В современном индустриальном строительстве применяют в основном сборные железобетонные каркасы, конструктивные элементы которых типизованы. Железобетонный каркас устраивают из сборных или монолитных элементов; наиболее экономичными и распространенными считаются сборные конструкции каркаса.
Каркас является несущей основой здания и состоит из поперечных и продольных элементов. Поперечные элементы – рамы – воспринимают нагрузки от покрытия, снега, ветра, действующего на наружные стены и фонари, а также от навесных стен. Рамы сборного железобетонного каркаса состоят из колонн и несущих конструкций покрытия – балок или ферм.
Эти элементы соединяют в узлах шарнирно при помощи металлических закладных деталей, анкерных болтов и небольшого количества сварных швов. Рамы собирают из типовых элементов заводского изготовления. Продольные конструкции здания обеспечивают устойчивость поперечных рам и воспринимают продольные нагрузки от ветра, действующего на торцевые стены здания и торцы фонарей, а также нагрузки от торможения кранов. К продольным элементам относятся подстропильные конструкции и связевые элементы, располагаемые в уровне опорных частей несущих конструкций покрытий. В зданиях, оборудованных кранами, связевыми элементами в продольном направлении служат подкрановые балки.
Nodwerk — стоечно-балочная технология, современный фахверк
3.3.2. Основные элементы каркаса производственных зданий и их назначение
Основные элементы каркаса зданий подразделяются на 3 группы:
1) несущие – воспринимающие основные нагрузки в здании;
2) ограждающие – предназначенные для защиты внутреннего пространства здания от атмосферных воздействий, разделения здания на помещения и сохранения заданного температурно-влажностного режима;
3) выполняющие одновременно несущие и ограждающие функции.
Промышленные здания возводят из следующих архитектурно-конструктивных элементов (частей): фундаментов, фундаментных балок, стен, вертикальных опор (колонн), несущих элементов покрытий и перекрытий – балок, ферм, ригелей, кровли, парапетов, перегородок, фонарей, лестниц, полов, окон и дверей (рис. 3.3.).
Фундаменты представляют собой подземную конструкцию, воспринимающую нагрузки от веса здания и оборудования и передающую их основанию.
Перекрытия разделяют внутреннее пространство на этажи, выполняют функции ограждающих и несущих конструкций, а также обеспечивают пространственную жесткость здания.
Вертикальные опоры (колонны) предназначены для поддержания покрытий и перекрытий.
Покрытие здания защищает его от атмосферных воздействий. Верхнюю гидроизоляционную оболочку покрытия называют кровлей.
Перегородки служат для разделения внутреннего пространства в пределах одного этажа на отдельные помещения. Перегородки несут только собственную массу и опираются на перекрытия нижнего этажа.
Лестницы служат для сообщения между этажами.
Конструкция сборных железобетонных колонн зависит от объемно-планировочного решения промышленного здания и наличия в нем того или иного вида подъемно-транспортного оборудования и его грузоподъемности. В связи с этим сборные железобетонные колонны подразделяют на две группы:
Технология надежного японского каркаса. Разбор стоечно-балочной конструкции. А есть ли преимущества?
1) предназначенные для бескрановых цехов и цехов, оснащенных подвесным подъемно-транспортным оборудованием;
2) для цехов, оборудованных мостовыми кранами.
По конструктивному решению колонны подразделяют на одноветвевые и двухветвевые, а по местоположению в здании – на колонны крайних рядов, средние и располагаемые у торцевых стен. В тех случаях, когда бескрановое здание должно иметь высоту более 9,6 м, можно использовать колонны для зданий с мостовыми кранами. Для зданий, оборудованных мостовыми кранами грузоподъемностью до 20 т, применяют одноветвевые колонны прямоугольного сечения (рис.3.4.).
АНДРЕЯ НИЖЕ
Стоечно-балочная конструкция является наиболее простой и распространенной среди плоскостных. Она состоит из вертикальных и горизонтальных стержневых несущих элементов.
