Предложена классификация теплоизоляционных, звукоизоляционных материалов на основе органического и неорганического основного исходного сырья. Органические теплоизоляционные материалы и изделия производят из различного растительного сырья: отходов древесины (стружек, опилок, горбыля и др.), камыша, торфа, очесов льна, конопли, из шерсти животных, а также на основе полимеров.
Многие органические теплоизоляционные материалы подвержены быстрому загниванию, порче различными насекомыми и способны к возгоранию, поэтому их предварительно подвергают обработке. Поскольку использование органических материалов в качестве засыпок малоэффективно в силу неизбежной осадки и способности к загниванию, последние используют в качестве сырья для изготовления плит.
В плитах основной материал почти полностью защищен от увлажнения, а следовательно, и от загнивания, кроме того, в процессе производства плит его подвергают обработке антисептиками и антипиренами, повышающими его долговечность. Неорганические материалы – это минеральная вата, изделия из нее (среди последних распространены минераловатные плиты – твердые и повышенной жесткости), легкие и ячеистые бетоны (главным образом газобетон и пенобетон), пеностекло, стеклянное волокно, изделия из вспученного перлита и вермикулита, теплоизоляционная керамика, асбестосодержащие теплоизоляционная масса и изделия. Изделия из минеральной ваты получают переработкой расплавов горных пород или металлургических, (главным образом доменных) шлаков в стекловидное волокно. Неорганические теплоизоляционные материалы, используемые в качестве монтажных, изготовляют на основе асбеста (асбестовый картон, бумага, войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестотрепельные, асбестоцементные изделия) и на основе вспученных горных пород (вермикулиты, перлиты).
15 лекция Теплоизоляционные материалы
1. Горлов Ю.П. Технология теплоизоляционных материалов: учеб. для вузов / Ю.П. Горлов, А.П. Меркин, A.A. Устенко. – М.: Стройиздат, 1980. – 399 с.
2. Горяйнов К.Э. Технология теплоизоляционных материалов и изделий: учеб. для вузов / К.Э. Горяйнов, С.К. Горяйнова. – М.: Стройиздат,1982. – 376 с.
3. Технология производства теплоизоляционных и звукоизоляционных строительных материалов на основе минерального волокна и местных вяжущих: сб. науч. тр. – Вильнюс:ВНИИтеплоизоляция, 1982. – 112 с.
4. Сухарев М.Ф., Майзель И.Д., Сандлер В.Г. Производство теплоизоляционных материалов. – М.: Высшая шк., 1981. – 231 с.
5. Теплоизоляционные материалы и конструкции: учебник / Ю. Бобров, Е.Г. Овчаренко, Б.М. Шойхет, Е.Ю. Петухова. – М.: Изд-во «Инфра-М», 2003. – 268 с.
К теплоизоляционным относятся материалы, применяемые в строительстве жилых и промышленных зданий, тепловых агрегатов и трубопроводов с целью уменьшения тепловых потерь в окружающую среду. Теплоизоляционные материалы характеризуются низкой теплопроводностью (коэффициент теплопроводности в пределах 0,02–0,2 Вт/(м⋅°С)), высокой пористостью (70–98 %), незначительной плотностью и прочностью (предел прочности при сжатии 0,05–2,5 H/м²).
СОВРЕМЕННЫЕ УТЕПЛИТЕЛИ. ХАРАКТЕРИСТИКИ И ОСОБЕННОСТИ УТЕПЛИТЕЛЕЙ
Использование теплоизоляционных материалов позволяет уменьшить толщину и массу стен и других ограждающих конструкций, снизить расход основных конструктивных материалов, уменьшить транспортные расходы и, соответственно, снизить стоимость строительства. Наряду с этим при сокращении потерь тепла отапливаемыми зданиями уменьшается расход топлива на его обогрев. Многие теплоизоляционные материалы из-за высокой пористости обладают способностью поглощать звук, что позволяет использовать их также в качестве акустических материалов для борьбы с шумом.
Теплоизоляционные материалы и изделия классифицируются по:
- виду основного исходного сырья (органическое, неорганическое);
- структуре (волокнистая, зернистая, ячеистая, сыпучая);
- содержанию связующего вещества (содержащие и не содержащие);
- возгораемости (несгораемые, трудносгораемые, сгораемые);
- по форме и внешнему виду:
1) плоские (плиты, маты, войлок);
2) рыхлые (вата, перлит);
3) шнуровые (шнуры, жгуты);
4) фасонные (сегменты, цилиндры, полуцилиндры и др.);
- плотности (особо легкие, легкие, тяжелые);
- жесткости (мягкие, полужесткие, жесткие, повышенной жесткости, твердые);
- теплопроводности (низкой теплопроводности, средней теплопроводности, повышенной теплопроводности).
По виду основного исходного сырья теплоизоляционные материалы делятся на 2 группы: органические и неорганические.
Органические теплоизоляционные материалы и изделия производят из различного растительного сырья: отходов древесины (стружек, опилок, горбыля и др.), камыша, торфа, очесов льна, конопли, из шерсти животных, а также на основе полимеров. Многие органические теплоизоляционные материалы подвержены быстрому загниванию, порче различными насекомыми и способны к возгоранию, поэтому их предварительно подвергают обработке. Поскольку использование органических материалов в качестве засыпок малоэффективно в силу неизбежной осадки и способности к загниванию, последние используют в качестве сырья для изготовления плит. В плитах основной материал почти полностью защищен от увлажнения, а следовательно, и от загнивания, кроме того, в процессе производства плит его подвергают обработке антисептиками и антипиренами, повышающими его долговечность.
