаментов, украшавших их. С тех пор и до наших дней симметрия в сознании человека стала объективным признаком красоты.
Соблюдение симметрии является первым правилом архитектора при проектировании любого сооружения. Стоит только посмотреть на великолепное произведение А.Н.Воронихина Казанский собор в Санкт-Петербурге, чтобы убедиться в этом.
Если мы мысленно проведем вертикальную линию через шпиль на куполе и вершину фронтона, то увидит, что с двух сторон от нее абсолютно одинаковые части сооружения (колоннады и здания собора). Но возможно, что вы не знаете, что в Казанском соборе есть еще одна, если можно так сказать “несостоявшаяся” симметрия.
Дело в том, что по канонам православной церкви вход в собор должен быть с востока, т.е. он должен быть с улицы, которая находится справа от собора и идет перпендикулярно Невскому проспекту. Но, с другой стороны Воронихин понимал, что собор должен быть обращен к главной магистрали города.
И тогда он сделал вход в собор с востока, но задумал еще один вход, который украсил прекрасной колоннадой. Чтобы сделать здание совершенным, а значит симметричным, такая же колоннада должны была располагаться с другой стороны собора. Тогда, если бы мы посмотрели на собор сверху, то план его имел бы не одну, а две оси симметрии. Но замыслам архитектора было не суждено сбыться.
Кроме симметрии в архитектуре можно рассматривать антисимметрию и диссимметрию.
Антисимметрия это противоположность симметрии, ее отсутствие. Примером антисимметрии в архитектуре является Собор Василия Блаженного в Москве, где симметрия отсутствует полностью в сооружении в целом. Однако, удивительно, что отдельные части этого собора симметричны и это создает его гармонию.
Диссимметрия – это частичное отсутствие симметрии, расстройство симметрии, выраженное в наличии одних симметричных свойств и отсутствии других. Примером диссимметрии в архитектурном сооружении может служить Екатерининский дворец в Царском селе под Санкт-Петербургом. Практически в нем полностью выдержаны все свойства симметрии за исключением одной детали. Наличие Дворцовой церкви расстраивает симметрию здания в целом. Если же не принимать во внимание эту церковь, то Дворец становится симметричным.
Завершая, можно констатировать, что красота есть единство симметрии и диссимметрии.
4. Золотое сечение в архитектуре.
Золотое сечение – гармоническая пропорция, это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b= b : c или с : b= b : а.
Отрезки золотой пропорции выражаются иррациональной бесконечной дробью 0,618… и 0,382. Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок принять за 100 частей, то большая часть отрезка равна 62, а меньшая – 38 частям.
В книгах о “золотом сечении” можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими “золотое сечение”, то с других точек зрения они будут выглядеть иначе. “Золотое сечение” дает наиболее спокойное соотношение размеров тех или иных длин.
Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).
Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. Выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по “золотому сечению”, то получим те или иные выступы фасада.
Другим примером из архитектуры древности является Пантеон.
Известный русский архитектор М. Казаков в своем творчестве широко использовал “золотое сечение”.
Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, “золотое сечение” можно обнаружить в архитектуре здания сената в Кремле.
По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова.
Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова.
Прекрасное творение В. Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г.
Многие высказывания зодчего заслуживают внимание и в наши дни. О своем любимом искусстве В. Баженов говорил: “Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания. К достижению сего служит руководством знание пропорции, перспектива, механика или вообще физика, а всем им общим вождем является рассудок”.
Источник: urok.1sept.ru
Математика в архитектуре
План:
Введение
Прочность сооружения
Планирование объектов
Золотое сечение
Виды симметрии
• Антисимметрия
• Диссимметрия
6. Геометрия вокруг нас
• Спасская башня
Московского кремля
• Клуб имени
И.В.Русакова
• Пирамида Хеопса
1.
2.
3.
4.
5.
Введение:
В Древней Греции – одним из ключевых разделов архитектуры
считали геометрию. Архитектор обязан знать аналитическую
геометрию и математический анализ, теорию вероятности, знать
методы математического моделирования.