Вертикальный элемент – стойка (колонна, столб) – представляет собой прямолинейный стержень, который воспринимает все вертикальные нагрузки от горизонтального элемента (балки), горизонтальные нагрузки, приходящиеся на стойку, и передает усилия от этих воздействий на фундамент. При этом сама стойка работает на сжатие и изгиб.
Горизонтальный элемент стоечно-балочной системы – балка (брус) – прямолинейный стержень, работающий на поперечный изгиб под действием вертикальных нагрузок. Сопряжения вертикальных и горизонтальных элементов могут иметь различную жесткость, что отражается на характере их совместной работы.
При шарнирном опирании балки обладают свободой горизонтальных перемещений и поворота на опоре, в связи с этим они передают на стойки только вертикальные усилия. При жестком сопряжении балки со стойкой обеспечивается совместность их деформаций и перемещений в узле сопряжения и возможность передачи изгибающего момента от балки на стойку. Такой вариант стоечно- балочной системы носит название рамы или рамной конструкции, а жесткий узел сопряжения балки со стойкой – рамного узла. Стоечно-балочные конструкции выполняют с различным числом пролетов и ярусов (этажей).
По характеру статической работы различают три системы каркасов – рамную, рамно- связевую и связевую. В рамных каркасах все вертикальные и горизонтальные нагрузки воспринимают рамы с жесткими узлами.
Каркас, состоящий из поперечных и продольных рам (рамный каркас), обладает пространственной жесткостью: его деформации под влиянием силовых воздействий минимальны и не нарушают эксплуатационных качеств здания. Каркас из стоечно-балочных конструкций с шарнирными сопряжениями пространственной жесткостью не обладает. Для ее обеспечения вводятся специальные конструкции вертикальных связей, и вся система несущих конструкций здания называется каркасно-связевой или связевым каркасом. В качестве связей могут быть использованы отдельные стены (диафрагмы жесткости), рамы, раскосы и др. В рамных и связевых каркасах горизонтальными диафрагмами жесткости служат конструкции перекрытий.
Поперек это рамы(балки и т.д.), которые опираются на колонны
Колонны:В зданиях без мостовых кранов устанавливают колонны без консолей, а в зданиях с мостовыми кранами—колонны с консолями, на которые опираются подкрановые балки. По расположению в плане различают колонны крайних и средних рядов; первые устанавливают также в рядах, примыкающих к продольным температурным швам.
Железобетонные колонны могут иметь прямоугольное и двутавровое сечения, а также быть двухветвевыми. По сравнению с колоннами прямоугольного сечения двухветвевые колонны имеют повышенную жесткость, но они более трудоемки в изготовлении.
Применяют их в зданиях с высотой более 10,8 м. В железобетонных колоннах предусматривают стальные закладные элементы, с помощью которых крепят стропильные конструкции, подкрановые балки, стеновые панели (в колоннах крайних рядов) и вертикальные связи. В местах опирания стропильных конструкций и подкрановых балок укладывают стальные листы; крепят их анкерными болтами. Длину колонн выбирают с учетом высоты цеха и глубины заделки их в фундаменты. На нижних частях стволов колонн делают горизонтальные бороздки, обеспечивающие лучшую связь их с бетоном стыка.
Фахверк: Помимо основных колонн в зданиях предусматривают фахверковые, устанавливаемые в торцах зданий и между основными колоннами крайних продольных рядов при шаге 12 м и длине стеновых панелей 6 м. Фахверковые колонны предназначены для крепления стен; они частично воспринимают массу стен и ветровые нагрузки.Фахверковые колонны изготовляют железобетонные и стальные. Железобетонные колонны имеют сечение от 300×300 до 400×600 мм.
Фундаменты под колонны:Колонны каркаса, как правило, опираются на отдельные железобетонные фундаменты с подколонниками стаканного типа. Ленточные фундаменты под ряды колонн устраивают редко.