Среди большого разнообразия теплоизоляционных изделий из органического сырья наибольший интерес представляют плиты древесноволокнистые, камышитовые, фибролитовые, торфяные, пробковая теплоизоляция натуральная, а также теплоизоляционные пенопласты. Плиты древесноволокнистые применяют для тепло- и звукоизоляции ограждающих конструкций.
Изготовляют их из распушенной древесины или иных растительных волокон: неделовой древесины, отходов лесоперерабатывающей промышленности, костры, соломы, камыша, хлопчатника. Наибольшее распространение получили древесноволокнистые плиты, получаемые из отходов древесины. Процесс производства изоляционных древесноволокнистых плит состоит из следующих основных операций: дробления и разлома древесного сырья, проклеивания волокнистой массы, формования и термической обработки. Для уменьшения сгораемости древесноволокнистые плиты пропитывают специальными огнезащитными составами-антипиренами, а для придания водостойкости в состав волокнистой массы вводят парафиновые, смоляные, масляные и другие эмульсии.
К органическим теплоизоляционным изделиям и материалам также относятся: арболитовые изделия, пенополивинилхлорид, пенополиуретан, пеноизол теплоизоляционный, мипора, пенополистирол, полиэтилен вспененный, фибролит, сотопласты и ячеистые пластмассы.
Сырьем для производства арболитовых изделий служит портландцемент и органические коротко-волнистые компоненты (древесные опилки, костры, сечки соломы и камыша, дробленой станочной щепы или стружки), обработанные раствором минерализатора.
Химические добавки для арболитовых изделий – растворимое стекло, сернокислый глинозем, хлористый кальций. В современном строительстве широкое распространение получил теплоизоляционный арболит плотностью до 500 кг/м3 и конструкционно-изоляционный арболит плотностью до 700 кг/м3. Его теплопроводность – 0,08–0,12 Вт/(м∙К), прочность при сжатии – 0,5–3,5 МПа, растяжение при изгибе – 0,4–1,0 МПа.
Производится пенополивинилхлорид эластичный и твердый. Твердый ППВХ представляет собой теплоизоляционный материал с незначительными колебаниями своих характеристик в температурном режиме от +60 до –60 °С.
Пенополиуретан – это результат химической реакции, которая происходит при соединении полиэфира, воды, диизоцианида, эмульгаторов и катализаторов. Существуют два вида ППУ – твердый и эластичный. Твердый ППУ используется в широком температурном диапазоне (от –50 до +110 °С), имеет высокую механическую прочность, стоек к химическим и биологическим воздействиям, устойчив к износу, легок и экономичен в обработке. Из всех материалов ППУ обладает самой низкой теплопроводностью – менее 0,01 Вт/(м∙К). Его максимальное водопоглощение – 2–5 %.
Облицовка пеноматериала конструкции (безрулонной кровли) водостойкой алюминиевой фольгой, пленкой и другими покрытиями способствует предотвращению проникновения влаги. Благодаря своей стойкости к воздействию микроорганизмов и грибковых образований, материал не поддается гниению и не разлагается.
Пеноизол используется в тепловой изоляции в качестве прокладочного слоя предохраняющих конструкций, а также для утепления полов, стен, потолков, крыш строений, теплоизоляции трубопроводов (в форме мягкого или твердого покрытия типа «скорлупа»).
Для теплоизоляционного пеноизола характерны высокие теплозащитные и звукоизолирующие характеристики. Плита пеноизола толщиной в 5 см с твердым наружным покрытием соответствует по теплопроводности 90–100 см кирпичной кладки и поглощает до 95 % звуковых колебаний.
Использование пеноизола толщиной в 10 см в качестве утеплителя позволяет в несколько раз снизить затраты на отопление в рамках одного отопительного сезона. Выпускается теплоизоляционный пеноизол в форме блоков и плит различных форм и размеров. Может заполнять заранее подготовленные полости, где он полимеризуется и высыхает при нормальных условиях. К тому же он не восприимчив к воздействию агрессивных сред, грибков, микроорганизмов и органических растворителей, не горюч, не образует расплавов, а под воздействием открытого огня не выделяет токсичных элементов. Является экологически чистым материалом.
Материал мипора производится методом вспенивания мочевиноформальдегидной смолы. Блоки, отлитые из такой массы, твердеют, после чего их тщательно высушивают. Из всех подобных материалов мипора является наиболее легким, его плотность – 10–20 кг/м2, а также наименее теплопроводным – 0,026–0,03 Вт/(м∙К). Устойчив к воздействию вибрации.
Пенополистирол (ППС) представляет собой твердый пластик, производимый из полистирола с преобразователем. Плотность ППС – до 25 кг/м3, обладает высокой стойкостью к истиранию и низким водопоглощением, трудновоспламеняем, но более горюч по сравнению с ПВХ. Один из его недостатков – большая усадка, которую возможно уменьшить путем выдерживания материала перед непосредственным использованием, а также применять эластичные и гибкие материалы битумно-эластомерного направляемого полотна в качестве гидроизоляции.
ППС используется в трехслойных стеновых панелях на гибких связях наряду с жесткими минераловатными плитами при теплоизоляции стен и кровель.
Полиэтилен вспененный – материал с замкнутыми порами. Его плотность составляет 30 г/м3, теплопроводность – 0,04 Вт/(м∙К). Допускается использование в температурном режиме от –45 до +100 °С. Диаметр материала – от 10 до 114 мм, толщина стенок изоляции может быть 10, 15 и 20 мм, его длина – 2 м.