Как математика помогает добиться прочности
сооружений
Прочность зданий обеспечивается не только материалом, но и
конструкцией, которая нужна для основы при его проектировании и
строительстве.
Прочность постройки взаимосвязана с его геометрической формой,
которая является для нее базовой. Самым прочным архитектурным
сооружением является египетские пирамиды.
Как математика помогает планировать
архитектурные объекты
При составлении плана здания наиболее часто решаются
геометрические задачи о разбиении многоугольника на части. При
решение таких задач применяется понятие масштаб. Масштаб
позволяет наблюдать фигуру с разных сторон.
Золотое сечение
Архитектор М. Казаков довольно часто в своем творчестве
использовал золотое сечение.
Архитектурный шедевр Москвы — дом Пашкова – является
одним из выдающихся произведений архитектора В.Баженова.
Наружный вид дома выглядит почти без изменений, несмотря на
то, что он сильно обгорел в 1812 году
Виды симметрии:
В архитектуре часто используются разные виды симметрии.
С греческого «Симметрия» означает «пропорциональность,
соразмерность, одинаковость в расположении частей».
Современные архитекторы из разных стран до сих пор
используют в своей работе опыт старых мастеров: проверенные
временем золотую пропорцию и симметрию.
Антисимметрия
Антисимметрия – это противоположность симметрии, ее
отсутствие.
Антисимметрией
может
являться
Собор
Василия
Блаженного в Москве. В этом сооружении симметрия
полностью отсутствует.
Диссимметрия
Диссимметрия – это частичное отсутствие симметрии, или
изменение симметрии, выраженное в наличии одних симметричных
свойств и отсутствии других.
В современной архитектуре диссимметрию можно встретить в
Екатерининском дворце в Царском селе под Санкт-Петербургом.
Геометрия вокруг нас:
У архитекторов есть фигуры, которые являются основными
составляющими многих сооружений и имеют определенную
геометрическую форму.
Купола – полусфера, колонны – цилиндры или просто часть
сферы, ограниченная плоскостью, шпили – пирамиды или конусы.
Спасская башня Московского кремля
В Спасской башне Московского кремля можно наблюдать
прямой параллелепипед, который служит основанием, переходящий
в средней части в фигуру, которая похожа на цилиндр, завершается
же башня пирамидой. Круги – циферблаты курантов; шар –
основание для крепления рубиновой звезды.
Клуб имени И.В.Русакова
Здание клуба имени
И.В.Русакова в
Москве. Построено
в 1929 г. по проекту
архитектора
К.Мельникова.
Базовая часть здания имеет
прямую невыпуклую
призму.
Пирамида Хеопса
Геометрическая форма сооружения настолько важна, что
бывают случаи, когда в имени или названии здания закрепляются
названия геометрических фигур.
Усыпальница египетского фараона – Пирамиды Хеопса
( названа в честь геометрической фигуры)
Нужны ли
математические знания в
архитектуре?
Как вы считаете, есть ли
взаимосвязь математики
и архитектуры?
10%
30%
20%
50%
Да
Нет
Не знаю
Да
Нет
Не знаю
70%
20%
Помогает ли математика
добиться прочности
сооружения?
20%
Может ли математика
помочь архитектуре с
планированием объекта?
30%
30%
40%
Да
Нет
Не знаю
Да
Нет
Не знаю
40%
40%
Выводы:
В результате проделанной работы выяснилось,
что математика и архитектура перекликаются между собой.
Для разных архитектурных стилей характерен определенный
набор различных геометрических фигур и их отдельных
элементов. С развитием строительных технологий возможности
применения геометрических форм расширяются.
Мы провели исследование среди студентов 1 курса и узнали
следующие моменты:
50% ребят считают, что математические знания нужны в
архитектуре;
20% считают, что математика помогает добиться прочность
сооружений
Литература:
1. А.В. Волошинов. Математика и искусство. М.:
Просвещение. 2000.
2. А.В. Иконников. Художественный язык архитектуры.
М: Стройиздат. 1992.
3. И.М. Шевелёв, М.А. Марутаев, И.П. Шмелёв. Золотое
сечение. М.: Стройиздат. 1990.