По способу возведения фундаменты подразделяют на монолитные и сборные. Фундаменты небольших и средних размеров целесообразно монтировать из сборных) блоков. Унифицированные монолитные фундаменты, имеющие ступенчатую конструкцию с подколонником и стаканом для заделки колонн, предназначены для колонн прямоугольного сечения и двухветвевых. Сборные фундаменты могут состоять из одного блока (подколенника со стаканом) или из подколонника и опорной плиты. Подколонник устанавливают на плиту по цементно-песчаному слою Широкое распространение получают свайные фундаменты.
Фундаментные балки: Фундаментные балки предназначены для опирания стен каркасных зданий, они воспринимают нагрузку от стен и передают ее на фундаменты. Вдоль стен балку с боков и снизу обсыпают шлаком для предохранения пристенной зоны пола от промерзания, а также для предохранения балок от деформаций при пучении грунтов.
Подкрановые балки:Подкрановые балки с уложенными по ним рельсами образуют пути движения мостовых кранов. Они придают зданию также дополнительную пространственную жесткость. Железобетонные подкрановые балки могут иметь тавровое или двутавровое сечение.Для уменьшения динамических воздействий на балки и снижения шума движущихся кранов под рельсы укладывают упругие прокладки из прорезиненной ткани толщиной 8—10 мм. Во избежание ударов мостовых кранов о колонны торцового фахверка здания на концах подкрановых путей устраивают стальные упоры с амортизаторами -буферами из деревянного бруса.
Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.
Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначенные для поддерживания проводов на необходимой высоте над землей, водой.
Источник: cyberpedia.su
Стоечно-балочная; 2 — арочная (сводчатая); 3 — висячая (вантовая)
Конструктивное решение здания, также как и объемно-планировочное, должно быть функционально и технически целесообразным, экономичным в строительстве и эксплуатации. Кроме того, как отмечалось, конструктивное решение должно отвечать всем многообразным требованиям прочности, устойчивости, долговечности, пожарной безопасности и благоустройства.
Конструктивные элементы, из которых состоит остов здания, т.е. несущие конструкции, размещаются в строго определенном порядке, образуя конструктивную систему, способную воспринимать все внешние силовые воздействия и передавать их на основание здания.
Т.о. конструктивная система представляет собой совокупность взаимосвязанных несущих конструкций здания, обеспечивающих его прочность, жесткость и устойчивость.
Известны три конструктивные системы зданий:
стоечно-балочная; 2 — арочная (сводчатая); 3 — висячая (вантовая).
Простейшая и вместе с тем наиболее распространенная в строительстве – стоечно-балочная конструктивная система (рис. 3.1).
Рис. 3.1 Элементы стоечно-балочных конструктивных систем
а – балка на двух опорах; б – плита (горизонтальная панель); в – плита, опирающаяся по контуру; г – стойка (колонна, столб); д – плита (вертикальная панель); е – рама с шарнирным опиранием ригеля; ж – рама с жесткими соединениями; з – каркас с элементами жесткости; и – стеновой конструктивный тип; 1 – шарнирное сопряжение; 2 – жесткое сопряжение; элементы жесткости; 3 – рама; 4 – стена; 5 – связи; 6 – каркас с шарнирным сопряжением; 7 – перекрытие (горизонтальные связи).
Элементами этой системы являются балка и стойка (рис. 3.1а,г).
Балка – прямой брус, опирающийся на одну или несколько опор и загруженный в основном вертикальной нагрузкой.
Балка свободно лежащая на двух опорах и перекрывающая один пролет называется разрезной, несколько пролетов – неразрезной, многопролетной (рис. 3.1а,е).
Стойка (столб, колонна) – прямой брус, используемый в качестве вертикальной опоры (рис. 3.1г).