Фибролит является плитным материалом, полученным из древесной шерсти с добавлением неорганического вяжущего вещества. Древесная шерсть, то есть стружка длиной 200–500 мм, толщиной 0,3–0,5 мм и шириной 2–5 мм, получается путем специальной обработки коротких бревен ели, липы или сосны на специальных станках.
В качестве вяжущего вещества используют портландцемент и раствор минерализатора (хлористого кальция). Плиты производятся толщиной 25, 50, 75 и 100 мм. Их теплопроводность составляет 0,1–0,15 Вт/(м∙К), плотность 300–500 кг/м3. Предел прочности фибролитовых плит на изгибе 0,4–1,2 МПа. Фибролит легко поддается обработке, его можно сверлить, пилить, вбивать в него гвозди.
Используется в основном для теплоизоляции защитных конструкций, возведения каркасных стен, перегородок, перекрытий в сухих условиях.
Сотопласты представляют собой материалы, изготовленные методом склейки между собой гофрированных листов бумаги, хлопчатобумажной или стеклянной ткани, пропитанной предварительно полимером. Теплоизоляционные качества сотопласта можно повысить, заполняя ячейки крошкой из мипоры.
Ячеистые пластмассы в зависимости от характера пор подразделяются на пенопласты – материалы в основном с закрытыми порами в виде ячеек, разделенных тонкими перегородками, – и поропласты – ячеистые пластмассы с сообщающимися порами.
Также производят и материалы со смешанной структурой.
В ячеистых пластмассах поры занимают 90–98 % общего объема материала, на стенки приходится всего лишь 2–10 %, что позволяет ячеистым пластмассам быть легкими и малотеплопроводными. Одной из особенностей теплопроводных пластмасс является ограниченная температуростойкость. Большинство из них горючи, поэтому необходимо предусматривать меры защиты пористых пластмасс от непосредственного воздействия огня.
Ячеистые пластмассы водостойки, не подвержены гниению, твердые поро- и пенопласты достаточно прочны, эластичны и гибки. Теплоизоляционный слой пенопласта толщиной 5–6 см, имеющий плотность около 2–3 кг/м3, эквивалентен слою 14–16 см из ячеистого бетона или минеральной ваты. Вследствие этого масса 1 м2 трехслойной панели, утепленной ячеистой пластмассой, снижается на 20–50 кг. Ячеистые пластмассы в виде скорлуп и плит используют для утепления стен и покрытий, теплоизоляции трубопроводов при температуре до 60 °С.
Пористые пластмассы легко пилятся, режутся обычными способами, а также проволокой, нагреваемой электрическим током. Они хорошо схватываются с бетоном, металлом, древесиной, асбоцементом и пр.
Неорганические теплоизоляционные материалы – это минеральная вата и изделия из нее (среди последних распространены минераловатные плиты – твердые и повышенной жесткости), легкие и ячеистые бетоны (главным образом газобетон и пенобетон), пеностекло, стеклянное волокно, изделия из вспученного перлита и вермикулита, теплоизоляционная керамика, асбестосодержащие теплоизоляционная масса и изделия. Изделия из минеральной ваты получают переработкой расплавов горных пород или металлургических (главным образом доменных) шлаков в стекловидное волокно. Неорганические теплоизоляционные материалы, используемые в качестве монтажных, изготовляют на основе асбеста (асбестовый картон, бумага, войлок), смесей асбеста и минеральных вяжущих веществ (асбестодиатомовые, асбестотрепельные, асбестоцементные изделия) и на основе вспученных горных пород (вермикулиты, перлиты). Для изоляции промышленного оборудования и установок, работающих при температурах выше 1000 °С (например, печей, топок, котлов и т.д.), применяют так называемые легковесные огнеупоры, изготовляемые из огнеупорных глин или высокоогнеупорных оксидов в виде штучных изделий (кирпичей, блоков различного профиля).
Существует группа материалов, изготовляемых из смеси органического и неорганического сырья (фибролит, изделия из минеральной ваты на синтетическом связующем, высокопористые пластмассы, наполненные вспученным перлитом, легким керамзитом и др.). Их не выделяют в особую группу, так как в зависимости от преобладания неорганической или органической части относят к одной из двух упомянутых групп (например, минераловатные изделия на синтетическом или битумном связующем относят к неорганическим материалам, а фибролит – к органическим).
По структуре теплоизоляционные материалы классифицируют на волокнистые (минераловатные, стекловолокнистые), зернистые (перлитовые, вермикулитовые), ячеистые (изделия из ячеистых бетонов, пеностекло), сыпучие.
По содержанию связующего вещества теплоизоляционные материалы делятся на содержащие и не содержащие.
По возгораемости теплоизоляционные материалы подразделяются на несгораемые, трудносгораемые, сгораемые
По форме и внешнему виду различают теплоизоляционные материалы штучные жесткие (плиты, скорлупы, сегменты, кирпичи, цилиндры) и гибкие (маты, шнуры, жгуты), рыхлые и сыпучие (вата, перлитовый песок, вермикулит).
По плотности теплоизоляционные материалы делят на материалы средней плотности в сухом состоянии – на группы и марки: I группа – особо легкие (ОЛ), имеющие марки 15, 25, 35, 50, 75, 100; II группа – легкие (Л) – 125, 150, 175, 200, 225, 250, 300, 350; III группа – тяжелые (Т) – 400, 450, 500, 600.