4. Захидов П.Ш. Основы гармонии в архитектуре. –
Ташкент: Фан, 1982. – 163 с.
5. Фейнберг Е.Л. Две культуры. Интуиция и логика в
искусстве и науке. – Фрязино: «Век 2», 2004,
Источник: ppt-online.org
Математика в строительстве и архитектуре проект
- Главная
- Математика в архитектуре
Математика в архитектуре
Автор работы награжден дипломом победителя III степени
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF
Здания и сооружения всегда возводились для удобства жизни и деятельности человека. Возводимые сооружения должны быть прочными, безопасными и долго служить людям. Но человеку свойственно еще и стремление к красоте, поэтому все, что он делает, он старается сделать красивым. Тесная связь строительства и математики известна давно.
В Древней Греции – геометрия считалась одним из разделов архитектуры. Чаще всего мы встречаем здания параллелограммы и кубы, но кроме них в строительстве используются и другие геометрические фигуры: цилиндры, параллелепипеды, пирамиды. Архитектурные здания люди привыкли украшать геометрическими фигурами: круг, шар, ромб, различными орнаметрами. Без точных расчетов невозможно построить прочное сооружение.
Цель проекта: Установить значение математики в строительстве.
Найти и изучить имеющийся материал о применении математических знаний при строительстве в Древнем мире.
Изучить значение математики в современном строительстве.
Найти использование математики в грандиозных стройках современной России.
Узнать какие формулы используются для расчетов в строительстве.
Найти подтверждения использования геометрических фигур в архитектуре города Вологда.
Составить буклет по применению геометрических фигур в архитектуре города Вологда.
1. МАТЕМАТИКА В ДРЕВНОСТИ
Говорят, что математика — царица всех наук. Область применения математических законов не знает границ, они используются во многих отраслях науки и производства.
Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног.
Первыми существенными успехами в арифметике стали применение обозначений числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Деление окружности на 360, а градуса и минуты на 60 частей берут начало в вавилонской астрономии.
Очень важной задачей математики был расчет календаря, поскольку календарь использовался для определения сроков сельскохозяйственных работ.
Ещё в древности, людям, во время строительства часто приходилось прибегать к помощи математики.
Первыми, размечать прямые углы научились в древнем Египте. Первоначально для разметки использовались прямая линия, два колышка и два одинаковых куска веревки. Но затем египетские математики подметили, что можно взять длинную веревку, и разделить ее на 12 равных частей. А потом просто выкладывать на земле треугольник со сторонами в 3, 4 и 5 частей веревки.
Один из углов этого треугольника — прямой. Геометрия у египтян сводилась к вычислениям площадей прямоугольников, треугольников, трапеций, круга, а также формулам вычисления объемов некоторых тел. В папирусах можно найти также задачи, связанные с определением количества зерна, необходимого для приготовления заданного числа кружек пива, а также более сложные задачи, связанные с различием в сортах зерна; для этих случаев вычислялись переводные коэффициенты. Математика, которую египтяне использовали при строительстве пирамид, была простой и примитивной.
В Вавилонии многочисленные арифметические и геометрические задачи возникали в связи со строительством каналов, зернохранилищ и другими общественными работами. В геометрии вавилоняне знали о таких соотношениях, например, как пропорциональность соответствующих сторон подобных треугольников. Им была известна теорема Пифагора и то, что угол, вписанный в полуокружность — прямой. Они располагали также правилами вычисления площадей простых плоских фигур, в том числе правильных многоугольников, и объемов простых тел. Число π вавилоняне считали равным 3.
Математика в древности не располагала общими методами; весь свод математических знаний представлял собой скопление эмпирических формул и правил.
С другой стороны, можно проследить и влияние архитектуры на развитие математики в целом. Действительно, для осуществления все более сложных и в то же время экономичных построек всегда требовалось предварительное планирование, разработка более тонких математических приемов и моделей, использование более совершенных точных вычислительных методов. Все это, в ответ на запросы архитектурной практики разрабатывала теоретическая и прикладная математика.