Балка работает на изгиб, свайно передает нагрузку на фундамент, при этом в ней возникают сжимающие и часто изгибающие усилия.
Ряд балок или стоек, как бы расположенных вплотную друг к другу и жестко связанных между собой образуют стену (рис. 3.1д) и плиту (рис. 3.1б).
Стоечно-балочная конструктивная система может быть плоскостной (все элементы расположены в одной плоскости) и пространственной (каркас здания) (рис. 3.2).
Рис. 3.2 Пространственная стоечно-балочная система
1 – стойки (колонны), 2 – балки (ригели),
3 – самонесущие (навесные) стены
Деление на плоскостные и пространственные условно, поскольку конструктивные элементы здания всегда образуют пространственную систему. Однако для упрощения конструирования и расчета конструкция условно расчленяется на плоскостные системы или элементы.
Стоечно-балочная конструктивная система из плоских элементов наиболее распространена. Основные преимущества этой системы:
— простота расчленения на сборные элементы;
— облегчение типизации заводского изготовления;
— удобство транспортирования и монтажа.
Но в связи с тем, что элементы этой системы, прежде всего горизонтальные, работают на изгиб, неэффективно используется материал конструкций. Например, отношение высоты элементов перекрытий к их пролету для обеспечения требуемой жесткости для железобетонных плит перекрытий, опертых по всему контуру, должно быть не менее 1 /30- 1 /40, а для балочных 1 /20- 1 /30.
Вторая конструктивная система зданий – арочная (сводчатая). Простейшая криволинейная плоская система – арка– брус, имеющий в продольном направлении криволинейное очертание (окружности, параболы и т.п.) (рис. 3.3а). В арке возникают сжимающие и только при определенных условиях изгибающие усилия. Поэтому в арках материал работает более эффективно и ими можно перекрывать значительно большие пролеты, чем балками.
Арка передает на опоры не только вертикальные силы, но и горизонтальные, так называемый распор, который может быть погашен устройством затяжки– элемента, затягивающего пяты арки и работающего на растяжение.
Рис. 3.3 Арочная (сводчатая) конструктивная система:
а – арка; б – цилиндрический свод; г – сомкнутый свод; д – купол; е – парусный свод; ж – пологая оболочка; з – бочарный свод; и – лотковый свод; к – поверхность в форме гиперболического параболоида; л – покрытие из четырех оболочек в форме гиперболического параболоида; 1 – затяжка; 2 — распалубка; 3 – щека.
Помимо арочной (плоскостной) применяется сводчатая (пространственная) конструктивная система (рис. 3.3 в-л).
Особенность статической работы ее состоит в том, что восприятие внешних нагрузок, прочность и устойчивость конструкции обеспечивается за счет работы материала в двух направлениях и пространственной формой конструкции, без подразделения характерного для плоских систем на основные и встроенные несущие конструкции и без последовательной передачи усилий от второстепенных элементов к основным. Благодаря этому в пространственных конструкциях материал работает более эффективно. Несущая способность пространственной конструкции определяется не величиной поперечного сечения несущих плоских элементов, а главным образом, пространственной формой конструкции. Так для купольных железобетонных покрытий толщина сечения составляет всего 1 /500- 1 /750 пролета.
К основным недостаткам этих систем относится:
— монтаж, пространственных конструкций требует, как правило, устройства лесов, которые при большой высоте требуют дополнительных затрат материалов и времени (до 40%);
— для пространственных металлических стержневых систем не требуется возведения лесов, но значительные затраты металла.
Третьей, возникшей уже в ХХ веке, конструктивной системой зданий является висячая (вантовая) (рис. 3.4). Основным несущим элементом для висячих конструкций могут служить металлические канаты, тросы или, как обычно их называют, ванты, металлические полосы и целые листы из стали и алюминия (мембраны), металлический прокат, синтетические и другие материалы.