Теплоизоляционные материалы по жесткости (относительной деформации) делятся на:
1. Мягкие (М) – относительное сжатие свыше 30 % при удельной нагрузке 1,96 кН/м2 (минеральная и стеклянная вата, вата из каолинового и базальтового волокна, вата из супертонкого стекловолокна, маты и плиты мягкие из минерального волокна и штапельного стекловолокна).
2. Полужесткие (П) – относительное сжатие 6–30 % при удельной нагрузке 1,96 кН/м2 (плиты полужесткие минераловатные на синтетическом связующем и из штапельного стекловолокна на синтетическом связующем).
3. Жесткие (Ж) – относительное сжатие до 6 % при удельной нагрузке 1,96 кН/м2 (плиты жесткие из минеральной ваты на синтетическом или битумном связующем).
4. Повышенной жесткости (ПЖ) – относительное сжатие до 10 % при удельной нагрузке 3,92 кН/м2 (плиты минераловатные повышенной жесткости на синтетическом связующем).
5. Твердые (Т) – относительное сжатие до 10 % при удельной нагрузке 9,8 кН/м2.
По теплопроводности теплоизоляционные материалы разделяются на классы:
А – низкой теплопроводности до 0,06 Вт/(м∙°С);
Б – средней теплопроводности – от 0,06 до 0,115 Вт/(м∙°С);
В – повышенной теплопроводности – от 0,115 до 0,175 Вт/(м∙°С).
По назначению теплоизоляционные материалы бывают теплоизоляционно-строительные (для утепления строительных конструкций) и теплоизоляционно-монтажные (для тепловой изоляции промышленного оборудования и трубопроводов).
Теплоизоляционные материалы должны быть биостойкими, т.е. не подвергаться загниванию и порче насекомыми и грызунами, сухими, с малой гигроскопичностью так как при увлажнении их теплопроводность значительно повышается, химически стойкими, а также обладать тепло- и огнестойкостью.
Рост спроса на теплоизоляционные материалы в России с каждым годом увеличивается на 15–20 %. В общей сложности на сегодняшний день российские заводы могут выпускать более 54 млн куб. м теплоизоляционных материалов в год.
Использование теплоизоляционных материалов при строительстве жилых и промышленных зданий, тепловых агрегатов и трубопроводов является очень актуальным и перспективным в будущем.
Рецензенты:
Шибаков В.Г., д.т.н., профессор, зав. кафедрой «Машиностроение», Набережночелнинский филиал Казанского федерального университета, г. Набережные Челны;
Сибгатуллин Э.С., д.т.н., профессор, зав. кафедрой «Промышленное, гражданское и строительство и строительные материалы», Набережночелнинский институт (филиал) Казанского федерального университета, г. Набережные Челны.
Источник fundamental-research.ruУтеплители в современном строительстве
Тема статьи: Классификация утеплителей по основным параметрам.
С наступлением осени с ее серостью, холодными ветрами и монотонными дождями, все чаще начинаешь думать о мягком свитере, согревающей чашке чая и теплом и уютном доме. Еще с доисторических времен, человек старался обогреть свое жилище и сохранить в нем тепло. С тех пор человечество нашло множество способов уберечь дом от холода.
Современные строители проводят целый комплекс работ по теплоизоляции стен, полов, кровли, фасада, создавая как бы термооболочку вокруг каркаса здания. Строительные материалы, уменьшающие процесс теплопередачи, называют теплоизоляцией или утеплителями. Главной их характеристикой является теплопроводность — то есть способность передачи тепла от более теплого к менее теплому. Чем меньше теплопроводность, тем больше тепла сохраняется.
Согласно классификации по ГОСТу строительные теплоизоляционные материалы и изделия различают :
1. Органические
2. Неорганические
3. Смешанные
1. Волокнистые
2. Ячеистые
3. Зернистые (сыпучие )
1. Рыхлые
2. Плоские
3. Фасонные
4. Шнуровые
1. Несгораемые
2. Трудносгораемые
3. Сгораемые
Под горючестью материала понимается его способность к самостоятельному горению. Так несгораемые материалы не способны совсем гореть самостоятельно (класс горючести НГ); трудносгораемые – могут гореть под непосредственным воздействием пламени, но не способны продолжать горение без источника зажигания или за пределами его воздействия (класс горючести Г-1, Г-2); сгораемые же – продолжают горение самостоятельно даже после удаления источника возгорания (класс горючести Г-3, Г-4).
С формой и структурой, более менее, понятно. К рыхлым, то есть неплотным, пористым, относятся минвата и перлитный песок.
Плоские – те, которые имеют плоскую форму – маты, плиты, блоки.
Фасонные – теплоизоляционные материалы, которым на производстве придали форму (цилиндр , полуцилиндр, сегменты). Шнуровые – шнуры и жгуты, небольшого сечения.
Из термина «Волокнистые » становится понятно, что эти материалы состоят из волокон – нитевидных элементов (минеральная вата).
Ячеистая структура характеризуется наличием макропор – ячеек (такую структуру имеют газо – и пенобетоны, газосиликаты, а так же пенопласт и пеностекло).
Зернистые или сыпучие — отличаются наличием зерен – гранул или крупинок разного размера (перлитовый песок, порошковые материалы для засыпок)
А теперь вернемся к видам теплоизоляционных материалов.
Ключевым показателем для утеплителя является его основа – сырье. Для производства тех или иных утеплителей используют различные материалы.Как сказано выше, различают теплоизоляционные материалы на органической основе, на неорганической основе и на смешанной.