2. ПРИМЕНЕНИЕ МАТЕМАТИКИ В СОВРЕМЕННОМ СТРОИТЕЛЬСТВЕ
В своё время известный философ Иммануил Кант сказал: « В каждой науке ровно столькоистины, сколько в ней математики».
Профессия строителя является очень древней. Благодаря историческим архитектурным постройкам мы можем многое узнать о быте и культуре предков. До наших дней дошло немало сооружений, возраст которых измеряется тысячелетиями. Свой опыт мастера строительного дела передавали из поколения в поколение. Каждому рабочему необходимы математические знания.
Строительство — это вид человеческой деятельности, направленный на создание зданий, инженерных сооружений (мостов, дорог, аэродромов), а также сопутствующих им объектов ( инженерных сетей, малых архитектурных форм, гаражей и т. д.). В строительстве никак не обойтись без математики – строителям нужно подсчитать, сколько материала нужно затратить на строительство, как выверить смету, какой толщины, например, должна быть толщина стены и т.д.
В ряде профессий строительной отрасли специалисты больше работают не с техникой, а со знаковыми системами. Они должны хорошо ориентироваться, разбираться в условных обозначениях, документах, текстах; создавать и перерабатывать чертежи, тексты, документы, таблицы, формулы, перечни, каталоги каких-либо объектов. В современном строительстве роль этой науки непрерывно возрастает. Строительные задачи отличаются по степени сложности расчётов.
Например, расчёты на прочность определяют степень выносливости несущих конструкций иотносятся к сложнейшим вычислениям. Кроме того, неотъемлемой частью математическихзнаний, используемых в строительстве, являются нахождение части от числа, пропорции, проценты, площади фигур, объёмы многогранников. До начала какого-либо строительства составляется смета, в которой просчитываются затраты на строительные материалы, виды работ и количество рабочей силы. Это доказывает, что точек соприкосновения математики со строительством достаточно много.
Важно отметить и обратную историческую взаимосвязь: потребности зарождающегося строительства и, возникшей вслед за ним архитектуры, явились одним из стимулов, благодаря которым возникла и сделала первые шаги математика. Это, в частности, нашло отражение в названии одного из старейших разделов математики — геометрии, что означает землемерие.
Применение математических методов в архитектуре в наше время осуществляется по разным направлениям. Прежде всего, использование геометрических форм. Подтверждение этого факта – геометрические формы в архитектуре моего города Вологда.
3. ГРАНДИОЗНЫЕ СТРОЙКИ СОВРЕМЕННОЙ РОССИИ
3.1 МОСТ «РУССКИЙ» ВО ВЛАДИВОСТОКЕ
1 августа 2012 года произошло значимое событие в истории Дальневосточного региона нашей страны. В этот день был введен в эксплуатацию Русский мост (Владивосток), фото которого сразу же украсили страницы ведущих отечественных и зарубежных изданий. И это никого не удивило, так как задолго до церемонии открытия многие мировые СМИ назвали строительство данного сооружения одним из самых грандиозных проектов 21 века.
Архитектурные особенности: благодаря пролету длиной 1104 м мост Русский является гордостью жителей Владивостока и самым крупным объектом среди аналогичных в мире. Вся конструкция держится на вантах, представляющих собой прочные тросы. Они с помощью креплений зафиксированы на столбах — пилонах.
Высота Русского моста во Владивостоке — 321 м, расстояние между сводами и поверхностью воды — 70 м. Это обстоятельство позволяет большегрузным судам свободно курсировать под ним. Нагрузка на пилоны Русского моста распределена равномерно. Для возведения каждого из столбов было израсходовано 9 000 кубических метров качественного бетона.
Один пилон мог бы вместить жилой микрорайон, а таких опор у моста два. Длина Русского моста составляет 1885,5 м, а вес — 23 000 тонн. Ширина проезжей части равняется 24 метрам (четыре полосы).
3.2 ВТОРОЕ КОЛЬЦО МОСКОВСКОГО МЕТРО.
К 2020 году планировалось полностью завершить строительство Второго кольца метро в Москве. Однако позже эти сроки были сокращены до 2018 года.