Они закрепляются по концам на опоры, провисают, образуя линию гибкой нити и работают на растяжение. Прочность материала в висячих конструкциях используется наиболее полно: стальной лист толщиной 1мм позволяет покрыть круглое здание диаметром 100м; толщиной 2мм-200м и 3мм-300м при расчетной нагрузке 200 Н/м 2 . 1мм толщины листа на 0,785 d 2 квадратных метров перекрываемой площади: 7850, 31400 и 70650м 2 соответственно.
Ребристым, работающим на изгиб настилом, штампованным из листа той же (1мм) толщины, можно перекрыть пролет не более 3м, или 1,5-3м 2 . Для выпуклой и потому противоестественной конструкции оболочек, в которых материал работает преимущественно на сжатие, их толщину приходится увеличивать в десятки раз из расчетов на устойчивость против требуемой из расчета на прочность. Стрела провисания меньше стрелы подъема и поэтому строительная высота вогнутых висячих конструкций меньше, чем выпуклых.
И все же. Все же подъемистая и торжественная, свободная взгляду и привычная как небо над головой парящая форма будь то иракского свода Так и Кесра, куполов римского Пантеона и константинопольской св. Софии или оболочки парижского выставочного дворца всегда будут соперничать с висячими покрытиями, сама форма которых хоть и естественная, но ассоциируется с едва ли не аварийным ее провисанием от нагрузки. Красота и целесообразность дополнительны, но иногда все же противоположны.
Висячие конструкции передают на опоры не только вертикальные, но и горизонтальные усилия, направленные внутрь сооружения. Для их восприятия необходимо устройство оттяжки, надежно заанкеренных в грунте или мощного жесткого опорного контура (рис. 3.4).
Рис. 3.4. Схемы висячих покрытий:
а – вантовые сетки; б – системы из вант и балок; в – висячие оболочки; г – системы из «жестких» вант; д – вантовые фермы; е – комбинированные конструкции; 1 – несущие ванты; 2 – стабилизирующие ванты; 3 – наружный опорный контур; 4 – колонны каркаса; 5 – внутренний опорный контур; 6 – внутренняя опора; 7 — балка; 8 — оттяжки; 9 – железобетонные кровельные плиты; 10 – «жесткие» ванты; 11 – легкие кровельные плиты; 12 – вантовые фермы; 13 – шпренгельный вантовый пояс; 14 – вантовые подвески; 15 – пространственная плита.
Опорные контуры висячих покрытий могут быть двух видов незамкнутые и замкнутые.
Незамкнутый опорный контур характерен для висячих покрытий прямоугольных зданий с опорами в виде колонн, расположенных по двум сторонам этот вид покрытий носит название «палаточный». Замкнутый опорный контур может иметь прямоугольную, круглую, эллиптическую и овальную форму с устройством опорного кольца по всему периметру здания.
В висячих покрытиях по тросам укладывается ограждающая конструкция из железобетонных плит, деревянных щитов, легких гибких листов (волнистого алюминия, стали, пластмасс и др.).
По ограждающей конструкции устраивается кровля при необходимости по пароизоляции и утеплителя.
Кроме уже отмеченных к достоинствам висячей конструктивной системы относятся:
— стрела прогиба 1 /15- 1 /25 пролета по сравнению с пологими выпуклыми поверхностями ( 1 /5- 1 /18 пролета) значительно уменьшает строительный объем здания;
— широкие возможности для разнообразных архитектурно-пластических решений;
— поверхность способствует рассеиванию звуковой энергии;
— возможность возведения без лесов и подмостей.
Выбор конструктивных систем – один из основных вопросов, решаемых при проектировании зданий. Конструктивные элементы зданий, строительные конструкции, их архитектурная форма и конструктивная сущность находятся в тесной зависимости от материала, из которого они выполнены, а также от нагрузок, которые на них воздействуют, размера перекрываемых пролетов, если рассматривать пролетные конструкции. Зависят от уровня знаний в области строительной механики и ее разделов сопротивления материалов и теории упругости, от доступности тех или иных методов их возведения. Зависят и от моды.