Теплоизоляторы на органической основе
Для понимания терминологии, напомним, что органической основой может быть нечто, принадлежащее к растительному или животному миру, или же химическое соединение, в основу которого входит углерод. Так к теплоизоляторам на органической основе относятся материалы на основе отходов деревообрабатывающей отрасли (опилки , стружка); бумажной макулатуры (целлюлоза ); овечьей шерсти; пробки и некоторых других природных материалов. Однако, все они постепенно впитывают влагу, могут терять объем (спрессовываться ) и быстро воспламеняются, поэтому в современном мире их применяют редко.
Самыми популярными органическими утеплителями являются пенополистирол (пенопласт ) и вспененный полиэтилен. Последний, в большей степени, применяют для утепления труб и коммуникаций.Все большую популярность набирают рефлекторные утеплители, то есть отражающие (марки Армофол, Экофол, Порилекс, Пенофол), одной из составляющих которых является вспененный полиэтилен, а второй полированный алюминий. Эти утеплители очень тонкие, но эффективные. Благодаря способности полированного алюминия отражать до 97-99% тепла и полиэтилену (толщина конечного материала 1-2,5 см) получается подобие теплового барьера способного, по заявлениям производителей, заменить от 10 до 27 см волокнистого теплоизолятора.
Пенополистирол, еще называемый пенопласт, начал свой путь в качестве теплоизоляционного материала в 60-е годы 20 столетия (хотя изобретен был в 1928г во Франции) и с тех времен особо не видоизменился.
Пенополистирол – ячеистый материал белого цвета, состоящий из пластической массы полистирола, наполненной на 98% воздухом, благодаря чему обладает высокими показателями тепловой изоляции, а так же малым весом, то есть не влияет на усадку фундамента и облегчает монтаж.
Общепринятое обозначение — ПСБ – Пенополистирол Суспензионный изготовлен Беспрессовым способом, дополнительная буква «С » после аббревиатуры ПСБ означает Самозатухающий, а « Ф» — фасадный, последующие цифры говорят о толщине листа, указанной в сантиметрах (10 , 15, 25, 30, 50).
Пенополистирол очень удобный и популярный утеплитель. Однако, у него есть ряд минусов, а именно:
- сравнительно хрупкий;
- сгораемый – нуждается в спец обработке;
- не «дышит » — требует дополнительной вентиляции;
- насекомые и грызуны легко устраивают в нем лабиринты и ходы – необходимы дополнительные средства по защите краев утепления для устранения прямого доступа вредителей;
- от прямых солнечных лучей со временем иссыхается и выкрашивается – нуждается в финишном покрытии (штукатурка , краска).
В попытках устранить недостатки пенопласта был изобретен экструдированный пенополистирол — исходное сырье то же, а способ производства материала другой (метод экстузии). В результате получился материал с равномерной, закрытопористой структурой, очень прочный (допускается его использование даже в качестве материала для вспомогательных конструкций), легкий, с низким показателем теплопроводности, минимальным водопоглащением, морозостойкий, безвредный для человека, не подверженный гниению и стойкий к химическим веществам.
В экструдированномй пенополистироле н е удалось устранить только два недостатка – плохая паропроницаемость и высокая горючесть.
Несмотря на изъяны, пенополистирол и экструдированный пенополистирол считаются чуть ли ни универсальными утеплителями, так как они экологичны, влагоупорны, устойчивы к перепадам температур, практически не имеет срока годности, с равным успехом пригодны для изоляции кровли, стен, пола и даже фасада.
Теплоизоляторы на неорганической основе
К утеплителям на неорганической основе относятся те теплоизоляторы, для изготовления которых использовались минеральные вещества (горные породы, стекло, металлургические шлаки). В результате распыления расплавленного минерального вещества образуются хаотично переплетенные между собой волокна – минеральная вата (минвата ).
В зависимости от исходного минерального вещества различают стекловату (в основе стекло), каменную или базальтовую вату (в основе горные породы) и шлаковую вату (в основе металлургические шлаки).
Главными преимуществами перед теплоизоляторами на органической основе являются: высокая пожаробезопасность, хорошая звукоизоляция, способность пропускать воздух и пар, что не допускает образования конденсата, а так же стойкость к биоорганизмам (плесень , грибки, насекомые, птицы, грызуны).
Ранее в строительстве было широко распространено использование стекловаты, ей утепляли фасады, плоские кровли, полы, потолок, внутренние перекрытия.
Однако стекловата быстрее теряет форму и объем при сравнении с другими теплоизоляторами, и «боится » влаги, поэтому со временем теряет свои характеристики.
Важно так же понимать, что как не стараются производители, но совсем устранить ломкость стекловолокна невозможно. При попадание на кожу, оно вызывает зуд и раздражение; при вдыхании поражает легкие; при попадании в глаза царапает роговицу, что может привести к серьезным проблемам со зрением. Поэтому, при работе со стекловатой техникой безопасности рекомендована спец. одежда – штаны и кофта, закрывающие кожу, рукавицы, очки и респиратор. Сейчас стекловата чаще применяется для утепления городских коммуникаций и для повышения звукоизоляции в помещениях.
Каменная вата по области применения, структуре и показателям горючести не отличается от стекловаты, но имеет преимущество в качестве низкого водопоглощения и незначительной потери формы и объема, благодаря чему использование каменной или базальтовой ваты стало более популярным. Помимо утепления полов, стен, скатных и плоских кровель используется для огнезащиты стальных колонн и балок, воздуховодов, железобетонных перегородок. Шлаковата в «жилом » строительстве не применяется, так как содержит вредные для человека примеси серы. Используется как огнестойкая теплоизоляция вагонов, цистерн, котлов, паровых труб, металлических сооружений.