69 км протяжённость линии, 31 станция, 19 пересадок на радиальные линии метро, 11 пересадок на пригородные электрички, 2 электродепо для обслуживания поездов. 20 транспортно – пересадочных узлов, ожидаемый пассажирский поток – 380 млн. человек в год. Включает в себя 30 станций + один эваковыход, из которых 20 станций — с островной платформой (из них три станции — существующие), 10 станций — с береговыми платформами. Длина участка с двухпутным тоннелем составит 20,9 км, а длина участка с однопутными тоннелями — 34,6 км. Помимо этого будет еще построено 5,5 километров соединительных веток.
3.3 СТАДИОН «ФИШТ» В СОЧИ
Пожалуй, одна из самых масштабных и дорогостоящих строек современности – это возведение знаменитого стадиона «Фишт» стоимостью 51 588 875 000 рублей. Этот амбициозный и сверхсовременный стадион достойно встретил 22-e Зимние Олимпийские игры, Чемпионат Мира по Футболу.
«Фишт» способен вместить 48 000 человек. По форме каркас стадиона напоминает створки гигантской раковины, видимо, намекая на то, что стадион «Фишт» — жемчужина Сочи.
Стадион ассиметричен. Он имеет небольшой выход к морю и сложные по своей конфигурации частично закрытые трибуны, которые наклоняются и расширяются по мере приближения к центральному входу. Главной особенностью «Фишта» является его крыша. Ее центральная раздвигающаяся секция сконструирована из легких экологичных материалов, способных пропускать солнечный свет. В плане стадион имеет овальную форму: двухэтажный подиум с нижним ярусом трибун дополнен многоцветным разноуровневым пространством верхних трибун общей высотой 70 м.
3.4 МОСТ ЧЕРЕЗ КЕРЧЕНСКИЙ ПРОЛИв
Одна из самых крупных строек в истории России – Крымский мост, связавший полуострова Таманский и Крым. Всего за четыре с небольшим года удалось спроектировать и возвести уникальное во многих смыслах сооружение, которому предстоит стать главной транспортной артерией, соединяющей материковую Россию с Крымом. Длина Крымского моста – 19 км.
Крымский мост способен пережить любое землетрясение, конструкция Крымского моста рассчитана на то, чтобы противостоять толчкам магнитудой в 9,1 баллов. 596 опор удерживают Крымский мост, при этом одна опора представляет собой конструкцию из металла весом около 400 тонн – а значит, всего в основание моста положены 32 Эйфелевых башни! А ведь есть еще и сваи, число которых – свыше 7000. 227,92 млрд рублей – итоговая стоимость всего проекта. Центральные арки Крымского моста имеют достаточную длину – 227 метров и высоту – 35 метров высоту, что позволяет беспрепятственно пропускать через них даже крупные океанские лайнеры.
Крымский мост фактически состоит из двух мостов – автомобильного и железнодорожного. 38 тысяч машин в сутки – расчетная пропускная способность моста, при этом максимальная разрешенная скорость движения по мосту составит 120 км/ч, то есть его можно будет проехать всего за 10 минут! 24 поезда в каждую сторону в сутки будут проходить по Крымскому мосту.
3.5 ГАЗОПРОВОД «СИЛА СИБИРИ»
Строящийся магистральный газопровод для поставок газа из Якутии в Приморский край и страны Азиатско-Тихоокеанского региона. Совместный проект «Газпрома» и CNPC (Китай). Протяженность: 2158 км. Диаметр трубы: 1420 мм. Рабочее давление: 9,8 Мпа.
Пропускная способность: 38 млрд кубометров газа в год. Стоимость строительства оценивается в 800 млрд руб., но может превысить 1 трлн. Начать поставки газа по нему в Китай планируется в 2019 году.
«Сила Сибири» будет способствовать социально-экономическому развитию Дальнего Востока. Газопровод создаст условия для газоснабжения и газификации российских регионов, развития современных газоперерабатывающих и газохимических производств.