Источник: megaobuchalka.ru
Стоечно-балочная конструкция и каркасные системы
Чтобы свободно творчески компоновать различные здания необходимо в совершенстве знать современные инженерные конструкции и умело применять их в соответствии с их возможностями и экономикой.
Конструктивное решение здания в целом определяется на первом этапе проектирования выбором конструктивной системы и конструктивной схемы.
Выбор конструктивной системы влияет на планировочное решение, архитектурную композицию и экономическую целесообразность проекта.
В свою очередь на выбор системы оказывают влияние типологические особенности проектируемого здания, его этажность и инженерно-геологические условия строительства.
Конструктивной системой здания называется совокупность взаимосвязанных конструкций здания, обеспечивающих его прочность, жесткость и устойчивость. Принятая конструктивная система здания должна обеспечивать прочность, жесткость и устойчивость здания на стадии возведения и в период эксплуатации при действии всех расчетных нагрузок и воздействий.
Выбор конструктивной системы здания определяет статическую роль каждой из его конструкций. Материал конструкций и технику их возведения определяют при выборе строительной системы здания.
Конструктивная система может быть однородной (основной) или комбинированной.
В зависимости от внешнего вида несущей конструкции (ее похожесть на стойку, пластину, оболочку и объемный элемент) различают пять классических (основных) конструктивных систем:
— каркасную (вертикальная несущая конструкция колонна),
— стеновую (диафрагмовую, бескаркасную) (вертикальная несущая конструкция стена),
— объемно-блочную (несущая конструкция блок),
— ствольную (объемно-пространственная внутренняя несущая конструкция стволы жесткости (ядро жесткости));
— оболочковую (переферийную) (объемно-пространственная внешняя несущая конструкции на высоту здания в виде тонкостенной оболочки замкнутого профиля, образующей одновременно и наружную ограждающую конструкцию здания).
Внедрение в строительство двух последних видов конструктивных систем (ствольной и оболочковой) началось с 60-х годов прошлого столетия. Их изобретение запатентовано американским инженером Ф. Каном в 1961г.
рис. …. Планы основных конструктивных систем жилых зданий: а — каркасная; б — бескаркасная; в — объемно-блочная (столбчатая); г — ствольная; д — оболочковая.
Самой древней конструктивной системой, действующей в наши дни, является стоечно-балочная система. Она возникла ещё в эпоху неолита.
Стоечно-балочная конструкция состоит из вертикальных и горизонтальных стержневых несущих элементов. Вертикальный элемент – стойка (колонна, столб) – представляет собой прямолинейный стержень, который воспринимает все вертикальные нагрузки от горизонтального элемента (балки); горизонтальные нагрузки, приходящиеся на стойку, и передает усилия от этих воздействий на фундамент. При этом сама стойка работает на сжатие и изгиб. Горизонтальный элемент стоечно-балочной системы – балка (брус) – прямолинейный стержень, работающий на поперечный изгиб под действием вертикальных нагрузок.
Сопряжения вертикальных и горизонтальных элементов могут иметь различную жесткость, что отражается на характере их совместной работы.
— При шарнирном опирании балки обладают свободой горизонтальных перемещений и поворота на опоре, в связи с этим они передают на стойки только вертикальные усилия.
— При жестком сопряжении балки со стойкой обеспечивается совместность их деформаций и перемещений в узле сопряжения и возможность передачи изгибающего момента от балки на стойку. Такой вариант стоечно-балочной системы носит название рамы или рамной конструкции, а жесткий узел сопряжения балки со стойкой – рамного узла.
Стоечно-балочные конструкции выполняют с различным числом пролетов и ярусов (этажей). Система несущих конструкций здания в виде многопролетной и многоэтажной стоечно-балочной конструкции называется каркасной системой.