Теплоизоляторы на смешанной основе
Теплоизоляторы из смешанного исходного сырья – те, которые произвели на основе асбеста с добавлением доломита, вемрикулита, перлита.
Такие изоляторы имеют консистенцию теста (наносят на поверхность и оставляют до полного высыхания) или выпускаются в виде плит и скорлупы. Подобные материалы демонстрируют хорошие теплоизоляционные характеристики, негорючесть, неподверженность гниению, но асбестовые утеплители, как и пенопласт, не пропускает пар и воздух, поэтому требуют дополнительной вентиляции, а как стекловата, при работе требуют спец. одежды (асбестовая пыль способна вызывать поражение легких, особенно у аллергиков). Последний фактор часто становится решающим, и совсем не в пользу асбестовых утеплителей.
Написанное словами выше, мы свели в таблицу 1 (сравнивали самые популярные типы теплоизоляторов)
Таблица 1. Типы и характеристики популярных утеплителей
Стекловата | Каменнаябазальтовая вата | Пенополистирол | Экструдированный пенополистирол | |
Область применения | Фасад, стены, пол, плоская кровля, потолок | Фасад, стены, пол, плоская и скатная кровля | Фасад, стены, пол, потолок, плоская и скатная кровля | Фасад, стены, пол, потолок, плоская и скатная кровля |
Исходное сырье | неорганическое | неорганическое | органическое | органическое |
Структура | волокнистая | волокнистая | ячеистая | ячеистая |
Форма | рыхлая, прессованная в маты | рыхлая, прессованная в маты | плоская | плоская |
Горючесть | НГ | НГ | Г-3, Г-4 | Г-3, Г-4 |
Водопоглгощение | высокое | низкое | относительно низкое | низкое |
Потеря объема и формы | высокая | низкая | низкая | низкая |
Стойкость к биоорганизмам | высокая | высокая | низкая | высокая |
Способность «дышать » | пропускает воздух и пар | пропускает воздух и пар | не пропускает воздух и пар | не пропускает воздух и пар |
Влияние на здоровье человека | вредное | безвредное | безвредное | безвредное |
Даже прояснив для себя нюансы тех или иных утеплителей, придя в магазин сразу сориентироваться сложно, потому, как многие производители предлагают современному покупателю разные средства теплоизоляции. У одной марки продукция только одного вида, у другой целая линейка разных по основе, форме, структуре, как же не растеряться? Предлагаем ознакомиться с таблицей 2, в которой сможете найти названия производителей по виду утеплителя или по его назначению (сравнивали марки производителей, популярные в Саратовской области).
Таблица 2. Утеплители и области их применения
Стекловата | Каменная вата | Пенополистирол | Экструдированный пенополистирол | |
Кровля скатная, мансарды | URSA GEO; URSA TERRA; URSA PUREON | РОКЛАЙТ; ТЕХНОФЛОР; Knauf Insulation Скатная кровля; Knauf Insulation Термо Плита; ROCKWOOL Стандарт; ROCKWOOL ЛАЙТ БАТТС; ROCKWOOL РУФ БАТТС; ECOROCK ;Baswool Лайт ; ISOVER Каркасный дом | ПСБ-С | URSA XPS; Пеноплекс Скатная кровля; XPS ТЕХНОНИКОЛЬ |
Кровля плоская | ТЕХНОРУФ; ROCKWOOL РУФ БАТТС; Baswool РУФ | URSA XPS; Пеноплекс Комфорт Пеноплекс Уклон | ||
Фасад вентилируемый | БАЗАЛИТ ВЕНТИ; ТеплоKNAUF; Knauf Insulation Фасад; ROCKWOOL ВЕНТИ БАТТС; Baswool Вент Фасад ; ТЕХНОВЕНТ; | Пеноплекс ГЕО | ||
Фасад «мокрый » | ТЕХНОФАС; Knauf Insulation Фасад; ROCKWOOL ФАСАД БАТТС; Baswool Фасад | ПСБ-Ф | Пеноплекс Фасад; Пеноплекс Основа; XPS ТЕХНОНИКОЛЬ | |
Первый этаж, цоколь | ТеплоKNAUF | ПСБ-Ф | Пеноплекс Фасад; Пеноплекс Основа | |
Фундамент | ПСБ-Ф | URSA XPS; Пеноплекс Фундамент; Пеноплекс Гео; XPS ТЕХНОНИКОЛЬ; | ||
Пол | ISOVER Теплый дом; URSA GEO; URSA PUREON | РОКЛАЙТ; ТЕХНОФЛОР; ТеплоKNAUF; ROCKWOOL Стандарт; ECOROCK; Baswool Флор; ISOVER Каркасный дом | ПСБ-С | URSA XPS; Пеноплекс ГЕО; Пеноплекс Комфорт; XPS ТЕХНОНИКОЛЬ; |
Стены | ISOVER Теплый дом-ПЛИТА; URSA GEO; URSA TERRA; URSA PUREON | РОКЛАЙТ; Knauf Insulation Термо Плита; ТеплоKNAUF; ROCKWOOL Стандарт; ROCKWOOL ЛАЙТ БАТТС; Baswool Лайт ; Baswool Стандарт ; ISOVER Каркасный дом | ПСБ-С | URSA XPS; Пеноплекс Фасад; Пеноплекс Комфорт; Пеноплекс Стена; Пеноплекс Основа |
Болконы, лоджии | URSA GEO | РОКЛАЙТ; ROCKWOOL Стандарт; ROCKWOOL ЛАЙТ БАТТС | ПСБ-С; ПСБ-Ф | URSA XPS; Пеноплекс Комфорт; XPS ТЕХНОНИКОЛЬ; |
Каркасный дом | ISOVER Теплый дом-ПЛИТА | РОКЛАЙТ; ROCKWOOL Стандарт; ROCKWOOL ЛАЙТ БАТТС; ECOROCK 30; Baswool Лайт 45; ISOVER Каркасный дом | Пеноплекс Стена | |
Помещения с повышенной влажностью | URSA GEO | ROCKWOOL утеплитель; ROCKWOOL ЛАЙТ БАТТС; ROCKWOOL САУНА БАТТС | Пеноплекс Комфорт |
Для правильного выбора необходимого именно Вам утеплителя важно ясно понимать что Вы хотите получить в результате? И что для Вас первоначально, а что второстепенно? А мы, со своей стороны, постарались помочь Вам разобраться, в чем плюсы и минусы современных частоиспользуемых утеплителей.