4. ФОРМУЛЫ ИСПОЛЬЗУЕМЫЕ ДЛЯ СТРОИТЕЛЬСТВА.
1 метр (м) = 10 дециметрам (дм) = 100 сантиметрам (см) = = 1000 миллиметрам (мм);
1 километр (км) = 1000 метрам (м);
1 дюйм = 2,54 см;
1 фут = 0,30479 м = 30,479 см;
1 ярд = 0,9144 м = 91,44 см = 914,4 мм;
1 морская миля = 1,85318 км = 1,852 км
кв. сантиметр (см²) =100 мм²;
кв. дециметр (дм²) = 100 см²;
кв. километр (км²) = 1 000 000 м²;
гектар (га) = 10 000 м²;
акр = 4046,86 м²= 0,404686 га;
1 куб. дециметр (дм³) = 1 000 см³;
1 куб. метр (м³) = 1 000 дм³ = 1 000 литров;
1 тонна (метрическая) (т) = 10 центнерам (ц) = 1 000 килограммам (кг);
1 центнер (ц) = 100 кг;
1 килограмм (кг) = 1 000 граммов (г);
Расчет площадей важнейших геометрических фигур:
Площадь трапеции определяют по формуле: S = (a 1 + a 2 )×h /2
где a 1 , и a 2 — длины оснований трапеции; h — высота трапеции.
Площадь кругового сектора определяют по формуле: S = ld / 4 = (пи×d 2 /4)×(à°/360°)
где d — диаметр окружности; l — длина дуги; à° — центральный угол в градусах.
Площадь эллипса определяют по формуле: S = Пи×a×b
где а и b — полуоси.
Расчет поверхностей и объемов важнейших геометрических тел:
1. Объем пирамиды рассчитывают по формуле: V = S 0 h / 3
где S 0 — площадь основания пирамиды; h — высота пирамиды.
2. Объем конуса рассчитывают по формуле: V = (пи×d 2 / 4)×(h / 3)
где d — диаметр основания; h — высота конуса.
3. Объем конуса рассчитывают по формуле: V = (Пи×d 2 / 4)×(h / 3)
где d — диаметр основания; h — высота конуса.
5.ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ В АРХИТЕКТУРЕ ГОРОДА ВОЛОГДА.
Изучая вопрос по использованию математики в строительстве, я решила узнать, где в нашем городе применяется в архитектуре математика. Пройдя по городу с фотоаппаратом, я нашла подтверждение использования орнаментов при украшении зданий – памятников архитектуры, предметов быта, украшений частных территорий, оформление элементов зданий.
Геометрическими фигурами украшают фрагменты зданий: ставни, бойницы, окна, декорируют входы. Используют форму геометрических фигур для элементов зданий, широко применяются геометрические фигуры в церквях и храмах.
Многие здания представляю собой геометрические фигуры: пирамида, параллелепипед, призма, цилиндр или их комбинации.
В результате проделанной работы выяснилось, что с математика с архитектурой непосредственно связаны – математика является незаменимой частью архитектуры, одной из ее основ. Геометрические формы определяют эстетические, эксплуатационные и прочностные свойства архитектурных сооружений разных времен и стилей. Причем для каждого архитектурного стиля характерен определенный набор геометрических форм зданий и сооружений в целом и их отдельных элементов. С развитием строительных технологий возможности применения геометрических форм расширяются. Геометрия была рассмотрена как теоретическая база для создания архитектурного искусства.
Я нашла подтверждение в архитектурных сооружениях города Вологда. Результаты оформлены буклетом с примерами геометрических фигур в архитектуре моего города.
Математика очень эффективно решает любые строительные задачи, связанные не только с разметкой и обмером, но и геометрическими фигурами. В общем, не зря все-таки говорят, что математика — это царица наук. При грамотном применении решает почти любую задачу.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ
10 масштабных строек России — [Электронный ресурс] -http://batop.ru/top-10-masshtabnyh-stroek-rossii
Ван-дер-Варден Б.Л. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. М., 1959
Даан-Дальмедико А., Пейффер Ж. Пути и лабиринты. Очерки по истории математики. М., 1986
Источник: school-science.ru