Каркас представляют собой систему, состоящую из стержневых несущих элементов – вертикальных (колонн) и горизонтальных балок (ригелей), объединенных жесткими горизонтальными дисками перекрытий и системой вертикальных связей.
Системе присуще четкое разделение на несущие и ограждающие конструкции. Несущий остов (колонны, ригели и диски перекрытий) воспринимает все нагрузки, а наружные стены выполняют роль ограждающих конструкций, иногда воспринимая собственный вес (самонесущие стены). Это дает возможность применять материалы прочные и жесткие – для несущих элементов каркаса, и тепло – звукоизоляционные материалы – для ограждающих. Использование высокоэффективных материалов позволяет добиться снижение веса здания, что положительно сказывается на статических свойствах здания.
Каркасная система с пространственным рамным каркасом применяется преимущественно в строительстве многоэтажных сейсмостойких зданий, высотой более девяти этажей, а также в обычных условиях строительства при наличии соответствующей производственной базы.
Каркасная система — основная в строительстве общественных и промышленных зданий. В жилищном строительстве объем ее применения ограничен не только по экономическим соображениям. Основа противопожарных требований при проектировании жилых зданий – последовательное создание вертикальных преград огню – брандмауэров. В сооружении каркасного типа создание брандмауэров велось по встраиванию между колоннами несгораемых вертикальных диафрагм жесткости. Таким образом, заранее ограничивались возможности пространственной планировки, основного преимущества каркасных систем.
Системы перекрытий с древности проектировались из стереотипного подхода к компоновке балочной клетки, т.е. состояли из балок (ригелей) и настила, так конструктивно решаются и деревянные перекрытия. Затем появляются железобетонные ребристые плиты перекрытия, в которых этот подход уже слит в один конструктивный элемент. Появившиеся позднее плоские пустотные плиты перекрытий – являются значительным шагом в проектировании систем зданий нового типа.
В индустриальных жилых зданиях, в сравнении с традиционными сооружениями, имевшими смешанные покрытия, включавшие фрагменты деревянных перекрытий, горизонтальные несущие конструкции впервые начинают выполнять роль «диафрагм жесткости», кроме того, перекрытия воспринимают горизонтальные нагрузки и воздействия (ветровые, сейсмические и др.) и передают усилия от этих воздействий на вертикальные конструкции.
Передача горизонтальных нагрузок и воздействий осуществляется двояко: либо с распределением их на все вертикальные конструкции здания, либо на отдельные специальные вертикальные элементы жесткости (стены, диафрагмы жесткости, решетчатые ветровые связи или стволы жесткости). Индустриальный тип зданий предоставляет и промежуточные решения – передача нагрузки возможна с распределением горизонтальных нагрузок в различных пропорциях между элементами жесткости и конструкциями, работающими на восприятие вертикальных нагрузок.
Каркасы, применяемые в гражданском строительстве, можно классифицировать по следующим признакам:
1. По характеру статической работы :
— рамные – с жестким соединением несущих элементов (колонны, ригели) в узлах в ортогональных направлениях плана здания. Каркас воспринимает все вертикальные и все горизонтальные нагрузки. Каркас, состоящий из поперечных и продольных рам (рамный каркас), обладает пространственной жесткостью: его деформации под влиянием силовых воздействий минимальны и не нарушают эксплуатационных качеств здания. Рамные каркасные системы рекомендуется применять для малоэтажных зданий.
Жесткое соединение – это ….
— рамно-связевые – с жестким соединением в узлах колонн и ригелей в одном направлении плана здания (создание рамных конструкций) и вертикальными связями, расставленными в перпендикулярном направлении рамам каркаса. Связями служат стержневые элементы (крестовые, портальные) или стеновые диафрагмы, соединяющие соседние ряды колонн. Вертикальные и горизонтальные нагрузки воспринимаются рамами каркаса и вертикальными пилонами жестких связей. Рамно-связевые каркасные системы рекомендуется применять, если необходимо сократить количество диафрагм жесткости, требуемых для восприятия горизонтальных нагрузок.