23.10.2017, 18134 просмотра.
Источник pssk-sar.ruТеплоизоляционные материалы и изделия – свойства и классификация
За последние годы на российском строительном рынке появились десятки новых теплоизоляционных материалов, благодаря чему произошел значительный прорыв в первую очередь в сфере энергосбережения. С развитием новых технологий, современные изоляционные материалы стали более эффективными, экологически безопасными и разнообразными, и отвечающими конкретным техническим задачам строительства — возможность строительства высотных зданий, уменьшение толщины ограждающих конструкций, снижение массы зданий, расхода строительных материалов, а также экономии топливно-энергетических ресурсов при обеспечении в помещениях нормального микроклимата.
К теплоизоляционным материалам относятся строительные материалы и изделия, предназначенные для тепловой изоляции ограждающих конструкций зданий и сооружений, технологического оборудования и трубопроводов. Такие материалы имеют низкую теплопроводность (при температуре 25°С коэффициент теплопроводности не более 0,175 Вт/(м°С)) и плотность (не выше 500кг/м³).
Основная техническая характеристика теплоизоляционных материалов — это теплопроводность, т.е. способность материала передавать тепло. Для количественного определения этой характеристики используется коэффициент теплопроводности, который равен количеству тепла, проходящему за 1 час через образец материала толщиной 1 м и площадью 1 м² при разности температур на противоположных поверхностях 1°С. Теплопроводность выражается в Вт/(мК) или Вт/(м°C). При этом величина теплопроводности теплоизоляционных материалов зависит от плотности материала, вида, размера, расположения пор и т.д. Также сильное влияние на теплопроводность оказывает температура и влажность материала.
Кроме этого, важными дополнительными свойствами теплоизоляционных материалов являются — прочность на сжатие, сжимаемость, водопоглощение, сорбционная влажность, морозостойкость, паропроницаемость и огнестойкость.
Классифицируем теплоизоляционные материалы
Теплоизоляционные материалы и изделия можно систематизировать по основным признакам:
-
По виду исходного сырья: неорганические (минеральная и стеклянная вата, ячеистые бетоны, материалы на основе асбеста, керамические и др.) и органические (древесно-волокнистые плиты, пенно- и поропласты, торфяные плиты и пр.). Также изготавливаются комбинированные материалы, с использование органических и неорганических компонентов.
Строительные и теплофизические свойства
Маркировку теплоизоляционных материалов связывают с их плотностью. Поэтому основным показателем качества таких материалов является их марка плотности: D15-35-50-100-125-150-175-200-250-300-350-400-500-600.
Пористые теплоизоляционные материалы
Пористые материалы получили наибольшее распространение в строительстве. Считается, что чем больше объем пор, тем теплопроводность меньше, это связано с тем, что самой малой теплопроводностью обладает воздух (0,023Вт/м°С). Но теплопроводность зависит не только от объема, но и от размеров пор, их формы, а также характера пористости и пр. В крупных порах конвективный теплоперенос происходит интенсивнее по сравнению с мелкими, в которых воздух при наличии теплового градиента может оказаться неподвижным и теплопроводность его минимальная. Поэтому при формировании пористой структуры технологические приемы всегда направлены на получение, по возможности, более мелких, равномерно расположенных пор по всему объему материала.
Характер пористости оказывает решающее влияние на акустические и теплоизоляционные свойства пористого материала. При замкнутой пористости материал относится к теплоизоляционным, а при сквозной (в определенных пределах) – к звукопоглощающим. Такие свойства могут быть улучшены также путем специальной обработки поверхностей изделий и образования отверстий в теле материала.
Волокнистые теплоизоляционные материалы
Волокнистое строение характерно для материалов на основе минерального (минеральная и стеклянная вата) или органического волокна (древесное, полимерное, животное). Минеральные волокна получают путем расплавления неорганического сырья с последующим превращением расплава (путем распыления, вытягивания через фильеры или другими способами) в волокна, а органическое – путем расщепления древесины или другого растительного сырья на волокна до минимально возможного диаметра. Выполнение такой операции осуществляется на достаточно сложном оборудовании и обычно связано с большой затратой энергии.
Теплоперенос в волокнистых материалах осуществляется за счет переноса тепла от одного волокна к другому (кондукционный — передача тепла от одного объекта другому при прямом контакте), а также конвективным переносом воздуха, заключенным между волокнами. Поэтому с уменьшением толщины волокон теплоперенос затрудняется, так как при передаче тепла от одного волокна к другому затрачивается тепловая энергия: чем тоньше волокно, тем больше таких контактов, тем больше потери тепла при его переносе по направлению теплового градиента. При тонковолокнистой структуре воздух находится в виде тонких прослоек неправильной формы, что также затрудняет теплоперенос в такой структуре за счет конвективного теплопереноса.
Оптимальной считается структура по возможности с более тонкими волокнами. Для неорганических материалов обычно размер волокон ограничивается величиной 5-8мк, так как при меньшем диаметре волокно получается ломким. Для органических материалов диаметр волокон зависит от природы исходного материала и в ряде случаев может быть значительно меньше. Теплопроводность волокнистых материалов зависит также от направления потока теплоты. Например, для дерева теплопроводность вдоль волокон примерно в 2 выше, чем поперек.
Увлажнение и тем более замерзание воды в порах материала ведет к резкому увеличению теплопроводности, поскольку у воды она равна 0,58 Вт/м°С, т.е. примерно в 25 раз больше, чем у воздуха; а теплопроводность льда равна 2,32 Вт/м°С, в 100 раз больше, чем у воздуха.
Свойства теплоизоляционных материалов
Температуростойкость оценивают предельной температурой применения материала. Выше этой температуры материал изменяет свою структуру, теряет механическую прочность и разрушается, а органические материалы могут загораться. Предельную температуру применения устанавливают несколько ниже значения температуростойкости в целях предосторожности, и указывают в технической характеристике материала.
Теплоемкость имеет существенное значение в условиях частых теплосмен, так как в этих условиях необходимо учитывать теплоту, поглощаемую (аккумулированную) теплоизоляционным слоем. Теплоемкость неорганических материалов колеблется от 0,67 до 1 кДж/кг°С. С увеличением влажности материала его теплоемкость резко возрастает, т.к. для воды при 4°С она составляет 4,2 кдж/кг°С. Увеличение теплоемкости отмечается и при повышении температуры.
Огнестойкость характеризует сгораемость материала, т.е. его способность воспламеняться и гореть при воздействии открытого пламени. Сгораемые материалы можно применить только при осуществлении мероприятий по защите от возгорания и возможности использования средств пожаротушения. Возгораемость определяется при воздействии температуры 800-850°С и выдержке в течение 20 мин.
Физико-механические свойства
Плотность для жестких материалов – отношение массы сухого материала к его объему, а плотность волокнистого – это отношение массы сухого материала к его объему, но определенному при заданной нагрузке.
Прочность при сжатии определяется при 10% деформации. Это величина напряжения, вызывающего изменение толщины изделия на 10%. Это величина напряжения, вызывающего изменение толщины изделия на 10%.
Прочность теплоизоляционных материалов вследствие их пористого строения относительно невелика. Предел прочности при сжатии обычно колеблется от 0,2 до 2,5 МПа. Материалы, у которых прочность выше 0,5 МПа, называют теплоизоляционно-конструктивными и используют для несущих ограждающих конструкций. Для некоторых видов теплоизоляционных материалов основной характеристикой является предел прочности при изгибе (плиты, скорлупы, сегменты) или при растяжении (маты, войлок, асбестовый картон и пр.) Во всех случаях требуется, чтобы прочность теплоизоляционного материала была достаточной для его транспортирования, сохранности, монтажа и работы в конкретных эксплутационных условиях.
Сжимаемость – способность материала изменять толщину под действием заданного давления. Материалы по сжимаемости мягкие М: деформация свыше 30%. Полужесткие ПЖ – деформация 6-30%, жесткие – деформация не более 6%. Сжимаемость характеризуется относительной деформацией материала при сжатии под действием удельной 0,002 МПа нагрузки.
Водопоглощение значительно ухудшает теплоизоляционные свойства и понижает прочность и долговечность. Материалы с закрытыми порами, например, пеностекло, имеют низкое водопоглощение (менее 1%). Для уменьшения водопоглощения, например, при изготовлении минераловатных изделий зачастую вводят гидрофобные добавки, которые позволяют уменьшить сорбционную влажность в процессе эксплуатации.
Газо- и паропроницаемость учитывают при применении теплоизоляционного материала в ограждающих конструкциях. Теплоизоляция не должна препятствовать воздухообмену жилых помещений с окружающей средой через наружные стены зданий. В случае повышенной влажности производственных помещений теплоизоляцию защищают от увлажнения с помощью надежной гидроизоляции, укладываемой с «теплой» стороны.
Химическую и биологическую стойкость теплоизоляции повышают, применяя различные защитные покрытия или обрабатывая их антисептиками. Высокопористое строение теплоизоляционных материалов способствует прониканию в них жидкостей, газов и паров, находящихся в окружающей среде. Взаимодействие их с материалом может вызвать его разрушение.
Органические материалы или материалы, содержащие в своем составе органические компоненты (связующие вещества, крахмал, клей и пр.) или волокнистые наполнители (древесное волокно), должны обладать биологической стойкостью. При увлажнении таких материалов возникает опасность разрушения их грибками или микроорганизмами. Поэтому при использовании теплоизоляционных материалов в местах, которые подвержены увлажнению, в процессе эксплуатации необходимо обрабатывать их антисептиками.
При использовании теплоизоляционных материалов в ограждающих конструкциях они могут подвергаться воздействию попеременного замораживания и оттаивания, что может привести к их разрушению, и потере в связи с этим , теплозащитных свойств. Главным условием обеспечения работоспособность таких конструкций является защита теплоизоляционного материала от увлажнения, которая может произойти за счет миграции влаги (от «теплого» к «холодному») и конденсации водяных паров, которая наиболее интенсивно происходит в холодное время года.
Источник stenovoy.ru