— связевые – отличаются простотой конструктивного решения соединений колонн с ригелями, дающее подвижное (шарнирное) закрепление. Каркас (колонны, ригели) воспринимает только вертикальные нагрузки. Горизонтальные усилия передают на связи жесткости – ядра жесткости, вертикальные пилоны, стержневые элементы.
Каркас с шарнирными сопряжениями пространственной жесткостью не обладает. Для ее обеспечения вводятся специальные конструкции вертикальных связей. В качестве связей могут быть использованы отдельные стены (диафрагмы жесткости), рамы, раскосы и др. В рамных и связевых каркасах горизонтальными диафрагмами жесткости служат конструкции перекрытий.
Шарнирное соединение – это …..
Рис. 23 Стоечно-балочная конструктивная система
а – стойка; б – балка; в – стоечно-балочная система с шарнирным сопряжением элементов; г – то же, с рамным; д – рамно-связевая схема каркаса с вариантами конструкций вертикальных связей жесткости в виде рам (1), стен (2), раскосов (3); е – рамная схема каркаса; ж – сборные железобетонные элементы стоечно-балочной системы; 4 – двухэтажная колонна; 5 – колонна безбалочного перекрытия; 6 и 7 V и Т – образные колонны; 8 – совмещенный стоечно-балочный элемент; 9 – совмещенная конструкция ригеля и стенки жесткости; 10 – ригель перекрытия; 11 – балка покрытия; 12 – ферма
Рис. …. Каркасные конструктивные системы
а, б — связевые с вертикальными диафрагмами жесткости; в — то же, с распределительным ростверком в плоскости вертикальной диафрагмы жесткости; г — рамная; д — рамно-связевая с вертикальными диафрагмами жесткости; е — то же, с жесткими вставками
1 — вертикальная диафрагма жесткости; 2 — каркас с шарнирными узлами; 3 — распределительный ростверк; 4 — рамный каркас; 5 — жесткие вставки
2. По материалам:
— железобетонный каркас, выполняемый в сборном, монолитном или сборно-монолитном вариантах. Шаг колонн, как правило принимают 6*6м.
— металлический каркас, часто применяемый при строительстве общественных и многоэтажных зданий, возводимых по индивидуальным проектам.
— деревянный каркас в зданиях не выше 2-х этажей.
Примеры устройства металлического каркаса:
Соединение элементов рам между собой – фланцевое, на высокопрочных болтах с предварительной затяжкой
Жесткость каркаса здания в целом обеспечивается системой гибких вертикальных и горизонтальных связей, устанавливаемых с предварительным натяжением, и распорок
В жилищное и офисное строительство технологии строительства из металла массово вошли благодаря разработке металлокаркасных технологий и усилиям американских строителей. Первое здание с металлическим каркасом высотой всего 11 этажей появилось в самом начале ХХ века в Нью-Йорке. Настоящий расцвет строительства из них начался, когда в Америке взметнулись ввысь небоскребы. В России великолепным примером здания с металлическим каркасом является заложенный в 1949году 36-этажного здания МГУ на Воробьевых горах.
Следует отметить, что до ненавнего времени в России строительные металлоконструкции так и оставалась уделом уникальных сооружений. Лед тронулся после перестроечных 90-х годов прошлого столетия, но востребованность таких зданий до недавнего времени была невысокой (для сравнения, доля домов из МК в странах Скандинавии достигает 80% — против 5% в России). Перелом наступил, когда на отечественном рынке появились недорогие и качественные коммерческие сооружения из металла для сельского хозяйства, логистики и спорта. Сегодня востребованность их растет с каждым годом, а появление подобных технологий в жилищном строительстве обещает настоящую революцию в ценах и качестве квартир.
Источник: studopedia.ru